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ABSTRACT This paper proposes a geometric approach to the conditions for mode decoupling of a vibration
system of an elastically supported single rigid body and presents the conditions that the system has only pure
rotation modes of vibration. A small oscillation of a rigid body is indeed a repetitive screw motion and thus
vibration modes are expressed by screws in general, which results in the difficulty involved in solving a
vibration problem. The complexity of a vibration system can be alleviated for both analysis and synthesis
if the system has only rotation modes. In order to acquire the decoupling techniques, this paper begins by
investigating a stiffness matrix which can be separated into the sum of two rank 3 stiffness matrices, which
are realizable by using co-reciprocal line vectors. From the co-reciprocity, the separable stiffness matrix can
be regarded as a linear transformation between two 3-systems of screws containing only line vectors. Using
the properties of the linear transformation and the screw systems, the conditions for mode decoupling, or the
conditions for only pure rotation modes are derived and described by geometric relations between inertia
and stiffness, and three cases of vibration systems with simple geometric nature are identified.

INDEX TERMS Screw theory, linear vibration, mode decoupling, planes of symmetry, pure rotation mode.

NOMENCLATURE
A. NOTATIONS
AAA Induced wrench space spanned by α̂1, α̂2 and α̂3
AAB Induced wrench space spanned by α̂1, α̂2 and β̂3
ABA Induced wrench space spanned by α̂1, β̂2 and α̂3
ABB Induced wrench space spanned by α̂1, β̂2 and β̂3
BAA Induced wrench space spanned by β̂1, α̂2 and α̂3
BAB Induced wrench space spanned by β̂1, α̂2 and β̂3
BBA Induced wrench space spanned by β̂1, β̂2 and α̂3
BBB Induced wrench space spanned by β̂1, β̂2 and β̂3
α̂i, β̂ i Line vectors uniquely determined from stiffness

matrix
1 Matrix interchanging the ray and axis co-

ordinates of a screw
hi, gi Pitches of the principal screws p̂i, q̂i
j 6× nmatrix consisting of line vectors of springs
k Diagonal matrix whose diagonal elements are

ki’s
K Stiffness matrix
Kα , Kβ Separated stiffness matrices with rank 3

The associate editor coordinating the review of this manuscript and

approving it for publication was Hamid Mohammad-Sedighi .

ki Spring constant of ŝi
l̂ i Free vector determined from mass matrix
λi, µi Eigenvalues associated with p̂i, q̂i
M Mass matrix
n̂i Line vector determined from mass matrix
p̂i, q̂i Principal screws of K with eigenvalues λi, µi
ri Position vector of a line vector

si Unit direction vector of a line vector

ŝi Line vector indicating axis of spring with constant
ki

X̂ i Vibration mode represented in axis co-ordinates

x̂α Line vector belonging to AAA (expressed in ray
co-ordinates)

X̂α Line vector belonging to AAA (expressed in axis
co-ordinates)

x̂β Line vector belonging to BBB (expressed in ray
co-ordinates)

X̂β Line vector belonging to BBB (expressed in axis
co-ordinates)
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I. INTRODUCTION
Equations of motion of a resiliently suspended rigid body in
three-dimensional space are given by six linear coupled 2nd-
order differential equations. The complexity involved in solv-
ing the equations can be significantly reduced by decoupling
the equations. So far, there has been little research on this
issue of decoupling. Derby [1] presented the decoupling of
the equations of motion by making 3 × 3 off-diagonal sub-
matrices of mass and stiffness matrices zero matrices simul-
taneously. Harris and Piersol [2] investigated the methods to
decouple the equations of motion with respect to a plane(s) of
symmetry by observing the elements of the stiffness matrix
when the mass matrix is diagonalized. Considering that the
mass matrix can always be diagonalized by a co-ordinate
transformation, it can be said that the complexity of solving
the equations of motion is mainly associated with the stiffness
matrix.

It was Ball [3] who first described oscillation of a rigid
body as a small screw motion. From the viewpoint of geome-
try, a screw associated with vibration mode means that it is in
general repetitive screw motion about the axis of screw. The
complex motions give rise to complicated geometrical nature
of spatial vibration systems. In contrast, if the decoupling
techniques presented in [1], [2] are applied, all the vibration
modes are pure rotations and(or) translations. Especially, if a
vibrating system has a plane of symmetry, the modes are
decoupled into in-plane and out-of-plane modes. The in-
and out-of-plane modes, respectively, refer to pure rotational
vibrations of a rigid body about vibration axes perpendicular
to the plane of symmetry and lying on the plane. Jang et
el [4] showed that there exist relatively simple geometrical
relationships between vibration axes of in- and out-of-plane
modes. Recently, some researchers [5]–[7] presented design
methods of planar vibration system by use of geometric
properties of in-plane modes. Park and Choi [8] utilized
geometric properties of out-of-plane modes to design energy
harvester with desired resonant frequencies. The transparent
geometrical nature of vibrating systems may provide useful
tools for design of a vibration system. Thus, the identification
of vibration systems with simple geometric properties is the
motivation for this work.

Several approaches have been studied to find conditions for
plane(s) of symmetry. Dan and Choi [9], [10] derived condi-
tions for plane(s) of symmetry by observing stiffnessmatrices
diagonalizable by a co-ordinate transformation. Hong and
Choi [11] proposed the geometric approach to conditions
for a vibrating system with diagonalizable stiffness matri-
ces to have a plane(s) of symmetry. However, it has been
known that a stiffness matrix is not always diagonalizable by
a co-ordinate transformation [12]. Although Jang and Choi
[13] presented general conditions for a plane(s) of symmetry
regardless of diagonalization of stiffness matrix, geometric
relations between inertia and stiffness were not described.

