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ABSTRACT Control Charts for attributes have been widely adopted for examining the fraction non-
conforming or non-conformities in a process. However, Shewhart control charts may face some practical
problems when the process fraction of non-conformities is very low. While dealing with high quality
parameters (low defects), a precise solution is to use time between events (TBE) charts. In the present study,
control charts for time between failures have been developed considering that the inter-failure time follows
Frechet distribution. Maximum likelihood estimation method (MLE) and Probability weighted moment
method (PWMM) are taken into account for estimation purposes. We have also used cumulative sums for
inter-failure times to monitor the reliability of three-parameter Frechet distribution. The distribution of sum
of Frechet random variates has been obtained with the help of moment approximation. Control limits of
cumulative chart for different values of shape parameter have been obtained. Two real data sets are analyzed

for illustrative purposes.

INDEX TERMS Control charts, moment approximations, average run length, Frechet distribution.

I. INTRODUCTION
A control chart is a statistical tool used to distinguish between
variation in a process resulting from common causes and
variation resulting from special causes. It presents a graphical
display of process stability/instability over time. One of the
assumptions of control charts is that the underlying distribu-
tion of the quality characteristic is normal, but there are situa-
tions where we have to deal with skewed data. While Dealing
with such non-normal circumstances, Shewhart control charts
may give misleading results about the process. It often leads
to an increase in Type-I risk with the increase in skewness.
In case of moderate to large departure from normality, there
are two adaptations. First, we can use transformations to make
our data approximately normal and then use typical Shewhart
control limits. The other choice is to study the behavior of
process carefully to find the actual underlying distribution of
the quality characteristic.

Currently, many skewed distributions have been used to
model the lifetime of products. As in life testing of high
quality products, the data turns out to be highly skewed,
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so extreme value distributions perform very well in the field
of reliability engineering and electronics as compared to
normal distribution. There are many statistical distributions
used for reliability analysis, e.g. exponential, Weibull, Log-
normal, Gamma, Frechet etc. In present study, we are using
Frechet distribution (FD) to model the failure times of a
system or component(s), which was first introduced by a
French mathematician Maurice Frechet [9]. We are exploiting
FD by means of time between failure control charts.

A lot of study has been conducted based on control charts
using different distributions and also on the parameter esti-
mation of FD. For example, Abbas and Tang [3] considered
maximum likelihood estimators (MLEs) and least square esti-
mators of FD with two parameters based on Type II censored
sample. Abid [5] estimated the MLEs, moment estimators,
regression estimators, percentile estimators, least square esti-
mators and L-moments estimators of FD. Xie et al. [23] sug-
gested to use T chart for Poisson and exponentially distributed
processes. Rao and Sricharani [1] worked on Time control
charts through non homogenous Poisson process based on
Dagum distribution. Rosaiah et al. [4] developed Shewhart
control charts based on percentiles for Gumbel distribution
which is also a positively skewed distribution. A method to
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monitor reliability for a three parameter Weibull distribution
was proposed by Surucu and Sazak [21]. The parameters of
the distribution were estimated and the study was extended
for cumulative time elapsed between r failures. The lower
and upper control limits of T, control chart were obtained
by using percentage points of the corresponding distribu-
tion. To obtain the cumulative chart, the distribution of sum
of independent Weibull random variates was approximated
using two moment Normal approximation and three moment
Chi-square approximation. This work can be extended using a
different estimation technique and for different distributions.
Therefore, in our study we have adopted the same procedure
for constructing control limits for another life testing distri-
bution named FD. The problem of estimating parameters of
the distribution was set using ML and PWM methods.

Il. TIME BETWEEN FAILURE CHARTS

Usually, Shewhart ‘c’and ‘v’ charts can be used to monitor
the process of non-conformities or defects, but for precise
results we deal with high quality in our production processes
leading to zero or low defect levels. These types of rare events
cannot be better explained by ‘c’ and ‘u’ chart. In this case,
Calvin [8] developed a new chart named time between events
(TBE) chart. This chart is used to monitor inter-arrival TBEs.
There are many versions of TBE charts including cumulative
count of conforming chart, cumulative quantity control chart,
time between first failure (T) and time between P failure
(Ty)-charts, cumulative sum (CUSUM) and exponentially
distributed moving average (EWMA) T-charts and so on.
In the present study, T-chart and T;-chart will be considered
as our model is based on time between failures of a production
process.

