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ABSTRACT Thermal images produced by the long-wavelength infrared (LWIR) camera are robust and
independent from environmental illumination change. They can help the standard visible light camera work-
ing under the complicated environmental condition. Breaking through the traditional stereo multi-spectral
sensor consisting of a visible-light camera and a LWIR camera, a novel architecture of large field of
view (FOV) cooperated infrared and visible spectral sensor for visual odometry is proposed. The novel
sensor is equipped with two visible cameras, four infrared cameras covering 120 degrees FOV in horizontal
under both bands. Distribution of cameras and related peripheral devices are specifically designed which
makes the sensor’s volume less than 100 cm (length) × 10 cm (height) × 10 cm (width). The sensor’s
cameras calibration, distortion correction and measurement principle are elaborated. Feature-based method
for visible and multi-windowed optimization-based image alignment for infrared is designed for the visual
odometer based on the different imaging mechanism and distribution of cameras in the sensor. The frames
and estimated poses management from both bands are proposed. Moreover, all proposed methodologies
can be implemented in the sensor’s embedded processor. The electrical power consumption is only 12W.
Experiments of the sensor’s evaluation are performed, experimental results show that large FOV cooperated
multi-spectral cameras can efficiently improve the robustness of visual odometry. The real-time performance
of the sensor is higher than 10fps with disparity map construction under both bands.

INDEX TERMS Infrared, visible, stereo vision, visual odometer, calibration, direct method.

I. INTRODUCTION
Localizing and estimating its ego-motion in 3D space are
crucial tasks for autonomous vehicles, mobile robots and
Unmanned Aerial Vehicles (UAVs) [1]. Currently, these
tasks are achieved by using LiDAR’s, monocular and stereo
imagery, etc. LiDAR has already played an important role
in this researching area. The main drawbacks of LiDAR
are: The price of LiDAR is expensive; The weight, power
consumption is not affordable for some platforms; As an
active sensor, the signal noise of environments and oth-
ers LiDAR’s emission can affect LiDAR’s performance [2].
Camera, as a passive sensor, has its own advantage in infor-
mation acquirement, which can play an important part in 3D
data capturing. Vision-based navigation is an important area
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of research in robotics’ sensing and mapping, especially
for simultaneous localization and mapping (SLAM). Stereo
vision-based vision odometry is widely used and developed
for 3D reconstruction, indoor localization and mapping etc.
For constructed SLAM system, it’s mainly divided into two
parts: the front end and the back end [3]. The front end is the
visual odometer (VO), which roughly estimates the motion
of the camera based on the information of adjacent images
and provides a good initial value for the back end. The back
end is the optimization procedure for long time localization
and mapping. The implementation methods of VO can be
divided into two categories according to whether features
are extracted or not: feature point-based methods and direct
methods without feature points. For the complicated environ-
ment, only visible cameras or other spectral cameras are not
suitable. The multi-spectral cameras based rig is developed
and evaluated.
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For surveillance systems, multi-spectral cameras have their
advantage, such as working under low visibility or lighting
conditions, adding a richer set of information based on the
different reflection properties of the object. For environment
information acquirement, such as some surveillance and driv-
ing assistance system, multi-spectral cameras rig composed
a thermal (infrared) and an optical (visible) sensors (such
as telescopic sight) are widely discussed and developed.
Visible and infrared cameras are worked as complementary
for 2D imagery data, the research is focusing on image
fusion and registration [4], [5], feature matching and coex-
istence of visible and infrared bands’ information [6], [7].
For visual SLAM, visible camera working in low or com-
plicated illumination scene remain considerably challeng-
ing, thermal information based SLAM framework appeared.
For vision odometer, the image fusion based method has
no advantage in processing speed and efficiency. 3D data
extraction and analyzing under these two bands, for exam-
ple [8] use a bumblebee stereo vision camera cooperated
with a Near-InfraRed (NIR) camera, constructed a sparse
disparity map. [9] combine RGB information and thermal
feature together, use back-end optimizationwith loop closure,
update map and location. [10] cooperated thermal-infrared
camera with LiDAR for density map construction. All these
works use the thermal-infrared camera as complementary of
other sensors. But these works’ has limited FOV sensing in
thermal.

Multi-camera rig constructed by [11], [12], uses four
gray/color visible cameras recorded related rich textural
visual feature under traffic scenarios. They use thewide-angle
lens to cover related large FOV. For large FOV cameras’
sensors, [13] use a fish-eye camera cooperated with stereo
sensors, achieved a large FOV based dense mapping strat-
egy. [14] use 16 NIR camera and fish-eye visible camera,
covering 360-degree in the horizontal, constructed system
for self-driving vehicle localization and 3D scene perception.
[15] constructs a stereo embedded system for underwater
imaging, with the sensor’s captured information and Bundle
Adjustment (BA), they mapped the underwater scene. For
common visual odometry, all these instruments and related
methods can achieve good results relying on back-end opti-
mization such as photometric bundle adjustment. Their strat-
egy of keyframe tracking and organization are implemented
with back-end optimization together. Their instruments only
captured information.

