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ABSTRACT Liver and liver tumor segmentation provides vital biomarkers for surgical planning and
hepatic diagnosis. In this paper, we propose and validate a novel level-set method integrating an enhanced
edge indicator and an automatically derived initial curve for CT based liver tumor segmentation. At the
preprocessing step, the CT image intensity values were truncated to lie in a fixed range to enhance the image
contrast surrounding liver and liver tumor. To remove non-liver tissues for subsequent tumor segmentation,
liver was firstly segmented using two convolutional neural networks in a coarse-to-fine manner. A 2D slice-
based U-net was used to roughly localize the liver and a 3D patch-based fully convolutional network was
used to refine the liver segmentation as well as to roughly localize the liver tumor. A novel level-set method
was then presented to further refine the tumor segmentation. Specifically, the probabilistic distribution of the
liver tumor was estimated using unsupervised fuzzy c-means clustering, which was then utilized to enhance
the edge-detector used in level-set. Effectiveness of the proposed pipeline was validated on two publicly-
available datasets. Experimental results identified the superior segmentation performance of the proposed
pipeline over state-of-the-art methods.

INDEX TERMS Segmentation, convolutional neural network, liver tumor, level-set, fuzzy c-means.

I. INTRODUCTION
Liver is the largest gland in the human body (approximately
1500 grams) and it is one of the most important metabolic
organs of human being with multiple functions, such as
metabolism, digestion and detoxification [1]. Liver is vulner-
able to many diseases such as hepatic steatosis and hepatitis
which are leading causes of hepatic sclerosis and liver tumor.
With approximately 841, 080 cases and 781, 631 attributed
deaths reported globally in 2018 [2], liver tumor is one of the
leading causes of cancer-related deaths. To ablate tumor tis-
sues and leave the surrounding healthy tissues intact, there is
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a need for accurately targeting the tumor area [3]. Computed
tomography (CT) is one of the most widely used imaging
modalities for liver tumor evaluation and staging [4]. Usu-
ally, liver and liver tumor segmentations are obtained from
experienced radiologists via manual delineation. However,
manually tracing volumetric CT images in a slice-by-
slice manner is subjective, poorly reproducible, and labor-
intensive. Automated or semi-automated segmentation
methods would largely improve efficiency. Furthermore,
an increased use of intraoperative 3D visualization systems
underscores the urgency for automated liver and liver tumor
segmentation [5].

In the past decade, various liver segmentation and liver
tumor segmentation methods have been developed for CT
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images. These approaches can be roughly categorized into
two classes: model-based methods and deep learning-based
methods.

For liver segmentation algorithms, prior anatomical knowl-
edge, such as shape prior, of liver can be incorporated into
the segmentation process for model-based methods [6], [7].
However, the computation time of shape-based methods is
typically high due to a need for image registration which is
computationally demanding. Beichel et al. presented a 3D
interactive liver segmentation pipeline using graph cut [8],
[9]. Susomboon et al. employed a hybrid method by jointly
using expectation maximization algorithm and region-based
texture classification [10]. These techniques may neverthe-
less fail to separate liver and neighboring tissues due to low
contrast and fuzzy boundaries. Moreover, contrast material
is usually used to clearly visualize tumor, which will bring
noise in CT images [11]. Recently, deep learning approaches,
especially fully convolutional networks (FCNs), have shown
remarkable potential in automatic medical image segmen-
tation [12]–[14]. Dou et al. proposed a novel and efficient
3D FCN for volumetric medical image segmentation, with
application to liver [15]. The accuracy of automated liver
segmentation using deep learning has been reported to be over
95% in terms of Dice score [16]–[18], which is very accurate
and has a great potential to be used in clinical applications.