A. FRECHET DISTRIBUTION

Many generalizations of Exponential distribution are useful
to model failure times, like Gamma, Weibull, and Inverse
Weibull distribution etc. In this article, three-parameter
Frechet distribution (FD) will be studied, to model time
between failures and construct control charts for various esti-
mates of model parameters. FD is a special case of gener-
alized extreme value distributions (EVDs) with cumulative
distribution function (CDF) given as

F(x):exp[—(%) i|, x >0, Q)

and the probability density function (PDF) given as

a+1 o
foanin =2 () e[ (2£5)]
B\x—vy x—y

x>0,0,8>0,—00 <y <o0. (2)

where «, B, y, are shape, scale and location parameters
respectively. To monitor the failure time of systems or com-
ponents, one can utilize LCL and UCL. If the time between
failures plotted on the chart is below the LCL, it is an indica-
tion of increasing failure rate or system deterioration. If the
plotted time is above the UCL, it shows improvement in the
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TABLE 1. Average ML estimates for « = 3, 8 = 1 and different values of y
along with their CLs and MSE (within parenthesis) for n = 30.

Y a B y LCL UCL
(LCL, UCL)

0.5 29321 09852  0.5279  0.6808 2.4284
(0.6105,2.3765)  (1.4861) (0.2616)  (0.2362)

1 25713 07873 11911 12587 2.8664
(1.1105,2.8765)  (0.5051)  (0.0687)  (0.0557)

2 25547 08539  2.1275 22166 3.9567
(2.1105,3.8765)  (0.9117) (0.1250)  (0.1148)

3 24607 07430 32379 33056 4.8491
(3.6105,5.37565)  (0.7684)  (0.1544)  (0.1341)

35 33000  1.0217 34561  3.6482  5.2965
(3.6105,5.3765)  (1.8904)  (0.2673)  (0.2652)

4 27757 09584  4.0445  4.1831 5.8935
4.1105,5.8765)  (1.1531) (0.3387)  (0.2652)

The results given in Table I and 2 are the average ML
estimates obtained by solving these normal equations for
30 and 60 samples.

process. We will estimate the location, shape and scale param-
eters of FD using maximum likelihood estimation (MLE) and
Probability weighted moments (PWM) method.

Ill. CONTROL CHARTS FOR FIRST FAILURE

The control limits for first failure can easily be obtained by
following the suggestion of Xie et al. [23]. He suggested that
the approximate LCL and UCL reduce to lower and upper
percentage points of the assumed distribution for first failure.
The percentage points of the assumed distribution will be
obtained using its quantile function which is

A

_s

1
(=logp)a
By substitutingp = 1 — % andp = % in (3), we get LCL and

UCL for T-chart as given in (4) and (5) respectively where X
is the probability of rejecting true null hypothesis.

A

F7lw =9+ ?3)

LCL = +
(—log (1-3))

A

Uan=p+——ll—— 5)

(—log (2))*

where &, B and y are estimated using ML and PWM methods.

“

=

A. MAXIMUM LIKELIHOOD ESTIMATION
Let X1, X3, X3..., X; be a random sample of size ‘n’ from
three parameter FD, then the likelihood function of (2) is

n a+1
nenn =115 (%)

i=1
xexp|:— ()Cify) :|>, (6)
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TABLE 2. Average ML estimates for « = 3, 8 = 1 and different values of
location parameter y along with their control limits and MSE (within
parenthesis) for n = 60.

Y a B 1% LCL UCL
(Lct, ucy)

0.5 3.4614 1.1456 0.3484 0.5467 2.3559
0.6105,2.3765 (1.4563)  (0.1769)  (0.1809)

1 3.1639 0.9948 0.9970 1.1405 2.8452
1.1105,2.8765  (0.8890)  (0.0750)  (0.0728)

2 3.3102 1.1016 1.9165 2.1078 3.8781
2.1105,3.8765 (1.5709)  (0.2633)  (0.2247)

3 3.3374 1.0297 2.9473 3.1180 4.8116
3.1105,4.8765 (1.4941)  (0.1253)  (0.1203)

3.5 2.9304 0.9047 3.6220 3.7248 5.3632
3.6105,5.3765  (0.3354)  (0.0373)  (0.0487)

4 2.8530 1.0062 4.0189 4.1410 6.0712
4.1105,5.8765 (0.9327)  (0.0792)  (0.0735)

It is more convenient to work with log likelihood function.
The log likelihood function of (6) is

