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ABSTRACT When using HBase to store tiles of remote sensing images, the spatial position of a tile is often
used as the first part of the tile’s rowkey so that tiles with high spatial correlations are stored close together to
improve query efficiency.We refer to this storagemethod as the Geo-First model. However, Geo-First models
have two problems: the load between nodes is unbalanced, and the accumulation of time-series remote
sensing images has a negative impact on storage and query efficiency. Considering these two problems,
we proposed a method for storing remote sensing images based on Google S2 and HBase. In our method, two
strategies are adopted to eliminate these problems: the balanced placement strategy (BPS) and the periodic
storage strategy (PSS). We evaluated our method by focusing on the effectiveness of BPS and PSS. The
results show that our method achieves higher tile storage and query efficiency than three Geo-First models
based on latitude and longitude, Geohash code, and Google S2 code. BPS effectively balances the load
between nodes, while PSS alleviates the negative impact of the accumulation of time-series remote sensing
images. Both BPS and PSS greatly improve tile storage and query efficiency.

INDEX TERMS HBase, remote sensing images, Google S2, load balancing, tile storage mode.

I. INTRODUCTION
With the development of ground observation technology,
remote sensing images have become an important big data
category [1] that play an important role in the fields of eco-
nomic development, environmental protection and national
defence construction [2]. The massive, heterogeneous, mul-
tiscale data of remote sensing images make storage diffi-
cult. The traditional storage methods used to store remote
sensing images can be divided into three types: file system
storage methods, relational database storage methods, and
file-relational database hybrid storage methods. The above
methods can effectively store and manage remote sensing
images, but all have flaws such as low retrieval efficiency,
poor concurrency, and high expansion costs [3], [4]. In recent
years, with the development of Not Only SQL (NoSQL)
databases, increasing numbers of researchers have favoured
remote sensing image storage based on NoSQL [5]–[14].
Comparedwith traditionalmethods, NoSQL has performance
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advantages in terms of big data access, scalability, and con-
currency. As a typical NoSQL database, HBase can effi-
ciently store both structured and unstructured data [15], [16],
and its column-family mechanism and storage characteristics
make it highly suitable for storing remote sensing images.

As remote sensing technology has advanced, the resolution
of remote sensing images has also increased, expanding the
amount of data in a single image [17]. Thus, if a single
image functions as the basic storage unit, the computational
query and storage burden also greatly increase. Furthermore,
considerable useless data will be transmitted during image
queries because users are usually only interested in a small
part of the image data; thus, computing resources and network
resources will be wasted. Therefore, researchers often cut
remote sensing images into tiles and store the tiles as the
basic units in HBase [11], [14]–[28]. As the size of a single
image increases, the number of tiles will increase. Thus,
a reasonable index for tiles is necessary. A reasonable index
structure can greatly improve the retrieval efficiency of the
tiles, which is crucial for improving database performance.
When using HBase to store tiles for remote sensing images,
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the spatial correlations of tiles are a primary consideration
for the design of indexes for tiles with high spatial corre-
lation [23]–[28]. Using this approach, highly relevant tiles
will be stored together because they have similar indexes,
which improves the query efficiency of the tiles. Although
this storage model can be used to effectively manage massive
tiles, there are some problems: the node load in the clusters
is unbalanced; consequently, as the number of stored time-
series remote sensing images increases, the storage and query
efficiency of the images is affected. These two problems
often occur when storing remote sensing images with HBase;
unfortunately, they are often overlooked when researchers
design storage solutions. We elaborate on the causes of these
problems in Section II.A.

A. RELATED WORK
When using HBase to store remote sensing images,
researchers focus on designing similar rowkeys for highly
spatially relevant tiles. On this basis, the rowkey for a tile
often starts with a code that represents the geographic loca-
tion of the tile, such as the Hilbert curve code, the Z-order
curve code, or the line-filling curve code. For ease of pre-
sentation, we refer to this code as the geolocation code, and
we refer to this storage model, which considers the geolo-
cation code as the primary consideration, as the Geo-First
model. Below, we briefly introduce the storage scheme of
tiles designed by researchers based on the Geo-First model.

Huo [18] adopted the P2H code, which was obtained
based on the Hilbert code, as the geolocation code, and
constructed rowkeys based on the P2H code to efficiently
query the tiles. Wang et al. [19] combined the GeoSOT code
with metadata as the geolocation code to construct the tile’s
rowkey and achieved efficient storage of remote sensing
images. Li et al. [20] and Zhong et al. [21] combined the
Hilbert code with other attributes to construct tile rowkeys.
Jing et al. [9], Jing and Tian [10] combined the tile grid ID,
the Hilbert code, and other information to construct the tile’s
rowkey. Cheng [22] combined the latitude and longitude of
the tile with other attributes to form the tile rowkey. When
tiles are stored as pyramids, for each level of the pyramid,
researchers also often use the Geo-First model to store tiles.
For example, Li et al. [23] used latitude, longitude and the
linear quadtree code as the geolocation code for construct-
ing the tile’s rowkey. Fu [24] and Cao et al. [25] used the
Hilbert code to design the tile’s rowkey. Fan [26] used the
tile’s geographic coordinate code as the geolocation code
to form the tile’s rowkey. Liu et al. [27] combined the tile’s
grouping and coordinates with other attribute information to
form the tile’s rowkey. Liu et al. [28] combined tile row and
column number with other attributes to construct the tile’s
rowkey.