We constructed a multi-stereo visual odometer, which
equipped long-wavelength infrared (LWIR) and visible color
cameras in a limited space. The prototype is shown in figure 1.
Our sensor is a typical front-end visual odometer for SLAM.
As a visual odometer, our system not only captures images
but also produce disparity maps, estimates the system’s initial
pose while the system is moving.

In this paper, Section II gives a overview of basic hard-
ware construction of sensor. Section III details the pro-
posed methodology and implementation strategy, including
a comprehensive calibration strategy for this instrument and

FIGURE 1. Prototype of cooperative infrared and visible spectral sensor.

FIGURE 2. Coordinate defined of cameras in each group of the sensor;
(a) Composition of one group with a visible camera and two infrared
cameras; (b) Definition of each camera’s coordination.

a distortion control for visible cameras etc. Some related
performance evaluation are also demonstrated in section III.
Section IV presents the experiments set-up, the key perfor-
mance about our infrared based visual odometer strategy.
Section V gives a overall assessment, section VI concludes
this work and gives a preview on future work.

II. SET UP OF COOPERATIVE INFRARED
AND VISIBLE SPECTRAL SENSOR
In this section, we briefly introduce our cooperative infrared
and visible spectral sensor. It’s designed as a passive sensor
for autonomous mobile robots. To cover 5m to 30m depth of
the scene, the distance of baseline (in u direction of cameras)
between the same modal cameras is roughly 0.8m and 0.55m
separately. The main features are:

1) Equipped imagers in system are only passive sensors:
visible and infrared cameras, without any active light-
ing sources.

2) Relative large field of view(FOV): 120 degrees in hor-
izontal for each visible camera and 60 degrees in hori-
zontal for each infrared camera, which can sense wide
area.

3) Embedded computing devices are equipped in sensor.
It has imaging processing and 3D data analyzing pro-
cessor.

4) All cameras and embedded equipment are arranged in
a limited space;

A. HARDWARE SETUP
We equipped a rack with two visible color camera
(25Hz, 1920 × 1080 pixels), four long-wavelength infrared
(LWIR/FIR) detectors (50Hz, 384 × 288 pixels, detects
radiations in the range 7.5∼ 14 µm). Advanced RISC
Machines (ARM) based embedded processor and related
peripheral devices (i.e. Nvidia TX2 and related PCB boards)
are developed and deployed in our system.We place one visi-
ble and two infrared cameras as a group on the left side of the
rack, the other group on the right side. The basic coordinate
definition and architecture of one group are shown in figure 2.

74238 VOLUME 8, 2020



Y. Ni et al.: Large Field of View Cooperative Infrared and Visible Spectral Sensor for Visual Odometry

FIGURE 3. (a) Estimated poses of all modal cameras related to visible camera of left group; (b) Front view of the
sensor;(c) Side view of te sensor.

The volume of our system is less than 100cm(length) ×
10cm(height) × 10cm(width). The uncooled LWIR detector
is adopted for the sensor can efficiently reduce electric con-
summation and volume of the system. The global view of our
system is shown in the figure 3.

B. ATTRIBUTES
Our sensor is treated as three cooperated binocular stereo
vision i.e. visible cameras from both groups construct a vis-
ible stereo vision unit. Disparity map calculated by visible
cameras is shown in figure 4. We combine two statics stereo
infrared cameras. Left infrared cameras (captured left part
related to visible camera) from both groups construct a left
infrared stereo vision unit, right infrared cameras from both
groups construct a right infrared stereo vision unit. Disparity
map calculated by both infrared stereo cameras is shown in
the figure 5.
We believe this is a good set up since color images captured

by visible cameras can provide rich details for object detec-
tion, segmentation, and the bag of visual word construction.
Meanwhile, infrared detectors can provide higher contrast
and sensitivity based on the thermal signatures. The reason
why we use four infrared detectors is the resolution and FOV
of common LWIR images is less than commercial optical
sensors. Using the uncooled LWIR detector instead of NIR
gives us some benefits:

FIGURE 4. Color image captured by visible cameras and related disparity
map, where we set minimum number of disparity is 32 pixel.

1) For potential threat from distances, especially some
small moving object like the vehicle, infrared detector
based methods have its own advantage comparing to
optical imaging;

2) NIR detector not only captures thermal signal, also cap-
ture some optical reflection. NIR’s details are not rich,
comparing to visible camera’s color image. NIR has
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FIGURE 5. Gray image captured by infrared cameras and related disparity
map, where we set minimum number of disparity is 16 pixel.

no advantage in contrast and sensitivity for surround-
ing heat profile(from −73◦C to +349◦), comparing to
uncooled LWIR [16].