I =logL (x,a, B,y)
3 n g n ﬁ
_;log<ﬂ>+(a+l)§log<x—i_y>
—Zlog( ’ ) ™
i=1 Y=y

Partial derivatives of (7) with respect to «, 8, y and gives us
(8), (9) and (10) respectively

al n n
= +nlogB — Zi:l (xi —y)

5 ((xl;y> log (’“z‘%’)),:o, ®)
ol no o n (xi - V>_a
O _na N —0, ©)
B p Bi=l B
ol _ n 1 o n Xi—Y o
ay (a+1)2i=1 Xi—y _Ezi=1< B )

The solution to the above system of normal equations is not
possible explicitly. Here we used the Laplace approximation
in the LearnBayes package of the R software version (i386
3.6.1) to get the point estimates.

The results given in Table 1 and 2 are the average ML
estimates obtained by solving these normal equations for
30 and 60 samples.

Figure 1, 2 and 3 illustrates T-charts for first failure using
ML estimates of the parameters. In the T-chart presented
in Figure 2, a small amount of shift is created in the location of
the process and hence T chart is unable to detect this shift. But
in Figure 3, the quantity of shift created is somehow large and
therefore T chart has detected the shift in the process location.
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FIGURE 1. T-chart for first failure when ¢ = 3,8 =1,y =2 forn =60
failure numbers using ML Estimates.
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FIGURE 2. T-chart with « =3, 8 = 1, y = 4 for first 60failures and « = 3,
B =1, y = 3.5 for next 60 failures using ML estimates.
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FIGURE 3. T-chart for first failure with « = 3, g = 1, y = 3 for first
30 failures and « = 3, 8 = 1, y = 2 for next 30 failures using ML estimates.

It can be clearly noted that the charts constructed here
in Figure 1, 2 and 3 are in statistical control since no sam-
ple point falls below the LCL. However, when the process
possesses a shift in the location, T-charts can detect this shift
only when the quantity of the shift is large. Otherwise, T-chart
does not detect small amount of shift.

B. PROBABILITY WEIGHTED MOMENT METHOD
Probability weighted moment (PWM) method was proposed
by Greenwood et al. [12]. It has the following form:

My, s=E (x4 (F (x))" (1 — F (x))*), (11)
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TABLE 3. Average PWM estimates for « = 1, 8 = 0.5 and different values
of y along with their CLs and MSE (within parenthesis) for n = 30.

Y @ B 2 LCL UCL
LCL, UCL

1 1.6629  1.0841  0.4900 0.5104 3.8644
1.0007,4.3038  (0.6629)  (0.5841) (-0.5100)

15 1.6398  1.0858  0.9958 1.0151  4.4301
1.5007,4.8038  (0.6398)  (0.5858) (-0.5042)

2 1.6459  1.1097  1.4734 1.4934  4.9685
2.0007,5.3038  (0.6459)  (0.6097) (-0.5266)

2.5 1.6151  1.0783  2.0032 2.0212 5.4744
2.5007,8038  (0.6151)  (0.5783) (-0.4968)
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FIGURE 4. T-chart for first failure whena =1, 8 =05,y =1 forn =
30 failure numbers using PWM estimates.

Hosking et al. [14] presented the following form

B, =E[XFx)], r=01273..., (12)
The PWM equation is
B b +(ﬂ“(+1))lr1 ! a>1
= r « -
S U a))’ '
13)

The corresponding unbiased sample PWM’s proposed by
Landwehr et al. [17] are

A 1 n

By=—3%_ x (14)
n x—i

A~ i — ) Xi

B, = M (15)

n ()
By equating these population and sample moments we will
get our required estimators. Table 3 presents PWM estimates
for the underlying parameters of the distribution.

T-charts based on PWM estimates has been presented
in Figure 4 and 5 where Figure 5 represents control chart with
a shift after thirtieth sample. From these figures, it can be
observed that the charts depict in control process behavior.
But from Figure 5, it has been clearly evident that when
shift occurs in the location of the process, T-chart based on
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FIGURE 5. T-chart with « = 1, 8 = 0:5, y = 2.5 for first 30 failures and o« =
1, B = 0.5, y = 2 for next 30 failures using PWM estimates.