Patterson and Lipkin [14], [15] demonstrated several
propositions of the principal screws of the potential defined
by Ball [3]. Huang [16] represented a spatial stiffness matrix

as the sum of outer products of principal screws with unit
magnitude (eigenscrew decomposition). Griffis and Duffy
[17] showed that the correlation of stiffness mapping can
be expressed in terms of the stiffness constants of springs
and Jacobian matrix consisting of line vectors of springs.
On the other hand, not all of the stiffness matrices are real-
izable by means of parallel connections of springs. Lončarić
[12] investigated the condition for realizability of a stiffness
matrix. Many researchers [18]–[23] have made much efforts
to develop the methods of the realization of a given stiffness
using parallel connections of springs.

This paper proposes a geometric approach to the conditions
for having only pure rotation modes. The general conditions
for a plane of symmetry are developed as well as the other two
conditions that can be applied to simplify a vibration system.
This paper is organized as follows: Section II introduces the-
oretical preliminaries and describes the necessary condition
for having only pure rotation modes that is derived from the
orthogonality of vibration modes with respect to stiffness
matrix. In Section III, we define a special term ‘separable,’
which is used to mean that the stiffness matrix of rank 6 can
be separated into the sum of two rank 3 symmetric matrices
that are realizable by using co-reciprocal line vectors. From
the co-reciprocity, the separable stiffness matrix is viewed
as a linear transformation between two 3-systems of screws.
In Section IV, the mass matrix is also considered as a linear
transformation and the conditions for a vibration system to
have only pure rotation modes is derived using the linear
transformations corresponding tomass and stiffnessmatrices.
In what follows, the conditions are described as the geomet-
rical relationships between the inertia and separable stiffness.
In Section V, a mounting system with separable stiffness
matrix is used as a numerical example to demonstrate the
general condition for a plane of symmetry. Finally, Section VI
presents our conclusions.

II. PRELIMINARLIES
A. GEOMETRICAL EXPRESSION OF VIBRATION MODES
For a single rigid body supported by a number of line (and/or
torsion) springs in three-dimensional space, a symmetric and
positive definite rank 6 stiffness matrix K(∈ R6×6) can be
expressed as follows [17]–[19]

K = jkjT =
[
ŝ1 · · · ŝn

] k1 0
. . .

0 kn

[ ŝ1 · · · ŝn ]T
=

∑n

i=1
kîsîsTi , (1)

where j is a 6 × n matrix whose column vector ŝi represents
the axis of a line (or torsion) spring with the stiffness constant
ki. The axis of a line spring can be expressed by a line vector
of zero pitch as ŝi =

[
sTi ; (ri × si)

T ]T and that of a torsion
spring can be written as ŝi =

[
0T3×1;s

T
i

]T which is a free
vector, where si

(
∈ R3×1

)
denotes a unit direction vector and

ri
(
∈ R3×1

)
is the position vector to ŝi. The line and free
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vectors satisfy the following relation:

ŝTi 1̂si = 0, (2)

where 1 =
[
03×3 I3×3
I3×3 03×3

]
and I3×3 is the 3× 3 identity

matrix. The line vector ŝi is said to be self-reciprocal when it
satisfies (2). From (1), it is clear that the trace ofK1 becomes
zero:

tr (K1) =
∑n

i=1
kîsTi 1̂si = 0. (3)

It means that the stiffness matrix K can be realized by using
parallel connections of line springs when it satisfies (3) [12].

Now, the equation of motion for undamped free vibration
can be given by

MẌ + KX = 0, (4)

where M(∈R6×6) is the mass matrix. A small harmonic dis-
placement can be written in terms of a screw as

X = X̂ejωt , (5)

where the amplitude X̂(∈ R6×1) is expressed in Plücker’s axis
co-ordinates. Substituting (5) into (4) gives:(

K − ω2M
)
X̂= 0. (6)

From (6), six eigenvectors X̂ i(i= 1, . . ., 6) corresponding to
vibration modes are obtained as general screws. If X̂ i is a
line vector (of zero pitch), then the vibration mode is a pure
rotation about the line (Fig. 1(a)). If the axis of vibration
goes to infinity (Fig. 1(b)), X̂ i becomes a free vector and the
vibration mode becomes pure translation. It is noted that the
line and free vectors are depicted respectively by a single line
and double lines in the figures, throughout this paper. Since a
translation can be thought of as a rotation about an infinitely
distant axis, the mode X̂ i will be called a pure rotation mode
if it is self-reciprocal as follows:

X̂T
i 1X̂ i = 0. (7)

B. NECESSARY CONDITION FOR ONLY PURE ROTATION
MODES
A necessary condition for a vibration system to have only
pure rotation modes can be derived from the orthogonality of
vibration modes with respect to the stiffness matrix. Orthog-
onal character of vibration modes is defined by

STKS =

 k̃1 0
. . .

0 k̃6

 , (8)

where S =
[
X̂1 · · · X̂6

]
and k̃i ≡ X̂T

i KX̂ i for i = 1, . . ., 6.
From (8), K−1 can be obtained as

K−1 =
∑6

i=1

1

k̃i
X̂ iX̂

T
i . (9)

FIGURE 1. Pure rotation modes: (a) finitely distant axis and (b) infinitely
distant axis.