3) For object localization, rigid or non-rigid motion
extraction and analyzing, the color image can provide
visual detail. Meanwhile, the thermal images can pro-
vide surroundings heating information. This can help
our system working well in an extreme brightness
change environment.

We combine visible and LWIR advantage to construct the
sensor. LWIR detectors are working as complementary of vis-
ible, in a cooperation fashion, comparing to pixel registration
of NIR and visible [17]. With our accurately estimated cam-
eras’ relative pose, calibrated intrinsic and distortion coeffi-
cients, a cooperative multi-modal stereo visual odometer is
established.

III. IMPLEMENTATION
In this section, we will introduce the key component and
performance of our system: (1) Related poses estimation
of all cameras with different bands, a specified self-heating
chessboard for global calibrate our system are introduced. (2)
Two-stage distortion control for large FOV visible stereo; (3)
Methodology of ego-motion estimation by two LWIR stereos
units.

A. CAMERAS’ CALIBRATION
Accurate sensors’ calibration is the key to obtaining reliable
3D data. The challenges of the system’s calibration are: (1)
Common features extracted from both LWIR and visible cam-
eras are limited or hard to be found, especially from natural
scene; (2) To cover relative large FOV, non-overlapping or
limited common filed of views cameras are equipped in our
system, especially uncooled LWIR cameras in the same group
have very limit FOV in common.

All cameras from different modals are following the
pinhole cameramodel. All cameras’ intrinsic, distortion coef-
ficients are calibrated separately in advance. The main chal-
lenge of our system’s calibration can be regarded as a relative
camera pose estimation problem. The global coordinate is
defined at the visible camera of the left group.

FIGURE 6. Self-heating chessboard captured by undistorted detectors.

Wedevelop a self-heating chessboard for visible and LWIR
bands calibration. Common features i.e. corner for visible and
LWIR bands are constructed by heating resister in each cell
of the chessboard. The main advantage of this design are: (1)
The heating distribution and parameters of the chessboard
can be adjusted based on the LWIR detector; (2) Designed
chessboard can be used off the premises with a portable elec-
tronic generator. The effect of our self-heating chessboard are
shown in the figure 6.
To calibrate related pose of left visible camera with cam-

era j (right visible camera or other infrared camera) in sensor,
we define 4 × 4 translation matrix T ji as the pose of left
visible camera related to its chessboard. Meanwhile the pose
of camera j related to its chessboard (same or related fixed to
left visible camera’s chessboard) is defined as K j

i , translation
matrix of camera j to left visible camera is defined asC j

lv. The
error function of camera j and left visible camera is defined
as following:

Rj =
i<njlv∑
i=0

∥∥∥ξ (C j
lvT

j
i B

j
lvK

j
i

)∥∥∥ (1)

With Bjlv is the relative pose of chessboards. In some cases,
Bjlv can be treated as identity. njlv is the number of the calcu-
lated poses between left visible camera and camera j. ξ (.) is
se(3) lie algebra representation. To reduce error conduction,
we put all the errors in the system together, set up a global
optimization method for these six cameras related to the left
visible camera. We use [18] set up optimization procedure.
The calibration in sensor can be treated as:

minimize{
C1
lv...C

5
lv

} ∑
j∈sensor

Rj (2)

The calibrated poses of each camera related to left visible
camera are shown in the figure 7, related flow chart are also
demonstrated in the figure 7.
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FIGURE 7. System’s calibration result.

FIGURE 8. Cropped images calibration after full size distortion correction, (a) u direction reprojected error of each chessboard
corner; (b)v direction reprojected error of each chessboard corner; (c) u direction reprojected error of each chessboard corner;
(d)v direction reprojected error of each chessboard corner;

B. LARGE FOV VISIBLE STEREO ODOMETER
For the visible band part, the initial resolution of our vis-
ible cameras is 1920 × 1080, which brings related high
computational burden. For the large FOV sensor, distor-
tion is much heavier at the edge of images. So we cut
images vertically, reduce to 400 (Considering the process-
ing ability of the embedded system and sensing area in
vertical). We pre-process visible images by two stages.
Before image cropped, images are calibrated by the fish-eye
model [19], and remap centrally. Thenwe use cropped images
(1920× 400) to do the rest calibration. The undistorted result
of our visible cameras is shown in figure 8. After full-size
correction and remapping, the cropped visible image repro-
jection error is less than 0.8 pixels.

With proper illumination condition, for visible cam-
eras, the feature-based indirect method [20], [21], can be

implemented. Since visible based visual odometry is widely
researched, we adjust the baseline and related propriety of
our cameras and realize stereo’s tracking thread part of
ORB_SLAM2 [22].