PWM estimates is unable to detect this shift. It is to be noted
that the quantity of the shift observed here is small therefore
T chart is unable to detect small shifts but it may happen
that the same charts detects shift in the process when the
quantity of shift is large. To overcome this flaw, the behavior
of the process is examined using cumulative chart which
is called time between r'' failure charts (T;-charts) in the
terminology of TBE charts which is discussed in the later
section.

IV. CONTROL CHARTS FOR MORE THAN ONE FAILURE

It has been observed that T-chart is unable to detect small
shift in the location of the process. Therefore, we have chosen
another TBE charts with better performance which is called
T;-chart. T;-chart is sometimes called CUSUM T-chart as it
uses sum of failure times observed. For the construction of T,-
charts, the distribution of cumulative time elapsed between a
fixed number of failures is required. But in the literature of
FD, we do not know the exact distribution of sum of Frechet
random variables. Therefore, to identify the underlying distri-
bution, two moment approximations have been used. Surucu
and Sazak [21] introduced a new variable for cuamulative time
elapsed between ‘r’ failures as

i=1,2,3,....,m).

vi=>" X; (16)

j=r(i—1)+1

where X; (j =1,2,3,...,N) are independently and identi-
cally distributed (IID) Frechet random variates. Since we
have been dealing with the condition of constructing con-
trol limits based on percentage points of the distribution,
therefore, the limits cannot be obtained without having the
distribution of Y;. Here the random variable Y; represents
the sum of Frechet random variates. In order to obtain the
distribution of Y;, numerous approximations are available to
approximate one distribution from another distribution. Some
of those are based on equating moments of both distributions.
Here, two moment Normal approximation and three moment
Chi-square approximation will be considered, for details see
[10] and [22].
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FIGURE 6. T, -chart with 40 cumulative observations for « = 12, 8 = 0.5,
y = 1.3 using Normal approximation.

A. TWO MOMENT NORMAL APPROXIMATION
This approximation will give us better results for percentage
points of Y if the following conditions are roughly satisfied

|Bf| <0.5 and2.8 < |B5] <32 (17)

Here simulated skewness and kurtosis values have been used
to check the above conditions. Suppose

wi = —=0o)/h~N(,I) (18)

where ‘c’ and ‘h’are constants and can be obtained by equat-
ing moments on both sides of equation (18) and are equal to
c=p =EX)and h = Jup = /V(Y); see [10]. Since
—z; and 2y are the lower and upper )‘/2) th percentage
points of W1 respectively, therefore the LCL and UCL of Y
which are the percentage points of the distribution of Y are

N A
L =c— hZE (19)
N A
U =c+ hZE (20)

While approximating the distribution of sum of Frechet ran-
dom variables, the results for different values of shape param-
eters are presented in Table 4. Since these approximations are
based on the moments of the distribution, therefore we cannot
take the value of shape parameter less than four. The reason
for this is the limitation of FD that its value of moments does
not exist for the value of the shape less than four. The LCL
and UCL of T; chart based on Normal approximations are
presented in Table 5. Using two moment Normal approxima-
tion, Ty-charts for r = 4 are given in Figure 6 and 7. Small shift
is created in Figure 7 which the chart has detected clearly and
rapidly.

Recall that when the quantity of shift is small, T-chart
is unable to detect that shift. In contrast, Ty-chart based on
Normal approximation gives fast detection of shift even if the
quantity of shift is small.

B. THREE MOMENT CHI-SQUARE APPROXIMATION
If the following conditions are satisfied

VB >0 and|Bf—(3+1.581)1 <05
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FIGURE 7. T, -chart with first 40 cumulative observations for « =10,
B = 0.5, y = 2 and next 40 cumulative observations for « = 10, 8 = 0.5,
y = 1.9 using normal approximation.

TABLE 4. Moment approximations for the distribution of sum of Frechet
random variable for r = 4.

[ shape [B:|  [B:| VB [ B, -(3+158,)]
3-M )(Z 5.8 2.1199 6.7887 1.4560 0.6088
5.9 2.0407 6.4615 1.4285 0.4005
6.0 1.9678 6.1695 1.4028 0.2178
6.1 1.9005 5.9074 1.3786 0.0566
6.2 1.8383 5.6710 1.3558 0.0865
6.3 1.7806 5.4567 1.3344 0.2141
6.4 1.7269 5.2617 1.3141 0.3286
2-MNorm 9.5 0.9652 2.8856  0.9824  1.5622
10 0.9123 2.7446 0.9552 1.6239
10.5 0.8674 2.6268 0.9313 1.6742
11 0.8286 2.5270 0.9103 1.7160
11.5 0.7950 2.4413 0.8916 1.7511
12 0.7655 2.3671 0.8749 1.7812
13 0.7161 2.2449 0.8462 1.8293
135 0.6953 2.1940 0.8339 1.8490
14 0.6766 2.1485 0.8225 1.8664