Nevertheless, automated liver tumor segmentation is very
challenging due to the very fuzzy boundaries between tumor-
ous tissues and healthy tissues. And no prior knowledge
can be applied because of tumor’s wide variabilities in
terms of size, shape, and location [19]. To tackle this chal-
lenge, various liver tumor segmentation algorithms have been
designed. For instance, Goetz et al. proposed a two-stage
method, wherein liver was segmented firstly using shape
models, and then tumor segmentation was achieved using
randomized trees with an auto-context learning scheme [20].
Häme et al. presented a semi-automatic tumor segmentation
scheme based on non-parametric intensity distribution esti-
mation and a hiddenMarkov field model [21]. These methods
generally suffer from low accuracy and significantly high
computation cost. Among model-based techniques, level-set
methods (LSMs) are widely used because they can combine
image information and model properties [22]–[26]. A novel
LSM combining likelihood energy with edge energy was
proposed by Li et al. [23], which performed better than the
traditional Chan-Vesemodel [27] and the geodesic LSM [28].
Smeets et al. incorporated fuzzy pixel classification into an
edge-based LSM for liver tumor segmentation [29]. The main
limitations of these methods are that they need manually-
created initial regions of interest (ROIs), and there is still
room for improvement in terms of segmentation accuracy.
Recently, deep learning has been applied in liver tumor seg-
mentation from CT images [30]–[34]. For example, Li et al.
proposed a novel H-DenseUNet by combining a 2D U-net
and a 3D convolutional neural network (CNN) [16]. Seo et al.
proposed a modified U-net by adding a residual path to the
skip connection parts of U-net [33]. Jiang et al. presented

a CNN structure making use of attention mechanism and
skip connections [34]. The main limitation of deep learning
techniques is that they do not incorporate domain knowledge
and may suffer uninterpretable segmentation errors. A recent
research trend is to combine deep learning methods and
domain knowledge driven methods such as LSMs [35]. Deep
learning may be helpful in providing the initial ROIs needed
by LSMs, and LSMs may further improve the accuracy
and topology integrity of deep learning based segmentation
results. In addition, the performance of edge-based LSMs
largely relies on the prerequisite that liver tumor has clear and
differentiating boundaries. As such, edge enhancing is very
crucial for LSMs, especially in CT image based liver tumor
segmentation.

To address the aforementioned issues, we proposed a
novel LSM with an automatically-defined initial ROI and
an enhanced edge indicator for liver tumor segmentation.
A 2D U-net and a 3D FCN were sequentially used for a
coarse-to-fine liver segmentation which was then used to
mask out non-liver tissues. A coarse liver tumor segmenta-
tion was also obtained from the 3D FCN, which was then
used to initialize the subsequent distance regularized level-set
evolution (DRLSE) [24]. Furthermore, we employed fuzzy
c-means (FCM) [36] to estimate the probability that a pixel
belongs to a certain image class (tumor or non-tumor) and
used that probabilistic mask to enhance the edge indicator
used in the proposed LSM. A key strength of this study is
the combination of a data-driven method (deep learning) and
model-driven methods (level-set and FCM).

The rest of this paper is arranged as follows. The flowchart
of the proposed method is depicted in section II, and the three
key components (data processing procedures, deep learning-
based segmentation and FCM-based LSM) are detailed. The
datasets and evaluation criteria on assessing the segmenta-
tion performance are shown in section III. Evaluations of
the proposed method are presented in section IV. Finally,
section V discusses advantages and potential limitations of
the proposed pipeline.

II. METHOD
For image preprocessing, we truncated the image intensity
values of all CT scans to lie in a fixed range to remove
irrelevant details and to enhance the image contrast. For
liver segmentation, we employed a coarse-to-fine strategy to
reduce computation time as well as to improve segmenta-
tion accuracy, which has also been adopted in many other
segmentation tasks [37], [38]. For liver tumor segmentation,
we adopted a gradient enhanced LSM making use of FCM.

A. IMAGE PREPROCESSING USING INTENSITY
TRUNCATION
In CT image reconstruction, quantitative measurements of
the tissue density are accomplished using the Hounsfield unit
(HU) scale, which measures the x-ray absorption character-
istics of the tissue and is linearly related to tissue’s mass
density [39]. At standard pressure and temperature (STP),

VOLUME 8, 2020 76057



Y. Zhang et al.: Deep Learning Initialized and Gradient Enhanced Level-Set Based Segmentation

FIGURE 1. CT image intensity analysis for different ROIs.