C. LARGE FOV LWIR BASED VISUAL ODOMETER
Infrared sensors’ resolution is related small (384 × 288),
compared to visible cameras. Therefore, amounts of key-
points extracted under infrared sensing are limited. Related
low-textured is common for infrared sensors, matching key-
points from stereo are hardly be found. Four infrared cameras
are equipped in system, feature-based (indirect) method for
infrared images will bring unnecessarily high computational
burden. To overcome these issues, we adopt direct methods’
theory, combine LWIR detectors in our system, propose and
implement a novel infrared stereos direct visual odometer.
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Direct methods, in contrast to feature matching based indi-
rect methods, estimate geometry directly from images, i.e. the
raw sensor’s images [23]–[25]. Our instrument brings some
advantages for direct method adaptation:

1) Two static stereo infrared cameras not only cover a
related large field of view but also calculate directly
absolute scale basing on each known baseline stereo
vision. This setup can avoid mono camera’s scale prob-
lems;

2) Direct methods use all information from the images
including corners, edges, weakly textured and repeti-
tive image regions. This is suitable for a low textural
LWIR detector;

3) For the visible based direct method, the photometric
error is calculated directly on pixel intensities, which
is sensitive to sudden illumination changes between
consecutive frames. Meanwhile, pixel intensities from
images captured by LWIR are only depended on the
thermal distribution of the scene. From the system’s
captured images, we found that thermal distribution is
more stable comparing to visible while illumination
varied [30];

Camera’s motion (i.e. its ego-motion) related to observed
static objects in the scene is tracked by image alignment to
the reference keyframe. All keyframes and its keypoints are
arranged by a sliding window. Suppose a set of keypoint ρi
in a reference frame Ii, which are observed in frame Ij. Image
alignment of these two frames i,j by the direct method can be
formulated as:

Eji = ωp
∥∥Ij [p,]− Ii [p]∥∥γ (3)

With ‖.‖γ is the Huber norm. The intensity-based loss
function should be more robust since we only use inten-
sity error of pixel. Huber loss function is not sensitive to
the outlier, which is widely used in classification. Using
Huber penalties, a gradient-dependent weighting ωp, which
down-weights pixels with high gradient, given by:

ωp =
c2

c2 +
∥∥` Ii(p)

∥∥2
2

(4)

Further, p, stands for the projected point position of p with
inverse depth dp, i.e.:

p, = 5K

(
Tji5

−1
K

(
p, dp

))
(5)

With 5K is denoted as the intrinsic matrix of cameras,
Tji is denoted as the transformation of a point from frame i
to frame j, with Tji = TjT

−1
i . For visible camera based

direct method, a brightness transfer function is proposed
in [26], i.e. e−ai (Ii − bi). This affine brightness transfer is
a inverse function of linear response function. [27], [28] use
this formula to adjust the exposure time (controlled by ai)
and brightness (controlled by bi). For LWIR, we also use this
formula to adjust the captured infrared heating distribution.

Image alignment of equation 3 is then modified to:

Eji = ωp

∥∥∥∥Ij [p,]− bj − eaj

eai
(Ii [p]− bi)

∥∥∥∥
γ

(6)

With a set of keyframesF , all points in frame i are denoted
as ρi. The other frame j can observe point p in ρi overall
frame is denoted as obj(p). Since two static stereo infrared
cameras are equipped, each static stereo infrared unit has its
own residual. Modify equation 6, static stereo’s residual can
be represented as:

E (L,R)i = ωp

∥∥∥∥∥IRi [pR]− bRi − ea
R
j

ea
L
i

(
ILi
[
pL
]
− bLi

)∥∥∥∥∥
γ

(7)

The total energy function of one stereo infrared unit can
be established by combining the multi-view stereo geometry
part (equation 6) and static stereo part (equation 7). We use
λ weights the constraints of static stereo, the full photometric
error over all frames and points can be represented as:

Etotal =
∑
i∈F

∑
p∈ρi

∑
j∈obj(p)

Eji + λE
(L,R)
i

 (8)

All infrared cameras are equipped and installed rigidity
on the rack of the system, which means that transformation
Tji of all cameras in the system is the same while sensor
is moving. Naturally, we can adjust Equ. 8, make all the
residual of two infrared stereo units together. But this idea
is not good. The reasons are: (1) The public FOV of these
two units are nearly zero degrees, the common objects can
not be observed by two infrared stereo units simultaneously.
Residuals of different units are hard to be established; (2) Two
units’ residual in one energy loss function will nearly double
the dimension of the Hessian matrix comparing to one unit,
whichwill bring computation burden to the system.Keyframe
management in RAM will be more difficult. To avoid these
problems, we use multi-threading technology to implement
the direct method in sensor’s embedded system. Each infrared
stereo unit’s residual function is established and solved by its
own thread. Each unit has its own keyframes management
and marginalization. A control thread use frame captured id
and the system’s time to identify each unit’s captured frame,
transform each unit’s pose to the system’s global coordinate,
adjust these two units’ pose. The two LWIR stereos based
factor graph of the energy function for infrared stereo units
are shown in the figure 9.