TABLE 5. Control limits for Tr-chart using normal approximation when g
=0.5.

o v LCL UCL o Y LCL UCL
2.0 9.8241 10.4869 2 9.874201 10.3480
1.8 9.0241 9.6869 1.8 9.074201 9.5480
1.7 8.6241 9.2869 1.6 10.1484 11.0960
9 1.5 7.8241 8.4869 12 1.5 7.874201 8.3480
1.4 7.4241 8.0869 1.3 7.074201 7.5480
1.2 6.6241 7.2869 1 5.874201 6.3480
1.0 5.8241 6.4869
2 9.8448 10.4297 2 9.8799 10.3322
1.9 9.4448 10.0297 1.8 9.0799 9.5322
1.7 10.4896 11.6594 1.5 7.8799 8.3322
10 1.5 7.8448 8.4297 12.5 1.3 7.0799 7.5322
1.3 7.0448 7.6297 1 5.8799 6.3322
1.0 7.6896 8.8594 0.9 5.4799 5.9322
0.8 6.8896 8.0594 0.5 3.8799 4.3322

Then wy, = O — C)/h ~ x(zv) gives better approximation for

the distribution of Y, where V = ;3* h= ‘/” 2

hV; see [20]. The control limits are s1m11arly obtained as in
(19) and (20).

and ¢ = ,ul

2
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FIGURE 8. T, -chart with 40 cumulative observations for « = 6.2, 8 = 0.5,
y = 1.5 using chi-square approximation.
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FIGURE 9. T-chart with first 40 cumulative observations for « = 6,
0.5, y = 1 and next 40 cumulative observations for« = 6, 8 = 0.5, y
0.8 using chi-square approximation.

U, = c+hxz (22)

1—)‘/2,V>A

Control limits based on Chi-square approximation for dif-
ferent values of shape parameter are presented in Table 6.
Figure 8 and 9 give us control charts for cumulative time
elapsed between four failures in a production process. These
charts are based on Chi-square approximation. These charts
also show in control behavior and there is no false alarm in
the chart. Also, we are using Ty-charts because individual
T charts are not able to detect small shifts in the process
behavior as described earlier. It is also clearly shown in Fig-
ure 9 that if small shift appears in the location of the process,
T;-chart rapidly detects this shift. But T chart in the previous
sections was not able to detect small quantity of shift. Those
charts were only detecting shift of approximately 1o or more.
Therefore, these types of TBE charts are preferable than the
previous ones.

V. AVERAGE RUN LENGTH

The probability of not detecting shift in a control chart is the
probability that all the points plot in control when process is
out of control and it is denoted by p. The power of the chart
i.e., 1 — m is the probability of detecting shift in the process.
The average number of points that plot before the chart shows
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TABLE 6. Control limits for T,-chart using x2 approximation with 8 = 0.5.

o Y LCL UCL a Y LCL UCL

5.8 1.5 7.9295 8.8454 6.2 1.5 7.9263 8.7697
1.4 7.5295 8.4454 1.0 5.9263 6.7697
1.2 6.7295 6.6454 0.8 5.1263 5.9697
1.0 5.9295 6.8454 0.5 3.9263 4.7697
0.8 5.1295 6.0454 0.3 3.1263 3.9697
0.5 3.9295 4.8454

5.9 1.5 7.9284 8.8251 6.3 1.5 7.9259 8.7528
1.3 7.1284 8.0251 1.0 5.9259 6.7528
1.0 5.9284 6.8251 0.5 3.9259 4.7528
0.8 5.1284 6.0251 0.3 3.1259 3.9528
0.5 3.9284 4.8251

6.0 1.5 7.9275 8.8058 6.4 1.5 7.9256 8.7367
1.3 7.1275 8.0058 1.0 5.9256 6.7367
1.0 5.9275 6.8058 0.5 3.9256 4.7367
0.8 5.1275 6.0058 6.5 1.5 7.9254 8.7213
0.5 3.9275 4.8058 1.0 5.9254 6.7213
0.3 3.1275 4.0058 0.5 3.9254 4.7213