the radiodensity of distilled water is defined as 0 HU, whereas
the radiodensity of air is defined as -1000 HU. As such, for
a voxel with an average linear attenuation coefficient µ, its
corresponding HU value h is given by

h = 1000×
µ− µwater

µwater − µair
. (1)

The intensity of a CT image i is a linear transformation of h,
which is given by

i =
h− intercept

slope
, (2)

where ‘‘intercept’’ and ‘‘slope’’ are 0 and 1 for all datasets
used in this study. In this context, the voxel’s average HU
value equals to the intensity of a voxel (h = i). On typ-
ical medical-grade CT scans, the Hounsfield scale of liver
is 60 ± 6 HU at STP [40]. In a real clinical environment,
the mean Hounsfield scales of liver will be slightly shifted
due to changes in pressure and temperature. In addition,
the Hounsfield scale of liver tissues follows a normal distri-
bution because of random noises. Using a normal distribution
to fit liver’s intensity of each training image, we obtain mean
values ranging between 80.23 and 128.20 and standard devi-
ation values ranging between 13.85 and 26.47. This agrees
with the theoretically suggested value of 60. To accommodate
image variability with the same ‘‘intercept’’ and ‘‘slope’’
values, we use the mean ± 3std rule, wherein the minimum
value and maximum value are respective 18.04 and 201.76.
As such, we use [0, 200] for intensity truncation. For datasets
used in this work, [0, 200] is large enough to cover all liver
tissues, including both healthy tissues and tumorous ones,
a representative slice of which is shown in Fig. 1. For CT
scans obtained from scanners whose ‘‘intercept’’ and ‘‘slope’’
imaging parameters are not 0 or 1, we can use similar pro-
cedures, making use of the relationship between Hounsfield
scale and CT image intensity and intensity fitting of training
data with the same imaging parameters, to get an appropriate
range for intensity truncation.

With the same imaging parameters, the intensity value
range of CT images is identical for the same organ, across dif-
ferent subjects [41]. As such, we truncate the image intensity

FIGURE 2. A representative CT slice before and after image intensity
truncation using a fixed range [0, 200].

to be within a single fixed range [0, 200] for all CT images. As
shown in Fig. 2, the boundaries of both liver and liver tumor
are clearer after the aforementioned image preprocessing.

B. LIVER AND LIVER TUMOR SEGMENTATION USING
DEEP LEARNING
For CT scanns, both image size and voxel size vary from
sample to sample, and spatially inconsistent data are not
ideal for deep learning approaches. Previous coarse-fo-fine
works [38] suggest the effectiveness of using a coarsely
predicted segmentation mask to make the inputs to CNNs
have the same image size and the same pixel size. As such,
we firstly segment liver using a 2D U-net and define a liver
ROI, and then use a 3D FCN to refine the liver segmenta-
tion and to segment liver tumor within the liver ROI. The
flowchart of our coarse-to-fine pipeline for liver and liver
tumor segmentation is shown in Fig. 3.

1) NETWORK ARCHITECTURE
The detailed parameters of 2DU-net and 3D FCN used in this
work are listed in Table 1. Both our 2D and 3D CNN models
have an encoder-decoder structure with skip connection. The
2D U-net is composed of 9 convolution blocks and each
block consists of two 3 × 3 convolution layers followed by
a batch normalization layer (BN) and a rectified linear unit
(ReLU). The 3D FCN is composed of 7 convolution blocks,
3 max-pooling layers, and 3 up-sampling layers. The pooling
layer and up-sampling layer of 3D FCN is one less than 2D
U-net because the input size of 3D FCN is smaller. That is
also the reason why fewer feature channels are used in 3D
FCN. The number of feature channels is doubled/halved at
each downsampling/upsampling step.

2) TRAINING
At the training stage, we conduct two-fold normalizations
for the 3D CT image I and the corresponding ground truth
segmentation Y. On the one hand, we divide each 3D vol-
ume (I and Y) into a set of 2D slices and resize them to
be of a fixed image size 256 × 256. These normalized 2D
images and ground truth pairs are then fed into a 2D U-
net to fit a coarse segmentation model, which focuses on
learning discriminative features for liver versus background
discrimination. As such, we treat liver tumor as part of
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FIGURE 3. Illustration of our coarse-to-fine pipeline for liver and liver tumor segmentation.