In this example shown in figure 9, 5 points are observed
by each unit’s four keyframes. Observed points from the
different units have no strict relationship. Each infrared stereo
unit’s thread has its own keyframemanagement andmarginal-
ization, control thread adjust these two units’ keyframes,
construct a system’s keyframe management. For common
frame id’s keyframe, system pose is calculated by coordinate
transformation to the system’s coordinate with the bias of two
units’ estimated poses is acceptable (for KF1, KF4, KF5).
For no common frame id’s keyframe, the system’s pose
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FIGURE 9. Factor graph for two LWIR stereos direct method model.

accepts related unit’s estimated pose(for KF2, we use left
unit’s estimated pose, for KF3, we use the right unit’s esti-
mated pose). For each unit, the energy factor is constructed
by related points and observed cameras. Finally, all poses
are transformed into visible camera coordinate of the left
unit.

To balance the accuracy and speed, Gauss-Newton based
windowed optimization is used to solve Equ. 8 of each
infrared units. For one stereo infrared cameras unit, all opti-
mized variable including: camera poses

(
Tj,Ti

)
, brightness

of heating distribution
(
ai, aj, bi, bj

)
and depth of point p in

keyframe i dp. For keyframes i, j. we define ξji = ln(Tji)∨ =
ln(TjT

−1
i )∨ replacing

(
Tj,Ti

)
, aji =

exp(aj)
exp(ai)

, bji = bj − ajibi,
and inverse depth ρi = 1

dp
. Equation 6 can be modified by

following formula:

Eji=ωp
∥∥∥Ij [5K

(
Tji5

−1
K

(
p, dp

))]
− Ii

(
ajiIi [p]− bji

)∥∥∥
γ

(9)

To solve equation 9, Jacobian matrix should be discussed.
The Jacobian matrix of equation 9 can be mainly divided by
following formula:

Jji =
[
∂Eji
∂aji

,
∂Eji
∂bji

,
∂Eji
∂ξji

,
∂Eji
∂ρi

]
(10)

For aji and bji, the partial derivation is simple. For pose
ξji and inverse depth ρi, we use the derivative chain rule
to construct a close formula of the Jacobian matrix block.

Basing on basic camera model:{
ρ−1i xi = 5KXi;
ρ−1j xj = 5K (exp(ξ∧ji )Xi);

(11)

With xi and xj are point p projected in camera i and j
coordinate. For pose ξji, the Jacobian matrix block can be
developed by equation 12.

∂Eji
∂ξji
= ωh

gxgy
0

T fx 0 0
0 fy 0
0 0 0

 ∂xj
ξji

= ωh



gx fxρj
gyfyρj

−gx fxρju
,
j − gyfyρjv

,
j

−gx fxv
,
ju
,
j − gyfy(1+ v

,2
j )

gyfyv
,
ju
,
j + gx fx(1+ u

,2
j )

−gx fxv
,
2 + gyfyu

,
2


(12)

With gx , gy are image gradient at point p in frame i, fx , fy
are the focal length of camera, u,j, v

,
j are camera normalized

coordinates. For inverse ρi, the jacobian matrix block can be
developed by equation 13.

∂Eji
∂ρi
= ωh

gxgy
0

T

fxρ
−1
i ρj

(
txji − u

,
j t
z
ji

)
fyρ
−1
i ρj

(
tyji − v

,
j t
z
ji

)
0

 (13)

with
[
txji, t

y
ji, t

z
ji

]T
is the displacement of frame i,j. We use

Gausse-Newton optimization with equation 12, 13, the pose
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and related parameters can be estimated. The keyframes and
keypoints marginalization strategy, we use Shur complement
presented in [27]–[29].

D. FRAMES AND POSES MANAGEMENT
Visible cameras are connected and arranged by one Nvidia
TX2 embedded equipment. Infrared cameras are imple-
mented to another Nvidia TX2. Two embedded equipment is
connected via Ethernet.

For some multi-camera system, frame synchronization is
very important, especially for image fusion based method.
Six cameras’ frame synchronization with different resolution,
different sensing area and different propriety of the cam-
era (camera’s frame rate, visible or LWIR) is unnecessary.
Instead, we deploy frame synchronization for the same band
cameras. Visible stereo has its own keyframe management
under feature-based judgment. Two infrared stereos man-
age their own keyframe basing on their thermal distribution.
We use network time protocol (NTP) for two embedded
system time synchronization, transmit calculated poses with
each system’s synchronized time via Ethernet protocol and
manage them.