Thus, the trace of 1K−1 becomes

tr
(
1K−1

)
=

∑6

i=1

1

k̃i
X̂T
i 1X̂ i. (10)

Equation (10) implies that tr
(
1K−1

)
= 0 if all the vibration

modes are pure rotations, i.e., X̂T
i 1X̂ i = 0 for all i. In other

words, necessary condition for a vibration system to have
only pure rotation modes can be described as:

tr
(
1K−1

)
= 0. (11)

C. EIGENSTRUCTURE OF STIFFNESS MATRIX
We suppose that an elastically supported rigid body is dis-
placed near equilibrium and a wrench is generated along a
screw. When the displacement and the induced wrench are
on the same screw, the screw is called the principal screw
of the potential [3] for the given stiffness matrix K . From
the statics relation between the small displacement and the
wrench, the following eigenequation can be written as:

λîpi = K1̂pi (for i = 1, . . . , 6), (12)

where p̂i
(
≡
[
pTi ; p

T
oi

]T) denotes the principal screw of the
potential expressed in Plücker’s ray co-ordinates and λi is
the corresponding eigenvalue. The matrix 1 interchanges
Plücker’s ray and axis co-ordinates of a screw. That is, the axis
co-ordinates of p̂i can be obtained as 1̂pi =

[
pToi; p

T
i

]T . For a
symmetric and positive definite K , there are six linearly inde-
pendent principal screws of the potential with non-zero finite
pitches and eigenvalues [3], [14]. The reciprocal product of
two screws is given by

p̂Ti 1̂pj =
(
hi + hj

)
cos θij − dij sin θij, (13)

where hi is the pitch of p̂i, and θij and dij are respectively the
angle and the shortest distance between the axes of p̂i and p̂j.
The principal screws of the potential are co-reciprocal:

p̂Ti 1̂pi = 2hi and p̂Ti 1̂pj = 0 (i 6= j) . (14)
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Using (14), K can be expressed in terms of the principal
screws of the potential as [11], [16]

K =
∑6

i=1

λi

2hi
p̂îp

T
i . (15)

From (15), the trace of K1 is equal to the sum of the eigen-
values:

tr (K1) =
∑6

i=1
λi. (16)

Similarly, the trace of 1K−1 is given by

tr
(
1K−1

)
=

∑6

i=1

1
λi
. (17)

Therefore, it becomes clear that in order for a vibration sys-
tem with realizable stiffness matrix to have only pure rotation
modes, the sum of the eigenvalues ofK1 and the sum of their
reciprocals must vanish simultaneously.

III. SEPARATION OF RANK 6 STIFFNESS MATRICES INTO
SUM OF TWO MATRICES OF RANK 3
A. CONDITION FOR SEPARABLE STIFFNESS MATRIX OF
RANK 6
We may begin by defining a special term, ‘separable.’ In
this paper, the term ‘separable’ is used to mean that the
stiffness matrix of rank 6 can be separated into (the sum of)
two rank 3 symmetric matrices that are realizable by using
co-reciprocal line vectors. The following proposition about
separable stiffness matrices is introduced with proof.
Proposition: The stiffness matrix K of rank 6 is separable

if and only if the matrix K1 has three pairs of eigenvalues
and the sum of each of three pairs becomes zero.

To prove this proposition, for the 6× 6 symmetric and
positive definite stiffness matrix K , suppose that three pairs
of eigenvalues of K1 satisfy the following conditions:

λ1 + µ1 = 0, λ2 + µ2 = 0, and λ3 + µ3 = 0, (18)

where λi and µi are the eigenvalues of principal screws of
the potential p̂i and q̂i, respectively. Equation (15) can be
rewritten as the sum of three rank 2 matrices K2i (i = 1, 2, 3):

K =
∑3

i=1

(
λi

2hi
p̂îp

T
i +

µi

2gi
q̂îq

T
i

)
=

∑3

i=1
K2i,

where hi and gi are the pitches of the principal screws of the
potential, p̂i and q̂i, respectively. Clearly, tr (K2i1) = 0 and
rank (K2i) = 2. From (1), K2i can be expressed in terms of
two linearly independent line vectors α̂i and β̂ i belonging to
span (̂pi, q̂i) as follows [22]:

K2i = kαiα̂iα̂Ti + kβiβ̂ iβ̂
T
i , (19)

where kα,i and kβ,i are the spring constants corresponding
to α̂i and β̂ i, respectively. Since α̂i ∈ span(̂pi, q̂i), its self-
reciprocity gives the following relation:

α̂Ti 1α̂i =
(
Pîpi + Qîqi

)T
1
(
Pîpi + Qîqi

)
= 2hiP2i + 2giQ2

i = 0 (20)

FIGURE 2. Reciprocal relations between three pairs of line vectors,
(α̂1,β̂1), (α̂2, β̂2), and (α̂3,β̂3).

where Pi and Qi are scalar multiples. From (20), we obtain

Pi = ±
√
−
gi
hi
Qi. (21)

In (15), hi and λi have the same sign since K is positive
definite. Accordingly, − gi

hi
must be positive since λi = −µi,

and thereby (21) ensures that there exist only 2 unit line vec-
tors belonging to span(̂pi, q̂i).That is, α̂i and β̂ i are uniquely
determined. Now, K can be expressed in terms of α̂i’s and
β̂ i’s:

K =
∑3

i=1

(
kαiα̂iα̂Ti + kβiβ̂ iβ̂

T
i

)
. (22)

Then, K can be separated as K = Kα + Kβ , where

Kα =
∑3

i=1

(
kαiα̂iα̂Ti

)
, (23a)

and

Kβ =
∑3

i=1

(
kβiβ̂ iβ̂

T
i

)
. (23b)