6.1 1.5 7.9268 8.7873 6.6 1.5 7.9253 8.7064
1.0 5.9268 6.7873 1.0 5.9253 6.7064
0.5 3.9268 4.7873 0.5 3.9254 4.7064

an out of control signal is defined as ARL. Generally ARL can
be expressed as

1

ARLy = T (23)

when the process is in control. Here X is the probability of
false alarm in the process so that the chart shows out of control
signal while the process is in control. When the process is out
of control, ARL is

1
ARL| = N s
— T

(24)

But these formulae does not work always when the charts are
not Shewhart type therefore for T; control chart Xie et al. [23]
gave the following formula for the ARL of Erlang distribution

(25)

To calculate 7, we need exact distribution of the correspond-
ing variable. So here we cannot make use of the above rule
as the distribution of sum of Frechet random variables is
not known exactly. Therefore, we will use the definition of
7. Since 7 is the probability that failure time falls within
control limits while having the process shifted to a new point,
therefore;

m =P[LCL <T, < UCL|H], (26)
After standardization of (26), we have
UCL, — LCL, —
n=F|:—}; C}—F[—; C] @)
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TABLE 7. ARL for chi-square approximation when « = 5.9, 8 =1
andy =1.

Shift(d) T -7 ARL ANOS
0.1 0.0771 0.9229 4.2477 16.9908
0.2 0.0587 0.9413 4.1649 16.6595
0.3 0.0445 0.9555 4.1029 16.4116
0.4 0.0336 0.9664 4.0565 16.2060
0.5 0.0253 0.9748 4.0218 16.0871
0.6 0.0189 0.9811 3.9958 15.9831
0.7 0.0141 0.9859 3.9764 15.9054
0.8 0.0105 0.9895 3.9619 15.8476
TABLE 8. ARL for normal approximation when g = 0.5.
Shift(5) T 17 ARL
When a =9 Y=1 ARL,=123.110
0.2 0.3424 0.6576 9.3604
0.4 0.0028 0.9972 6.1727
0.6 1.3298e-07 0.9999 6.1555
>0.8 0 1 6.1555
When a=10 Y=1 ARL=122.7251
0.2 0.2355 0.7645 6.9812
0.4 0.0003 0.9997 5.3390
>0.6 =0 =1 5.3337
When a=11 Y=0.8 ARLy=122.4561
0.2 0.1502 0.8498 6.2633
0.4 2.7649e05 0.99997 5.3229
>0.6 =0 =1 5.3228
When a=12  Y=1 ARL,=122.2219
0.2 0.0886 0.9114 6.7051
0.4 1.589e-06 0.9999 6.1111
>0.6 =0 =1 6.1111
When Y=1 ARL=122.1206
a=12.5
0.2 0.0660 0.9340 6.5374
0.4 3.2997e-07 0.9999 6.1060
>0.6 =0 =1 6.1060

therefore equation (25) becomes
E (Y))

() - ()]

If the probability of the detection of shift is estimated, we can
easily estimate ARL for the distribution of sum of Frechet
random variables using equation (26). In the present study,
we have used the same formula to find ARL for T;-charts. The
ARL for Chi-square approximation is given in Table 7 and
that of Normal approximation is given in Table 8. ARL values
depict that when a small shift in the process occurs, CUSUM
chart clearly detects this shift. The ARL is small for small
shift in the process and the probability of detecting shift
becomes very close to one when shift is about or greater
than 0.6 sigma. Therefore, it is clear that T,-chart has rapid
detection of shift than individual T-charts. Hence we prefer
T;-charts in a production process to reduce deterioration.

ARL, (28)

VIi. DATA ANALYSIS
To illustrate, we have used real data sets taken from life
testing experiments. While fitting any distribution to a real
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TABLE 9. Estimates for example 1.

U @ B 7 LCL UCL
MLE  3.0190  823.0821  -526.7316 -434.4757 1011.689
PWM 41390  1269.311  -963.8083 -706.5792  1039.26

The value of KS-test for example 1 along with their
corresponding P-values are given below

DML = 0.0696, P-value = 0.9957

DPWM = 0.0667 P-value = 0.9976

2500

2000

1500

e L 7 w—
m;;\/m,\jv\/ /S

1 234506 78 8101119131415161718182021 32232425765 2738253031 22232425252?28293031

Time to firstfailure

-50:0

-1000

LCL ucL

—

FIGURE 10. T-chart for example 1 using ML estimates.

data set, first we have to check that whether the underlying
model is suitable for data set. For this purpose, we have been
using a graphical method and Kolmogorov-Smirnov (KS)
test: see [16], [20] in our study.