TABLE 1. Parameters of the 2D U-net and 3D FCN.

liver in this binary coarse segmentation. On the other hand,
we resize each 3D volume (I and Y) to be of a fixed voxel
size 1 × 1 × 1 mm3 and crop these normalized images
using the liver mask. We adopt a dense training strategy to
fit a fine segmentation model [42]. Specifically, we train
the 3D FCN for 30 epochs, with each one again composed
of 20 subepochs. At each subepoch, a total of 100 sam-
ples with a size of 48 × 48 × 48 are randomly selected
from the training images and the corresponding ground truth
segmentation images. The fine liver segmentation stage is
conducted with tumor labels and is used to predict a fine
liver segmentation and meanwhile to provide a coarse tumor
segmentation.

3) TESTING
As shown in Fig. 3, liver is segmented out in a coarse-to-
fine manner at the testing stage. At the beginning, we also
conduct two-fold image normalizations, the same as that at
the training stage. On the one hand, we slice and resize
the 3D testing CT image to 2D slices and use the trained
U-net to predict a coarse liver segmentation. On the other
hand, we resize both the 3D CT image and the coarse liver
segmentation to be of the normalized voxel size and crop
the resized CT image surrounding the resized coarse liver
segmentation. Then the trained 3D FCN is used to yield a
fine liver segmentation and a coarse liver tumor segmentation
within the cropped CT image.
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FIGURE 4. A representative example to demonstrate intensity truncation
based on a range computed from the coarse tumor segmentation
from 3D FCN.

C. LIVER TUMOR SEGMENTATION BASED ON LEVEL-SET
Given the CNN-derived coarse liver tumor segmentation,
we obtain histogram statistics for the CT image intensity
within the liver tumor and then use the 99th percentile maxi-
mum and minimum (Tlow and Thigh) to reduce noisy segmen-
tation. A piecewise linear transformation is used to normalize
image intensity via

y =


0, x < Tlow
x − Tlow

Thigh − Tlow
, Tlow < x < Thigh

1, x > Thigh.

(3)

As shown in Fig. 4, such truncation and normalization can
further enhance the image contrast surrounding liver tumor.

We then crop the testing CT image based on an enlarged
version of the coarse tumor segmentation (enlarged by 20 pix-
els at each direction), and then remove non-liver tissues using
the fine liver segmentation. Afterwards, we refine tumor
segmentation in a slice-by-slice manner as shown in Fig. 5.
Let I be a 2D cropped CT image defined on a domain �. An
implicit contour representation of the tumor can be formed
with the zero level-set C = {x ∈ �|φ(x) = 0}, where points
inside the contour have φ(x) < 0 and outside have φ(x) > 0.
For a level-set function φ : �→ R [24], the energy function
ε(φ) is defined as

ε(φ) = µRp + λLg(φ)+ αAg(φ), (4)

where Rp(φ) ,
∫
�

1
2 (|∇φ − 1)2 dx is a regularization term

that guarantees |∇φ| ≈ 1, and the length term L(φ) =∫
�
gδ(φ)|∇φ|dx computes the line intergral of the function

g along the zero level contour (g is an edge indicator function
for I and δ is the Dirac delta function). The area term is
computed as A(φ) =

∫
�
gH (−φ)dx (H is the Heaviside

function).

1) ENHANCED OBJECT INDICATION FUNCTION
In order to rectify ambiguous boundaries, we make use of an
enhanced object indication function via

gmax = max(gi, gp). (5)

The first term gi is a normalized edge indicator [24] obtained
by

gi =
g(I )−min(g(I ))

max(g(I ))−min(g(I ))
,

g(I ) =
1

1+ |∇Gσ ∗ I |
. (6)

The values of gi range from 0 to 1. Gσ is a Gaussian kernel
with a standard deviation σ [44], [45]. The second term gp
is obtained from prior knowledge on I using unsupervised
FCM. FCM is an iterative clustering algorithm that can pro-
duce C partitions by minimizing an objective function J ,

J =
N∑
n=1

C∑
j=1

umnj||In − cj||
2

subject to
c∑
i=1

unj = 1, (7)

where m is any real number that is greater than 1, unj is the
degree of membership of In in cluster j, In is the intensity
value of the nth pixel flattened from the 2D CT image I , cj
denotes the intensity center of the corresponding cluster, and
|| · || is the Euclidean distance.
Details of FCM are described in Algorithm 1.