Recalling that the principal screws of the potential are co-
reciprocal, it becomes obvious that span(̂p1, q̂1), span(̂p2,
q̂2), and span(̂p3, q̂3) are reciprocal to each other (Fig. 2).
Accordingly, the line vectors α̂i’s and β̂ i’s satisfy the relations

α̂Ti 1α̂j = β̂
T
i 1β̂ j = 0 (for i, j = 1, 2, 3), (24a)

and

α̂Ti 1β̂ j = 0 (for i 6= j). (24b)

Equation (24a) means that (̂α1, α̂2, α̂3) and (β̂1, β̂2, β̂3)
are respectively the co-reciprocal line vectors. Consequently,
Kα and Kβ are realizable by co-reciprocal line vectors, and
therefore K is separable.
Conversely, suppose that the rank 6 stiffness matrix K is

separable. By definition of the term ‘separable,’ K given by
(1) can be considered to be

K = jkjT =
∑3

i=1

(
kîsîsTi

)
+

∑6

i=4

(
kîsîsTi

)
, (25)

where

ŝTi 1̂sj = ŝTi+31̂sj+3 = 0 (for i, j = 1, 2, 3). (26)
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Since K has rank 6, ŝi’s are linearly independent. Thus,
the principal screw of the potential p̂ can be expressed by a
linear combination of ŝi’s

p̂ = jc, (27)

where c ∈ R6×1. Substituting (25) and (27) into (12) and
premultiplying both sides of (12) by j−1 yields

λc = kjT1jc. (28)

Equation (28) means that λ is the eigenvalue of kjT1j. K
is positive definite, and thus the diagonal elements of k are
positive. Since the two matrices kjT1j and

√
kjT1j

√
k are

similar, they share the eigenvalue λ. From (26),
√
kjT1j

√
k

can be expressed as

√
kjT1j

√
k =

[
03×3 V
VT 03×3

]
, (29)

where Vij =
√
kikj+3̂sTi 1̂sj+3 and Vij denotes the (i, j) ele-

ment of V . The characteristic equation of (29) is

det
(
λI6×6 −

[
03×3 V
VT 03×3

])
= 0, (30)

or,

det
(
λ2I3×3−VTV

)
= 0. (31)

Clearly, λ2 is the eigenvalue of the positive definite matrix
VTV , and therefore λ is real and given by λ = ±λi(i = 1,
2, 3). This concludes that there are three pairs of eigenvalues,
and two eigenvalues of each pair add up to zero. The proof of
the proposition is complete.

The necessary and sufficient conditions for separation
of the stiffness matrix implies that if K is separable, then
tr (K1) = 0 and tr

(
1K−1

)
= 0 since λi + µi = 0 and

1
λi
+

1
µi
= 0. Therefore, the separable stiffness matrices are

realizable and qualify for only pure rotation modes.

B. THREE CASES OF SEPARABLE STIFFNESS MATRICES OF
RANK 6
For the given rank 3 stiffness matrix Kα that can be realized
by co-reciprocal line vectors, the wrench ŵ induced by a
small displacement D̂ due to Kα can be obtained as the linear
combination of line vectors ŝi’s:

ŵ = KαD̂ =
∑3

i=1
ki
(̂
sTi D̂

)
ŝi. (32)

Clearly, ŵT1ŵ = 0 for any D̂. It means that span(̂s1, ŝ2,
ŝ3) is a 3-system of screws containing only lines and(or) free
vectors. As listed in Table 1, Kα can be classified into four
cases according to Hunt’s special 3-systems containing only
line and free vectors [24]. h′1, h

′

2, and h
′

3 are the pitches of
principal screws of 3-systems. This classification gives four
geometric constraints of springs (Fig. 3). These constraints
can also be obtained from (13). If both ŝi and ŝj are line vectors
(of zero pitch), their reciprocity implies that they meet or are
parallel. If ŝi and ŝj are a line and a free vector, respectively,
they are orthogonal to each other since ŝTi 1̂sj = sTi sj = 0.

TABLE 1. Classification of 3-systems of Screws containing only Line
Vectors [24].

For two free vectors, they are always reciprocal to each
other. Figure 3 illustrates the spring systems satisfying the
geometric constraints obtained from the reciprocal relations
between line vectors. It should be noted here that the line and
the free vectors correspond to respectively the line and torsion
springs in Fig. 3.

Now, wemay obtain 10(= 5C2) cases of separable stiffness
matrices because we should select two matrices from four
cases in Table 1 with repetition. However, for rank 6 stiffness
matrices, there are only three cases:

1) K1 + K2,
2) K2 + K3,
3) K1 + K4.

This can be shown briefly as follows: If the given rank
6 stiffness matrix is separated in one of seven cases other than
the above three cases, then there always exists at least one line
vector û belonging to both span(̂s1, ŝ2, ŝ3) and span(̂s4, ŝ5, ŝ6)
as illustrated in Fig. 4, and thus K1û becomes null vector(
Kα+Kβ

)
1û=

(∑3

i=1

(
kîsîsTi

)
+

∑6

i=4

(
kîsîsTi

))
1û = 0.

It means that the sum of two matrices becomes singular.
This contradiction concludes that there are only three cases
of separations of rank 6 stiffness matrices: 1) K1 + K2,
2) K2 + K3, and 3) K1 + K4.