Example 1: This data set exhibits 31 observations of life-
time of lamps used in projectors. The projection hours were
recorded in hours when each lamp burned out; see [11]. Data
for failure of 31 lamps are presented here:

387, 182, 244, 600, 627, 332, 418, 300, 798, 584, 660, 39,
274, 174, 50, 34, 1895, 158, 974, 345, 1755, 1752, 473, 81,
954, 1407, 230, 464, 380, 131, 1205.

Parameter estimates for example 1 are given in Table 9. The
estimates are found using ML and PWM method. The control
limits are also computed using percentiles of the distribution
as described in section 3.

The value of KS-test for example 1 along with their corre-
sponding P-values are given below

DML = 0.0696, P — value = 0.9957
DPWM = 0.0667 P — value = 0.9976

T-chart for real data set 1 using ML estimates has been
presented in Figure 10 and using PWM estimates is presented
in Figure 11. Same as the charts based on simulation results,
these charts also depict that the process is in statistical control
since all the values of failure times plot are above LCL. The
LCL of these control charts become negative but if it is not
convenient for researchers to take negative LCL, they can
use zero as their LCL because in life testing experiments
there is no need to work with negative points. Therefore, the
technique works for real life testing processes and T-chart is
more appropriate for this data.
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FIGURE 11. T-chart for example 1 using PWM estimates.

TABLE 10. Estimates for example 2.

U a B 7 LCL UcL
MLE  15.5404  420.6071 -365.888  -90.94817  109.0596
PWM  13.6445  381.6477 -327.739  -92.57664  110.5532
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FIGURE 12. Goodness of fit plots for real data set 1 and 2.

Example 2: Another data set is taken from Lawless [18]
about time to failure of 23 Ball Bearings and is presented here:

17.88, 28.92, 33.00, 173.40, 42.12, 45.60, 48.80, 51.84,
51.96, 54.12,55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, 41.52.

The value of D-statistic along with their p-values for exam-
ple 2 based on ML and PWM methods have been given as
DML = 0.1021, P-value = 0.9503

DPWM = 0.0987, P — value = 0.9622

Parameter estimates for example 2 along with their estimated
CLs have been presented in Table 10. T-charts can also be
constructed for data set 2 as for data set 1.

It is clear from Figure 12 that FD has suitable fit for both
the data sets. Further, KS-test is also used to test the two
tailed hypothesis of goodness of fit. The significance level
used to test the hypothesis is A = 0:05. Since the KS distance
is small and the p-value of KS-test for both real data sets is
greater than 0.05. Therefore, the null hypothesis cannot be
rejected and it is concluded that FD is suitable to model both
the datasets.
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FIGURE 13. T4 -chart for example 2 using control limits based on Normal
approximation.

As mentioned earlier, T-charts have the shortcoming of
not detecting the shift when the quantity of shift is small.
Therefore, for the data given in example 2, T;-chart is being
constructed. For example 1, we see that the value of shape
parameter estimated by both ML and PWM method is less
than 5.7, therefore the cumulative observations of this data
set do not follow Chi-square or Normal distribution approx-
imately. For example 2, Normal approximation can be used
while making T4 chart. The data have been plotted on T4 chart
for time to four failures shown in Figure 13. PWM estimates
have been used for the approximation of the distribution of
sum and control limits of the chart have been estimated using
percentage points of Normal distribution.

VII. CONCLUSION

In this paper, an attempt have been made to develop a model
for time between failures of a process with three-parameter
FD. To monitor the reliability of high quality processes,
we make use of T chart and Tr chart whose limits are based on
ML and PWM estimates. To obtain T,_ chart, the distribution
of sum of Frechet random variable is required. For this pur-
pose, two moment approximations are utilized that provide
promising results. T-charts show in control process behavior
but Tr charts are proven more effective due to fast detection of
shift when the process deteriorates. One can extend this study
by considering different estimation technique for the model
parameters, constructing different types of TBE charts like
CCC charts, CQC charts, synthetic T charts etc. approximat-
ing the distribution of sum of Frechet random variables by
other moment approximations like four moment F- approxi-
mations or any other approximation technique or taking some
other life testing distribution to model failure times of a
system or component.
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