With visible cameras’ grabbing frame rate roughly 25Hz,
infrared grabbing frame rate roughly 50Hz, frame synchro-
nized of all cameras will loss information of infrared sen-
sors, bring unnecessary electrical power load to our system.
We use synchronized embedded systems’ time and calibrated
poses of multi-cameras to cooperate visible and infrared band
camera. Both embedded equipment i.e. Nvidia TX2, will
transform disparity map ( under left visible camera’s coordi-
nate), estimated poses marked with keyframes via Ethernet
protocol, under ROS middle-ware. We use two embedded
Nvidia TX2 to balance the processing load of multi-cameras,
implement efficient front end visual odometer strategies. The
flow chart of related frame management and pose manage-
ment is shown in the figure 10
For poses management, the example we presented

in figure 9 will be detailed. For infrared stereos, frame syn-
chronization is deployed. Image processing, windowed opti-
mization and marginalization are processed in the same unit
under its own thread control. Each infrared stereo estimates
the system’s pose under the camera’s coordinate of the left
unit. The pose judgment of system’s pose ξsys can be repre-
sented as:

ξsys =



ln(Tlg−sysTlg)∨; if Trg is abscent
ln(Trg−sysTrg)∨; if Tlg is abscent

ln(Tlg−sysTlg)∨; if

∥∥∥∥ln (RlgR−1rg )∨∥∥∥∥ ≤ θ
and

∥∥∥t (TlgT−1rg

)∥∥∥ ≤ ε
marginalized; if

∥∥∥∥ln (RlgR−1rg )∨∥∥∥∥ ≥ θ
or

∥∥∥t (TlgT−1rg

)∥∥∥ ≥ ε

(14)

where Rlg,Rrg is the rotation part of Tlg,Trg. t(.) represents
the translation part of the transform matrix. The chosen of θ

FIGURE 10. Flow chart of frame management and pose management.

and ε is basing on the calibrated poses result of two infrared
cameras in the same group.

IV. EXPERIMENTS AND RESULTS
In this section, we will show the key performance of our
system which are not demonstrated in implementation part,
i.e. (1) Infrared part’s visual odometry: we will show the
result of our direct method for infrared-based images, frame
management of our proposed method; (2) Quantitative eval-
uation of the sensor’s visual odometry. (3) Processing speed
and efficient evaluation. To evaluate our system, we use our
system recording and working indoor under different illumi-
nation, we also installed the system on top of the van, perform
the outdoor test under natural heating distribution and random
illumination. The outdoor setup test is shown in the figure 11.

A. VISUAL ODOMETER EVALUATION OF INFRARED
For visual odometer, the distribution of extracted key-
point candidates (either feature-based method or direct
method) is important. Normally, the keypoints are distributed
more uniform, the odometry is more robust. For exam-
ple, ORB_SLMA2 uses grid-based Fast feature extraction,
adjusts the threshold of each grid to extract more or fewer
keypoints to make keypoints distributed more uniform com-
pared to whole frame extraction. For low textural LWIR,
grid-based feature extraction can’t avoid extracted keypoints
concentrate on some particular area. Comparison keypoints
initial extraction from LWIR is shown in figure 12.
Figure 12 is a typical example of feature extraction for

LWIR. There exist related rich textural features of heating dis-
tribution in this example. The main drawback of the indirect
method comparing to the direct method are:
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TABLE 1. Frame management strategy analyzing under absolutely stable scene.

FIGURE 11. Outdoor evaluation, (a) figure of traces where we recording
and testing our system around Tianjin University, tracks in red is under
heavy traffic, with moving vehicle and amounts of random movement
pedestrian; tracks in orange is under median traffic, with moving vehicle,
little pedestrian; tracks in blue is under related static area, little moving
vehicle and pedestrian. (b) front view of our system mounted on the top
of van. (c) side view of the our system installed on the van, sensor is
marked under red ellipse.

FIGURE 12. Comparison of keypoints extraction for LWIR,
(a) ORB_SLAM2 based keypoint candidates extraction from LWIR images;
(b) Our direct method’s keypoints candidates.

1) Processing speed: keypoint candidates extracted in
example (a) of figure 12 are used ORB_SLAM2 strat-
egy. The processing speed for the rich textural scene is
8∼ 10ms (image resolution of LWIR is related small).
For low textural condition, the processing time will
obviously raise, tracking failed judgment will spend
a related long time. Meanwhile, the direct method
processing speed is roughly 2∼4ms for each frame;
Processing time over 10ms is treated as loss of tracking,
reinitialized.