Algorithm 1 The Fuzzy C-Means Algorithm
Input: Flattened CT image within liver mask [In] ;
Output: U t

= [unj] ;
Fix numberOfClusters = C ;
Fix maxIteration = T ;
Fix deltaValue = ε;
Randomly initialize U0;
for t = 1 to T do
Update elements of membership matrix unj using

unj =
1∑C

k=1(
||In−cj||
||In−ck ||

)
2

m−1

;

Calculate the new cluster centers [cj] using

cj =

∑N
i=1 u

m
nj · In∑N

i=1 u
m
nj

;

Calculate the new objective function J t using Eq. (7).
if |J t − J t−1| < ε then
Break;

else
Continue;

end if
end for

Afterwards, the row of U t relating to tumor is reshaped to
U reshape according to the size and none-zero index of I . An
example ofU reshape is shown in Fig. 5.We then use the Canny
edge detector to detect edges inU reshape and denote the result
as gp.
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FIGURE 5. Flowchart of liver tumor segmentation using level-set.

2) AUTOMATIC INITIALIZATION
A LSM is sensitive to the initial position of the zero level-
set contour. Different from previous semi-automatic methods
[19], [29], we use the 3D FCN derived tumor segmentation
to be our initial curve in LSM. In a typical edge-based LSM,
the balloon force termαAg(φ) either ‘‘expands’’ or ‘‘shrinks’’
the dynamic interface. In this study, we choose the ‘‘expands’’
mode. As such, we erode our coarse tumor segmentation
result to get a smaller region. Then a median filter is used
to smooth the segmentation and the result is denoted as
SES. The initial function φ0 in our level-set is defined as a
binary function,

φ0(x) =

{
−c0, if SES = 1
c0, otherwise.

(8)

D. IMPLEMENTATION DETAILS
The proposed neural networks were implemented based on
Python. All experiments were conducted on a workstation
equipped with NVIDIA GTX 1080 Ti. The 2D U-net was
trained with a batch size of 8 and the 3D FCN was trained
with a batch size of 16. The level-set and FCM parts were
implemented usingMATLAB.1,2 Theweights in Eq. (4) were
the same as those suggested in Li’s work [24], wherein µ =
0.1, λ = 1.5, α = −1.5. The level-set evolution stops when
it meets the steady solution of the gradient flow equation.
We used FCM to distinguish tumor and healthy liver tissues
within the liver region. As such, the number of cluster centers
C in FCM was set to be 2. The max number of iterations T
and the termination criterion in FCM ε were respectively set
to be 10 and 0.001 empirically.

III. DATASETS AND EVALUATION CRITERIA
A. DATASETS
We test the proposed method on two publicly-available
datasets. The first dataset used in this study come from a liver

1http://www.imagecomputing.org/~cmli/DRLSE/
2https://jp.mathworks.com/matlabcentral/fileexchange/25532-fuzzy-c-

means-segmentation

CT image segmentation challenge on the 2019 International
Symposium on Image Computing and Digital Medicine.3

There are 24 training images and 36 testing images, with
varied image sizes and a fixed resolution of 1 × 1 × 5
mm3. The second dataset come from theMICCAI 2017 Liver
Tumor Segmentation (LiTS) Challenge,4 which consists
of 131 training images and 70 testing images, with varied
image sizes and resolution.

B. EVALUATION CRITERIA
1) DICE SIMILARITY COEFFICIENT (DSC)
DSC is the most widely used evaluation metric to quantify the
performance of medical image segmentation. It is defined as

DSC(G,R) =
2 |G ∩ R|
|G| + |R|

, (9)

whereR denotes an automated segmentation result,G denotes
the corresponding ground truth segmentation, and G ∩ R
denotes the overlap between G and R. The operator | · |
returns the number of pixels (or voxels in 3D) contained in
a region which is proportional to the physical volume of the
considered region.