C. SEPARATION OF STIFFNESS MATRICES OF RANK 6
If a rank 6 stiffness matrix K is separable, the line vectors
α̂i’s and β̂ i’s are uniquely determined from (19), (20), and
(21). The geometrical interpretation of reciprocity and linear
independency between α̂i’s and β̂ i’s of (24) can be geometri-
cally interpreted to obtain 7 possible cases of combinations
of separations using α̂i’s and β̂ i’s (Fig. 5). In addition, it
is noted that Case7 (Fig. 5(g)) is identical to the condition
for diagonalization of the stiffness matrix by a co-ordinate
transformation [11].
Now, K can be separated using α̂i’s and β̂ i’s for each case.

For Case1 (Fig. 5(a)), the stiffness matrix can be separated
into

K1 =
∑3

i=1

(
kαiα̂iα̂Ti

)
and K2 =

∑3

i=1

(
kβiβ̂ iβ̂

T
i

)
.

75864 VOLUME 8, 2020



Y. G. Lee et al.: Conditions for a Linear Vibration System to Have Only Pure Rotation Modes

FIGURE 3. Geometric constraints of springs of (a) K1, (b) K2, (c) K3, and (d) K4.

It can be said that the induced wrench space of K , span(̂α1,
α̂2, α̂3, β̂1, β̂2,β̂3), is separated as span(̂α1, α̂2, α̂3) ⊕
span(β̂1, β̂2, β̂3). Separation for the other cases can also
be represented by direct sum of induced wrench spaces
accordingly. All the possible separation cases are summarized
in Table 2, where the following notation is used:

AAA ≡ span (̂α1, α̂2, α̂3) ,

BBB ≡ span
(
β̂1, β̂2, β̂3

)
,

ABB ≡ span
(
α̂1, β̂2, β̂3

)
,

BAA ≡ span
(
β̂1, α̂2, α̂3

)
,

ABA ≡ span
(
α̂1, β̂2, α̂3

)
,

BAB ≡ span
(
β̂1, α̂2, β̂3

)
,

AAB ≡ span
(
α̂1, α̂2, β̂3

)
,

BBA ≡ span
(
β̂1, β̂2, α̂3

)
.

D. SEPARABLE STIFFNESS MATRIX AS LINEAR
TRANSFORMATION
For the given separable stiffness matrixK=

∑3
i=1

(
kαiα̂iα̂Ti +

kβiβ̂ iβ̂
T
i
)
, let X̂α and X̂β be small displacements belonging to

AAA and BBB, respectively. Since X̂α and X̂β are expressed
in axis co-ordinates, 1X̂α ∈ AAA and 1X̂β ∈ BBB.
Obviously, AAA and BBB are self-reciprocal, and thereby
the wrenches induced by X̂α and X̂β can be obtained as

KX̂α =
∑3

i=1
kβi
(
β̂
T
i X̂α

)
β̂ i,

and

KX̂β =
∑3

i=1
kαi
(
α̂Ti X̂β

)
α̂i.

From these two equations, K can be considered as a linear
operator that transforms a line vector belonging to AAA into
the one belonging to BBB and vice versa

KX̂α ∈ BBB and KX̂β ∈ AAA. (33)

In the similar manner, it can also be shown thatK is a linear
transformation between each pair of 3-systems of screws:
(BAA and ABB), (ABA and BAB), and (AAB and BBA).

IV. CONDITIONS FOR HAVING ONLY PURE ROTATION
MODES
The mass matrix M is diagonalized at the co-ordinate frame
coincident with the principal axes of inertia. It means thatM
is separable and the line vectors are uniquely determined from
(19), (20), and (21) as three orthogonal lines n̂i(i = 1, 2, 3)
and free vectors l̂ i(i = 1, 2, 3). The three lines n̂i’s are aligned
with the principal axes of inertia, respectively (Fig. 6) [11].
Using n̂i’s and l̂ i’s,M can be expressed as

M =
∑3

i=1

(
mn̂înTi + Iii l̂ i l̂

T
i

)
,

wherem is the mass and Iii denotes the moment of inertia with
respect to the ith axis. The separation ofM can be described
as

span (̂n1, n̂2, n̂3) ⊕ span
(
l̂1, l̂2, l̂3

)
,

span
(̂
n1, l̂2, l̂3

)
⊕ span

(
l̂1, n̂2, n̂3

)
,
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FIGURE 4. Geometrical representation of null space 1û (black arrowhead) of sum of two rank 3 stiffness matrices: (a) K1+K1, (b) K1+K3, (c)
K2+K2 if the planes are parallel, (d) K2+K2 if the planes are not parallel, (e) K2+K4, (f) K3+K3 if the lines are parallel, (g) K3+K3 if the lines
are not parallel, (h) K3+K4, and (i)K4+K4.

FIGURE 5. Possible cases of line vectors of rank 6 separable stiffness matrices: (a) Case1, (b) Case2, (c) Case3, (d) Case4, (e) Case5, (f) Case6, and
(g) Case7.

span
(̂
n1, l̂2, n̂3

)
⊕ span

(
l̂1, n̂2, l̂3

)
,

span
(̂
n1, n̂2, l̂3

)
⊕ span

(
l̂1, l̂2, n̂3

)
.

The above separations of the inertia matrixM are equivalent
to Case7 for the separable stiffness matrix K . The separa-
tions of M implies that M can also be regarded as a linear
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TABLE 2. Exhaustive list of separations of rank 6 stiffness matrices.