2) Distribution of keypoints candidates: From the exam-
ple we demonstrated in figure 12, keypoints candi-
dates are distributed in both (a) of indirect method and
(b) of direct method are related uniform. The problem
of the indirect method is the matching strategy. For
our multi-stereo system, the indirect method will use

FIGURE 13. Under outdoor experiments, coarse depth maps for both left
and right LWIR stereo unit, where feature tracking method lost occurred.

kyepoints matching strategy (Vector field consensus
VFC, Euler distance etc), which will reduce amounts
keypoints and lead an attenuation of keypoints distri-
bution. In the example, about 35 percent of keypoints
will be abandoned by feature matching. Direct method
skips feature matching and PNP series solving steps,
estimates cameras’ poses basing on related uniform and
rich distributed keypoints candidate.

LWIR cameras’ propriety is more suitable for the direct
method because of ‘‘shutter control’’ and stable ‘‘illumina-
tion’’ comparing to visible. Failure of some direct strategy
due to geometric distortion introduced by a rolling shut-
ter (even for high frame rate camera). Sudden illumina-
tion change will lead to the image gradient failed. For the
LWIR detector we used, the imaging mechanism is staring
array. Detector absorbed infrared radiation from a scene
simultaneously, adjusted each pixel intensity basing on the
distribution of absorbed infrared radiation energy on star-
ing array. This mechanism can avoid geometric distortion
at each pixel induced by rolling shutter. It also provides a
related stable distribution of pixel intensity with successive
frames. We evaluated all recorded frames from our instru-
ment. With un-distorted LWIR’s frame, the direct method can
run robustly. Under large FOV, some examples of keyframes
managed by our proposed strategy are shown in figure 13,
where ORB_SLAM2 tracking loss occurred.

From campus experiments, we choose five stable scenes.
Overlapped means that keyframes extracted from different
infrared units at the same time. The max number of gap θ
and ε between two LWIR stereo group shown in the table 1.
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FIGURE 14. Example of our two LWIR stereos’ direct method.

For test serial number 3 in table 1, amounts of frames
are related small, even though the keyframes overlapped
rate is high (66.7%), number of overlapped frames is small
(18 frames). A gap of right LWIR unit loss tracking and
re-initialization occurred in this serial. The overlapped rate is
low for test serial number 5 is that our vanwas running around
the gymnastic of Tianjin University, one side with related rich
textural building feature, another side is the low intensity of
the whole image. In this case, the system’s poses are relay on
only one LWIR stereo unit temporarily. For a typical visual
SLAMmapping task, our system’s estimated poses’ accuracy
is not high. For front-end only, the calculated poses are robust
enough.

From table 1, we can also see that the keyframes over-
lapped rate is normally under 50%. This demonstrates that
separated optimization of our proposed method will effi-
ciently reduce RAM cost and processing time.

For the front-end of the instruments, we designed a win-
dowed optimization of keyframes and keypoints manage-
ment for each LWIR stereo unit. It manages its estimated
poses depends on its own optimized results. An example
of estimated poses calculated and managed by both LWIR
stereo units cooperated with its own windowed optimization
is shown in figure 14. In the figure 14, trajectory of systems
are represented in red while keyframes of both unit are rep-
resented in light blue, non keyframes are represented in dark
blue. Two lines of keypoints in white are extracted by these
two LWIR stereo units separately.

The main advantage of our proposed strategy is: using only
one LWIR stereo, the tracking loss or initialization occurred
more frequently. Large FOV’s thermal sensing makes the
system more robust. Two separated windowed optimizations
make the system less complicated and more efficiency.

B. VISUAL ODOMETER EVALUATION OF SENSOR
In order to make a quantitative evaluation, the proposed
sensor is evaluated under a series of indoor experiments.
We mount our sensor on a 15m long track. A total station
(SX-105T) is placed 3m behind the end of the track. Cooper-
ated prism of the total station is installed with our sensor on
the mechanical adapter. The essential geometry relationship
of the prism and our sensor is calibrated after the installa-
tion. The mechanical adapter is connected with the track and
driven by a motor. This controllable motor control the speed
and acceleration of the sensor while it is reciprocating on the

FIGURE 15. (a) Indoor experiments set up; (b) Visible images captured at
both sides of the track while the sensor is moving; (c) Infrared images
captured at both sides of the track while the sensor is moving.

TABLE 2. RMSE of absolute trajectory error under different condition.

track. The schematic of the experiments’ setup is shown in the
figure 15 (a). Captured images from both sides of the track are
shown in 15 (b) and (c).
We use the total station capturing the motion of the sensor,

measuring the position and the orientation while it’s moving
on the track. Meanwhile, we adjust the illumination and the
heating distribution in the scene. The sensor is evaluated
not only under the normal scene, but also under these three
particular conditions:

1) Influence of the strong light: We place light source
around the track. Since the FOV of sensor is large,
the light source can be placed not far. Captured samples
are shown in figure 16 (a);

2) Thermal interference:We provide heating source on the
roof, which cause upper side of LWIR’s image plane
lose texture information. Captured samples are shown
in figure 16 (b);

3) Change of the illumination condition: We adjust light-
ing system from 600 lux to 0.5 lux while the sen-
sor is moving. The captured samples are shown
in figure 16 (c).