2) VOLUMETRIC OVERLAP ERROR (VOE)
Jaccard similarity coefficient (another similarity ratio) is
defined as

Jaccard(G,R) =
|G ∩ R|
|G ∪ R|

, (10)

and volumetric overlap error (VOE) is defined as the corre-
sponding error measure [43]

VOE(G,R) = 1−
|G ∩ R|
|G ∪ R|

. (11)

3http://www.imagecomputing.org/2019/
4https://competitions.codalab.org/competitions/17094
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3) RELATIVE VOLUME DIFFERENCE (RVD)
To quantify the volume difference between two binary seg-
mentation, RVD is defined as

RVD(G,R) =
|VG − VR|

VG
, (12)

where VG and VR respectively denote the volumes of the
ground truth segmentation and the corresponding automated
segmentation.

4) AVERAGE AND ROOT MEAN SQUARE OF SYMMETRIC
SURFACE DISTANCE (ASD AND RMSD)
Let S(A) denote the set of surface vertices of a 3D volume A,
the shortest distance of any vertex v to S(A) is defines as

d(v, S(A)) = min
sA∈S(A)

||v− sA||, (13)

where || · || denotes the Euclidean distance, with a greater
value indicating a higher error.

The average symmetric surface distance (ASD) [46]
between G and R is then defined as

ASD(G,R)

=
1

|S(G)| + |S(R)|

×

 ∑
sG∈S(G)

d(sG, S(R))+
∑

sR∈S(R)

d(sR, S(G))

 , (14)

and the root mean square of the symmetric surface distance
(RMSD) is given by

RMSD(G,R)

=

√
1

|S(G)| + |S(R)|

×

√ ∑
sG∈S(G)

d2(sG, S(R))+
∑

sR∈S(R)

d2(sR, S(G), (15)

where |S(G)| and |S(R)| return the sum of surface area of G
and R. The evaluation code for ASD and RMSD is available
at Github.5

IV. EXPERIMENTS AND RESULTS
Below, section IV-A and section IV-B summarize results
obtained from the ISICDM dataset and section IV-C presents
results obtained from the LiTS dataset. For both datasets,
the training data have manual annotations, but the ground
truth segmentations for the testing data are hidden. For the
validation experiment in section IV-A, we conducted a 3-fold
cross-validation on the training data. For the testing exper-
iment in either section IV-B or section IV-C, we trained a
model using the training data and then evaluated the proposed
model on the testing data.

5https://github.com/deepmind/surface-distance

TABLE 2. Quantitative statistics of 2D U-net and 2D U-net + 3D FCN in
terms of liver segmentation based on 3-fold cross-validation. ↓ indicates
that a smaller value suggests a better performance.

FIGURE 6. Representative liver segmentation results at each of the three
planes from 2D U-net and the proposed 2D U-net + 3D FCN on an ISICDM
validation sample.

A. RESULTS OF ISICDM VALIDATION DATASET
1) LIVER SEGMENTATION
Table 2 compares the liver segmentation performance of 2D
U-net (coarse stage) and 2D U-net + 3D FCN (fine stage).
For each metric, a Wilcoxon signed-rank test is performed
to quantify the significance of each group comparison dif-
ference. The average DSC of the fine liver segmentation is
96.31%, which is significantly higher than that obtained from
the coarse stage (p < 0.01). For all other four evaluation
metrics, VOE, RVD, AVD, and RMSD, there are significant
decreases from 2D U-net to 2D U-net + 3D FCN. These
improvements may have been due to the reason that the 3D
model is able to capture spatial and contextual information
but the 2D model can only capture information in the axial
plane. As shown in Fig. 6, for certain cases, the boundaries
between liver and neighboring tissues are much clearer on
other planes, such as the sagittal plane, than the axial plane.
For those cases, the 2D U-net that solely relies on axial plane
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TABLE 3. Quantitative statistics of 3D FCN and 3D FCN followed by
level-set (3D FCN + Level-set) in terms of liver tumor segmentation based
on 3-fold cross-validation. ↓ indicates that a smaller value suggests a
better performance.

images may performmuch worse than the proposed 2DU-net
+ 3D FCN.