FIGURE 6. Three orthogonal lines and free vectors uniquely determined
from mass matrix.

transformation between the 3-systems of screws, as K is a
linear transformation between 3-systems of screws. In this
section, we derive the conditions for only pure rotation modes
using the linear transformations between screw systems.
In what follows, it is shown that the existence of only pure
rotation modes depends on geometrical relationship between
M and K .

A. CONDITIONS FOR ONLY PURE ROTATION MODES
When the separable stiffness matrix is given by (22), that is,
K =

∑3
i=1

(
kαiα̂iα̂Ti + kβiβ̂ iβ̂

T
i

)
, the conditions for only

pure rotation modes can be obtained by considering the mass
matrixM as a linear transformation. In the same manner as K
in (33), ifM is assumed to be a linear transformation between
AAA and BBB such that

MX̂α ∈ BBB andMX̂β ∈ AAA, (34)

then the vibration mode X̂ is a pure rotation mode since
it belongs to AAA or BBB. To prove this, let x̂αi(i = 1,
2, 3) and x̂βj(j = 1, 2, 3) be linearly independent line
vectors selected from AAA and BBB, respectively. Since X̂
is expressed in axis co-ordinates, it can be written as

X̂ =
∑3

i=1
(αi1̂xαi)+

∑3

j=1

(
βj1̂xβj

)
, (35)

where αi and βj are constants. Substituting (35) into (6) gives∑3

i=1
αi

(
−ω2M + K

)
1̂xαi

= −

∑3

j=1
βj

(
−ω2M + K

)
1̂xβj. (36)

FIGURE 7. Geometric conditions for a plane of symmetry.

On the assumption of (34), the left and right sides of (36)
belong to BBB and AAA, respectively. Since BBB and AAA
are linearly independent, (36) holds only when both sides
of (36) become zero simultaneously, and consequently, we
obtain ∑3

i=1
αi

(
−ω2M + K

)
1̂xαi= 0, (37a)∑3

j=1
βj

(
−ω2M + K

)
1̂xβj = 0. (37b)

These equations imply that x̂ belongs to either BBB or AAA
and therefore x̂T 1̂x = 0, i.e., X̂T

1X̂ = 0 since x̂ = 1X̂ .
Consequently, X̂ is a pure rotation mode, which completes
the proof.

Additionally, K is a linear transformation between two
3-systems belonging to one of the following four pairs: (AAA
andBBB), (BAA andABB), (ABA andBAB), and (AAB and
BBA). Therefore, the condition for only pure rotation modes
is such that M and K must be the linear transformations
between two 3-systems of screws belonging to one of the
above four pairs.

B. GEOMETRIC DESCRIPTION OF CONDITIONS FOR ONLY
PURE ROTATION MODES
In this subsection, for each separation of K , we present geo-
metric conditions in order forM to be the linear transforma-
tion between two 3-systems belonging to one of the following
four pairs: (AAA and BBB), (BAA and ABB), (ABA and
BAB), and (AAB and BBA).
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FIGURE 8. Vibration axes of pure rotation modes: (a) decoupled with respect to plane of symmetry, (b) determined as three lines and free
vectors, and (c) with tetrahedral configuration.

TABLE 3. Screw system conditions for plane of symmetry.

For the stiffness matrix K corresponding to Case2
(Table 2), if it is assumed that all the lines belonging to AAA
are contained in one of the principal planes of inertia and all
the lines belonging to BBB are perpendicular to the principal
plane (Fig. 7), the following relations between 3-systems of
screws can be obtained

AAA = span
(̂
n1, n̂2, l̂3

)
and

BBB = span
(
l̂1, l̂2, n̂3

)
. (38)

TABLE 4. System parameters.

For any line vectors x̂2(∈ AAA) and x̂3(∈ BBB),M1̂x2 and
M1̂x3 can be computed as

M1̂x2=m
(̂
nT3 1̂x2

)
n̂3+I11

(
l̂
T
1 1̂x2

)
l̂1+I22

(
l̂
T
2 1̂x2

)
l̂2,

and

M1̂x3=m
(̂
nT1 1̂x3

)
n̂1+m

(̂
nT2 1̂x3

)
n̂2+I33

(
l̂
T
3 1̂x3

)
l̂3.

Accordingly, M1̂x2 ∈ BBB and M1̂x3 ∈ AAA. It con-
cludes that the vibration systems with geometric relations
illustrated in Fig. 7 have only pure rotation modes. Fur-
thermore, since x̂ must belong to either AAA or BBB, the
vibration axes are grouped into those normal to the principal
plane and the others lying on the plane (Fig. 8(a)). In this
case, the principal plane becomes a plane of symmetry [11].
It means that a vibration system with the stiffness matrix that
can be expressed as K = K2 + K3 can have a plane of
symmetry. In Table 3, the conditions for a plane of symmetry
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FIGURE 9. Four-point mounting system: (a) overview of the system, (b) modelling mounting element as three orthogonal line springs,
and (c) locations of local co-ordinate frames.

are summarized. It is noted that span(̂n1, n̂2, l̂3) is selected as
one of the principal planes.