Our sensor record 2736 keyframes and poses in total from
these experiments. The total station provides ground-truth
data for quantitative evaluation. The Euclidean distance is
computed between the estimation results and the ground-truth
with translational Root Mean Square Error (RMSE) of Abso-
lute Trajectory Error in meters. The results are shown in
table 2. From results, we can see that under these interfer-
ences, the dilution of accuracy is acceptable. The proposed
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TABLE 3. Evaluation using our experiments data, where * is initial failed, x is tracking lost occurred, X is working well.

FIGURE 16. (a) Influence of strong light; (b) Thermal interface;
(c) Illumination change.

method combine advantage of thermal and visible spectral,
provide more robust performance in motion estimation.

C. RUNTIME EVALUATION
We track the cost time of each procedure while we were doing
our experiments. The run time distribution is presented as
following:

For visible cameras’ embedded processor, we imple-
mented large FOV distortion correction and remapping
central under full resolution(19∼21ms); Cropped image
under full resolution undistorted image (2∼3ms); Cor-
rected distortion and remapped image central under cropped
image(12∼14ms); Constructed disparity map of stereo
vision(40∼45ms); Estimated system’s pose using ORB
feature-based method(17∼19ms). All these procedures are
implemented in oneNvidia TX2 using cooperatedArmkernel
and CUDA acceleration.

For infrared cameras’ embedded processor and each LWIR
stereo unit, we implemented a bilateral filter for infrared
cameras connector’s noise adjustment; Corrected image dis-
tortion; Constructed two directions disparity under left visible
camera’s coordinate; Estimated system’s pose using our pro-
posed direct method strategy(14∼16ms). All these functions
are implemented in another Nvidia TX2 with CUDA acceler-
ation and related peripheral devices.

FIGURE 17. Runtime distribution of each procedure for each stereo unit
with (a) visible stereos, (b) infrared stereos.

The time distribution of each procedure for visible stereo
and one infrared stereo unit are shown in figure 17. When
the system transformed information coded with full resolu-
tion disparity map, the frame rate of visible is 11∼12 fps,
whereas infrared is 14∼15fps. For information coded only
with pose and keyframe information, the frame rate of visible
is 18∼19 fps, whereas infrared is 22∼23fps.

V. DISCUSSION
From an engineering perspective, our instrument has its
own advantage such as (1) Instrument’s size and weight is
related small; (2) Electrical power consumption is limited
(12W total); (3) System not only captures images but also
produces pose and keyframe information.

Comparing to other instruments in the context of large FOV
visible and LWIR cooperated system or strategy [30], we use
the multi-LWIR detector to cover the same FOV as visible
cameras. LWIR captured images are not partial complemen-
tary of the visible camera. It’s working as an independent
component. Multi LWIR detector can bring us benefits such
as larger detecting areas, but it also gives us challenges. Our
proposed methodology makes them working as front-end of
the visual odometer.

We use collected RGB and thermal images from indoor and
outdoor experiments to evaluate ORB_SLAM2 performance,
we also use thermal images to evaluate DSO performance
(since RGB visible camera are using rolling shutter, not suit-
able for DSO series). The result are shown in table 3. Our
instrument with implemented methodology is more robust
compared to traditional visual odometry approach i.e. indirect
method: ORB_SLAM2 and direct method: DSO.
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For accuracy assessment: since we combine ORB_SLAM2
of RGB and direct method of thermal, the accuracy can be
guaranteed for short term system’s localization. For long term
localization or mapping, since our system has not enough
spare computational ability, local bundle adjustment can not
be implemented in our front-end instruments. Without BA
optimization, the accuracy of our instruments for long term
activity will lose.

VI. CONCLUSION
In this work, we introduced and realized several improve-
ments basing on the state of the art visual odometry approach
to serve in the context of large FOV visible and LWIR coop-
erated instruments.

The developed hardware platforms represent efficient,
low-cost solutions for two bands’ visual odometer. In addi-
tion, to lighten the burden of the back-end system, our sensor
not only captured the appearance and thermal information but
also implemented front-end algorithm i.e. keypoints tracking,
system’s pose estimation etc. Our proposed direct method
of LWIR has shown remarkable influence in the system’s
robust keyframes management and keypoints controlled. The
outdoor test demonstrates that our system can work under
complicated illumination conditions, and processing speed
can maintain at least 10fps (with full resolution disparity map
construction).

Our future perspectives are mainly centered on back-end
designed for loop closure and mapping based on our con-
structed front end sensor. Furthermore, a more complicated
motion segmentation strategy, research on vision odometry
under heavy traffic and pedestrian basing on our recording
and constructed date-set is working on.
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