Both quantitative and qualitative analyses suggest that our
automated liver segmentations are reliable and can be used to
effectively mask out non-liver tissues. Please note we firstly
used a 2D U-net to roughly localize liver rather than a 3D
FCN to directly act on the whole image. This coarse-to-fine
strategy is efficient in reducing the computation time since
only a smaller number of patches need to be predicted within
the cropped CT image. Besides, this strategy is also useful in
improving the segmentation accuracy [47].

2) TUMOR SEGMENTATION
Compared with 3D FCN, the proposed method (FCN +
level-set) achieved 5.69% and 6.61% improvements on tumor
segmentation in terms of DSC and VOE, which are both
statistically significant (p < 0.05). The segmentation error
has been reduced by nearly half in terms of RVD, ASD,
and RMSD. Also, the relatively smaller standard deviations
indicate that the proposed method is more stable and more
robust. This clearly shows the effectiveness of our liver tumor
segmentation framework. Detailed comparisons are shown
in Table 3.

Fig. 7 shows qualitative comparisons among the ground
truth, the automated segmentation results from 3D FCN,
and those from the proposed pipeline, for a representative
case from ISICDM’s validation dataset, at each of the three
2D planes. The improvements may be due to the pipeline’s
capabilities in restoring missing parts and removing residual
parts. The last row in that figure demonstrates the surface
rendering comparison results for that specific case in terms of
the shortest distance map. Specifically, the color bar in Fig. 7
denotes the shortest distance between each vertex of the
automatically-segmented surface and the ground truth sur-
face. The superiority of the proposed tumor segmentation
pipeline can be easily observed.

B. RESULTS OF ISICDM TESTING DATA
It may be more meaningful to verify the segmentation
performance on testing data the ground truth of which
is unavailable. As shown in Fig. 8, the proposed method
can deliver highly accurate and much smooth liver tumor
segmentations.

FIGURE 7. Examples of tumor segmentation results by 3D FCN and the
proposed 3D FCN + level-set on the validation dataset of ISICDM. The last
row shows the surface rendering comparison results. The color bar
denotes the localized shortest distance to the ground truth surface.

TABLE 4. DSC comparisons of the proposed method and representative
state-of-the-art methods on liver and liver tumor segmentation obtained
on the LiTS testing dataset.

C. COMPARISONS WITH REPRESENTATIVE METHODS ON
LiTS
For a fair comparison, we tabulate the DSC of some state-of-
the-art approaches on the same LiTS dataset in Table 4.

Dice per case shows the average DSC over all 3D vol-
umes and Dice global shows the DSC for a single volume
obtained by combining all segmentations [30]. All results can
be found in the leaderboard.6 Clearly, our proposed method
(team name: Zpark) is very competitive when compared with
other existing methods in terms of both liver segmentation
and liver tumor segmentation. For example, H-DenseUNet
is a state-of-the-art segmentation method for liver tumor,
which ranked the 1st on a lesion segmentation challenge

6https://competitions.codalab.org/competitions/17094#results
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FIGURE 8. Automated tumor segmentation results of representative ISICDM testing data obtained from the proposed method. The green contour
denotes the segmentation boundary.

using the MICCAI 2017 LiTS dataset [16]. It reported an
average Dice per case of 72.2% and Dice global of 82.4%
in terms of tumor segmentation. Our method achieved a
better Dice global (84.2%), indicating that our method per-
formed better in cases of larger lesions. It is worth noting that
H-DenseUNet is a purely deep learning approach. Incorporat-
ingH-DenseUNet into our proposed FCN+ level-set pipeline
may further enhance our liver and liver tumor segmentation
accuracy. From Table 4, it can be observed that 3D CNN
[16] typically performes better than 2D CNN [17] in terms of
tumor segmentation. All methods under comparison achieved
similarly high accuracy on liver segmentation.