For a stiffness matrix K(= K1+K4) corresponding to one
of Case5, 6, and 7, when the intersecting pointE of the bundle
of lines contained in AAA coincides with the center of mass
G, we get

AAA = span (̂n1, n̂2, n̂3) and

BBB = span
(
l̂1, l̂2, l̂3

)
. (39)

It becomes clear from (39) thatM1̂x1 ∈ BBB andM1̂x4 ∈
AAA for any line vectors x̂1(∈ AAA) and x̂4(∈ BBB). There-
fore, all the modes are pure rotation modes. As illustrated
in Fig. 8(b), the vibration modes are obtained as three lines
passing through the center of mass and three free vectors.
Consequently, for K(= K1 +K4), the condition to have only
pure rotation modes is that E is coincident with G.
It becomes clear from (39) that M1̂x1 ∈ BBB and

M1̂x4 ∈ AAA for any line vectors x̂1 (∈AAA) and
x̂4 (∈BBB). Therefore, all the modes are pure rotation modes.
As illustrated in Fig. 8(b), the vibration modes are obtained as
three lines passing through the center of mass and three free
vectors. Consequently, for K(= K1 + K4), the condition to
have only pure rotation modes is that E is coincident with G.
Lastly, the conditions of K(= K1 + K2) to have only pure

rotation modes are presented. Without loss of generality, if
AAA and BBB are respectively the induced wrench spaces
of K1 and K2, then we can determine the intersecting point E
of AAA and the foot of perpendicular H drawn from E to the
plane of BBB (Fig. 8(c)). Now, we suppose that the inertia
properties of a rigid body of a vibrating system satisfies that

1) I11 = I22 = I33 = I ,

FIGURE 10. Uniquely determined line vectors lying on the principal plane
and ones perpendicular to the plane (♦).

2) G is internal division of EH and EG · GH =
I
m .

Then, the mass matrixM is the linear operator with following
characteristic (See Appendix):

M1̂x1∈ BBB andM1̂x2 ∈ AAA. (40)

for any line vectors x̂1(∈AAA) and x̂2(∈BBB). Consequently,
there are only pure rotation modes and they can be grouped
into two sets of vibration axes: 1) a set of three lines passing
through E and 2) the other set of three lines lying on the plane
as illustrated in Fig. 8(c).

So far, three conditions for only pure rotation modes are
derived. Referring to Fig. 8, it can be said that there exist three
configurations of two groups of pure rotation modes. These
findings are valuable since the simple geometry may be used
to design a spatial vibration system systematically.

V. NUMERICAL EXAMPLE
In this section, we use the four-point mounting system as a
numerical example similar to the one presented in [11] to
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TABLE 5. Stiffness matrix and separation.

FIGURE 11. Vibration axes lying on the plane of symmetry and ones
perpendicular to the plane (•).

demonstrate the general condition for a plane of symmetry.
It will be shown that the stiffness matrix of the mounting sys-
tem illustrated in Fig. 9(a) is separable but not diagonalizable.

Referring to Fig. 9(a), a rigid body is supported by four
mounts. Each mount is modelled as three orthogonal line
springs intersecting at a point (Fig. 9(b)). The reference frame
G−XYZ coincident with the principal axes of inertia and the
local co-ordinate frames are aligned with orthogonal springs
(Fig. 9(c)). The system parameters are given in Table 4. The
stiffness of a mounting element at the corresponding local

co-ordinate frame can be computed as

Ke= je [ke] j
T
e =


1.5 0 0 0 0 0
0 1.5 0 0 0 0
0 0 0.98 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

×10
5,

where je =
[
ŝx ŝy ŝz

]
∈ R6×3 and [ke] = diag

(
kx , ky, kz

)
=

diag (1.5, 1.5, 0.98) × 105 N/m. Here, kx and ky are the
principal shear stiffnesses, and kz is the principal compressive
stiffness. Also, the co-ordinates of orthogonal three lines can
be given by (at the local frame)

ŝx =
[
1 0 0 0 0 0

]T
,

ŝy =
[
0 1 0 0 0 0

]T
,

ŝz =
[
0 0 1 0 0 0

]T
.

The stiffness of the ith mount atG−XYZ can be calculated
by using the co-ordinate transformation

K#i = ET#iKeE#i, (41)

where E#i is given by

E#i =

[
R#i R#iD#i
03×3 R#i

]
∈ R6×6.

R#i
(
∈ R3×3

)
is the rotation matrix consisting of directional

cosines of the reference frame with respect to the ith local
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FIGURE 12. Receptance spectra.

frame and D#i
(
∈ R3×3

)
is the skew symmetric matrix of the

translational vector d#i =
[
x#i y#i z#i

]T to origin of the ith
local frame (Fig. 9(c))

D#i =

 0 z#i −y#i
−z#i 0 x#i
y#i −x#i 0

 .
Using (41), the overall stiffness matrix K = K#1 +

K#2 + K#3 + K#4 is calculated and given in Table 5. The
observation of the eigenvalues of K1 shows that K satisfies
the condition for separation (Table 5 ). From (19), (20),
and (21), we can obtain the unit line vectors α̂i’s and β̂ i’s.
Referring to Fig. 10, the geometrical relationship between
α̂i’s and β̂ i’s implies that K corresponds to Case2. Thus, K
cannot be diagonalized by co-ordinate transformation but it
can be separated as K = K2 + K3.

As shown in Fig. 10, since AAA is contained in the ZX -
plane and BBB is perpendicular to the plane, the vibration
system satisfies the conditions for a plane of symmetry.
To verify the conditions, the modes of vibration are obtained
as

X̂2,1 =
[
0 0.0589 0 −0.8194 0 0.5732

]T
,

X̂2,2 =
[
0 0.2453 0 0.9618 0 0.2736

]T
,

X̂2,3 =
[
0 0.0762 0 −0.5063 0 −0.8623

]T
,

X̂3,1 =
[
−0.0270 0 0.0380 0 1 0

]T
,

X̂3,2 =
[
0.1475 0 −0.2074 0 1 0

]T
,

X̂3,3 =
[
−0.8149 0 −0.5796 0 0 0

]T
.

Since all the modes are self-reciprocal, they are pure rotation
modes. Referring to Fig. 11, the two groups (X̂2,1, X̂2,2, X̂2,3)
and (X̂3,1, X̂3,2, X̂3,3) are respectively vibration axes of out-
of-plane and in-plane modes. It can be said that the ZX -plane
becomes the plane of symmetry of the vibration system. The
result can also be verified by the frequency response of the
rigid body X̂ ≡

[
δX δY δZ θX θY θZ

]T . For the torque with
unit magnitude τ =

[
0.2888 0.9554 0.0620

]T applied to the
rigid body, the receptance spectrum of each component of X̂
is plotted in Fig. 12. The receptance spectra show that two
distinct sets (δX , δZ , θY ), (δY , θX , θZ ) are decoupled. This
implies that the modes are decoupled with respect to ZX -
plane.

VI. CONCLUSION
In this paper, a geometric approach to the conditions for
mode decoupling is proposed, which can be used to sig-
nificantly simplify the vibration analysis and the synthesis
of vibration modes. The major contribution of this research
lies in the study of vibration systems of which six vibration
modes are determined as line vectors, or pure rotation modes.
An important property of the pure rotation mode is self-
reciprocity. To derive self-reciprocity, a stiffness matrix that
can be separated into sum of two rank 3 stiffness matrices that
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FIGURE 13. Geometrical representation of correlation.

are realizable by co-reciprocal line vectors is investigated. All
the possible combinations of a separable stiffness matrix are
classified based on the special 3-systems of screws contain-
ing only line vectors. The separable stiffness matrix can be
viewed as a linear transformation between two self-reciprocal
3-systems of screws. It is shown that the existence of only
pure rotation modes depends on the geometrical relationships
between the inertia and stiffness matrices, and the three cases
of spatial vibration systems with simple geometry are iden-
tified. This theory of mode decoupling will be used for the
development of a design method of a vibration system in a
subsequent study.

APPENDIX
Equation (40) implies that the mass matrix M transforms
the lines passing through the point E of AAA into the lines
lying on the plane of BBB and vice versa. In addition, M is
a correlation that maps a line expressed in axis co-ordinates
into one in ray co-ordinates [25]. The axis co-ordinates of a
line are determined by the intersection of two planes. If their
homogeneous co-ordinates are given by

U =
[
U0 U1 U2 U3

]T
,

V =
[
V0 V1 V2 V3

]T
,

the axis co-ordinates can be obtained as

Ŝ1 =
[
S01 S02 S03 S23 S31 S12

]T
,

where Sij = UiVj − ViUj. Similarly, for the given homoge-
neous co-ordinates of two points where

x =
[
x0 x1 x2 x3

]T
,

y =
[
y0 y1 y2 y3

]T
,

the join of two points determines the ray co-ordinates of a line

ŝ1 =
[
s01 s02 s03 s23 s31 s12

]T
,

where sij = xiyj−yixj. From the geometrical meanings of ray
and axis co-ordinates, (40) means that the planes containing

a line are mapped to the points lying on a line. Suppose that
there are two correlations between points (x, y, u, and v) and
planes (X, Y, U, and V) as follows:

X = [π ] x,

Y = [π ] y,

u = [5]U,

v = [5]V,

where [π ] ≡ diag
(√

I
m ,

1
√
I
, 1
√
I
, 1
√
I

)
and [5] ≡

diag
(
m
√
I
,
√
I ,
√
I ,
√
I
)
. If we let Ŝ2 and ŝ2 denote respec-

tively the intersection of X and Y and the join of u andv, then
they can be written as

Ŝ2 = M−1̂s1 and ŝ2 = MŜ1, (A1)

whereM =diag(m, m, m, I , I , I ). Equation (13) implies that
[π ] maps the points lying on ŝ1 to the planes containing Ŝ2
and [5] maps the planes containing Ŝ1 to the points on ŝ2.
Now, we prove (40) using [π ] and [5]. When x and U

arecoincident with the intersecting point of AAA and the
plane of BBB, without loss of generality, their homogeneous
co-ordinates can be expressed as

x =
[
1 0 0 a

]T
,

U =
[
b 0 0 1

]T
,

where ab = I
m . Thus, we obtain

X = [π ] x =
(
a
√
I

) [
b 0 0 1

]T
, (A2a)

u = [5]U =
(
b
√
I
) [

1 0 0 a
]T
. (A2b)

Equation (A2) means that x and U are coincident with
u and X, respectively, since they are given in terms of
homogenous co-ordinates. From (A2b), it can be said that
M maps all the lines lying on U (expressed in axis co-
ordinates) to the lines passing through u (expressed in ray
co-ordinates) (blue arrows in Fig. 13). This conclusion proves
thatM1̂x2 ∈ AAA.
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In what follows, if y and z are arbitrarily selected as the
points on U, the incidence of two points y, z and plane U
yields

yTU = 0 and zTU = 0. (A3)

Since [π ] [5] = I4×4, (A3) can be rewritten as

uTY = 0 and uTZ = 0. (A4)

where Y = [π ] y andZ = [π ] z. Equation (A4) means that
the join of two points on U is mapped to the intersection of
two planes including u by M−1. Since the transformation is
one-to-one, it can be said that M maps all the lines passing
through u (expressed in axis co-ordinates) to the lines lying
on U (expressed in ray co-ordinates) (red arrows in Fig. 13).
This result proves thatM1̂x1 ∈ BBB.
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