V. DISCUSSION
Automatic liver and liver tumor segmentation is an important
prior step in computed aided clinical diagnosis. It provides
precise contours of liver and any tumor inside the anatomical
segment of liver, which is beneficial for doctors in the diag-
nosis process. In this paper, we presented a deep learning ini-
tialized and gradient enhanced level-set segmentation system
to combine the advantages of automatic feature extraction in
deep learning and interpretable prior knowledge in LSMs.
Themain advantage of combining those two types ofmethods
is that deep learning can provide a robust initialization for
LSMs and LSMs can well guarantee the topology integrity of
the outputs. More specifically, LSMs heavily rely on initial-
ization and bad initializations may impair the segmentation,
which is one of the main limitations of LSMs. In Fig. 9,
we show the segmentation results from our employed level-
set method DRLSE with different initializations. Clearly,
the proposed initialization method (3D FCN) outputs the best
segmentation. The main limitation of purely deep learning
methods is that the results may suffer uninterpretable segmen-
tation errors, as shown in Fig. 7.

In terms of computational effort, it will take roughly
90 seconds to segment one whole CT image of size 367 ×
367 × 45. For the deep learning part, it will take 10 seconds
for 2DU-net to perform coarse liver segmentation and 50 sec-
onds for 3D FCN to localize tumor. The proposed coarse-
to-fine strategy can significantly improve the computational
efficiency. More specifically, it will take 400 seconds if we
use 3D FCN to directly segment the whole CT image but
only 60 seconds when using the proposed framework. For the
level-set part, it will take 30 seconds to perform FCM and
level-set evolution.

Combining deep learning and level-set is one of the
research trends in medical image segmentation. For example,
Deng et al. also proposed a method combining deep learning
and level-set in a coarse-to-fine manner and applied their
method to liver tumor segmentation from CT images [35].
Compared with existing methods, the proposed one has two
main novelties in terms of technical details: (1) we conducted
effective image preprocessing via intensity truncation, which
is very crucial for both deep learning and level-set based
medical image segmentation (see Fig. 10); (2) we used FCM
clustering to enhance the edge indicator used in level-set.

To improve the generalization ability of our proposed
method and to avoid the over training problem as much
as possible, we have adopted data augmentation and eary
stopping strateries. We tested our method on two indepen-
dent datasets to identify the generalization capability of our
method in clinical practice. The observed promising segmen-
tation results (Fig. 8 and Table. 4) clearly suggest the great
potential of the proposed pipeline in real applications.

A potential limitation of the proposed method is that our
liver tumor segmentation performance relied on performance
of liver segmentation, given that both FCM and LSM were
employed within the liver segmentation mask. For several
testing cases in the LiTS dataset, the 3D patch-based liver
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FIGURE 9. Four examples to demonstrate the importance of initialization for our employed level-set method DRLSE.

FIGURE 10. An example to demonstrate the effectiveness of intensity
truncation. The leftmost column denotes the original CT image. The
middle column was obtained by a fixed range truncation on the original
CT image intensity. The rightmost column was obtained by another
intensity truncation based on a range computed from the coarse tumor
segmentation from 3D FCN.

FIGURE 11. False positive and false negative examples.

segmentation was not successful, with holes inside. Those
cases can nevertheless be automatically detected through
convexity analysis. For those several special cases, we used
the 2D slice-based CNN results to be our liver segmentation
results. A potential solution is to incorporate atlas-based

segmentation methods to preserve liver’s topology integrity
and this will be one of our future research endeavors [49],
[50]. In addition, the proposed method may fail for cases with
very fuzzy boundaries, as shown in Fig. 11. These boundaries
are very fuzzy because of noises inside CT images. Some
denoising methods may be helpful to remove these false
positive and false negative issues. For example, the edge-
enhancing diffusion filtering technique proposed in [25] may
help further enhance the segmentation ability of our proposed
pipeline.

VI. CONCLUSION
In this paper, we proposed and validated a novel level-set
framework for automatically localizing liver tumor by jointly
utilizing deep learning and enhanced edge indication from
unsupervised fuzzy c-means. A 2DU-net and a 3D FCNwere
cascaded to generate liver segmentation at first. Meanwhile,
the 3D FCN was also used to roughly localize liver tumor.
Both qualitative and quantitative analyses revealed an out-
standing performance of the proposed segmentation pipeline.
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