These studies constructed geolocation codes and stored
the tiles in Geo-First models. Although these methods store
spatially adjacent tiles together to improve image query effi-
ciency, they all exhibit the same two problems described in
Section II.A.

B. RESEARCH CONTRIBUTIONS
This paper proposes an efficient method for storing remote
sensing images based on Google S2 and HBase. To address
the two problems introduced in Section II. A, we design two
strategies for our proposed method. The main contributions
of this paper are summarized below.

1) We propose a remote sensing image storage method
based on Google S2 and HBase. This method has
higher storage and query efficiency than does the
Geo-First model.

2) Our proposed method includes a balanced placement
strategy (BPS) for tiles that addresses the unbalanced
load between nodes.

3) Our proposed method includes a periodic storage strat-
egy (PSS) for tiles that addresses the negative impact of
the accumulation of time-series remote sensing images
on data storage and query efficiency.

C. ORGANIZATION
The remainder of this paper is structured as follows: Section II
discusses the study motivation and relevant background,
explains the problems and describes Google S2. Section III
introduces our proposed remote sensing storage method and
the two included tile storage strategies. Section IV presents
the evaluation of the proposed method and the two strategies;
and Section V presents conclusions.

II. MOTIVATION AND BACKGROUND
A. PROBLEMS WITH THE GEO-FIRST MODEL
In this section, we introduce the generation mechanism of the
two problems described in section I in more detail. Before
discussing these problems, we first introduce HBase.

HBase’s storage architecture consists of Zookeeper,
Master, and RegionServer. Zookeeper is responsible for the
overall management and scheduling of HBase. Master is
responsible for the region distributions and for cluster load
balancing. RegionServer is responsible for the storage and
maintenance of regions and provides query and storage access
to the data. The regions maintained in RegionServer are the
logical units obtained by cutting the data table according
to the rowkeys’ range. A region consists of several rows of
data sorted by the lexicographic order of the rowkeys. When
the size of a region reaches a certain threshold, HBase will
split it. The split threshold of a region changes dynamically,
and as the number of regions increases, the split threshold
of a region also gradually increases (e.g., 256 MB, 2 GB,
6.75 GB, and 10 GB). When regions split, the difference
in the number of regions maintained by each RegionServer
becomes larger, and HBase triggers a load-balancing mecha-
nism when this number reaches a specified threshold. To per-
form load balancing, HBase redistributes the load pressure
to all nodes by evenly distributing the number of regions
maintained by each RegionServer to facilitate optimal cluster
performance.

Next, we discuss the two problems of the Geo-First
model.
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FIGURE 1. The storage process of tiles under the Geo-First Model and the split and transfer processes of the regions.

FIGURE 2. Under the Geo-First Model, the changes caused by the accumulation of
time-series remote sensing images to the data blocks.

1) UNBALANCED LOAD AMONG NODES
From the previous introduction, a region’s default split thresh-
old increases dynamically. Assume that when the number of
tiles stored in the region reaches 8, 24, and 48, the region
reaches the splitting thresholds. Fig. 1 shows the storage
process of the tiles storage process and the split and transfer
of regions when storing remote sensing images with the
Geo-First model.

As illustrated in Fig. 1, when we store the tiles accord-
ing to the Geo-First Model, because the rowkey is sorted
lexicographically, tiles with similar Hilbert codes are stored
together (we use the Hilbert code to represent the geoloca-
tion code, which has excellent spatial proximity). As shown
in Fig. 1, in the three stages of tile storage, a single node
bears the entire load of storage requests in each stage, causing
the hotspotting problem. As the number of tiles increases,
HBase performs a series of split and transfer operations.
Although each node maintains the same number of regions,
the sizes of those regions are quite different. As shown
in Fig. 1, after tile storage is completed, the four regions
have different sizes, causing the data skew problem to arise.

Hotspotting and data skewing inevitably cause load imbal-
ance among nodes. If the black box in Fig. 1 is the user’s area
of interest, then stage 4 indicates that when the user queries
data from that area, Node 4 bears all the query requests,
and the load pressure is unbalanced among nodes. Therefore,
when using the Geo-First Model to store tiles, the query and
storage load between nodeswill become severely unbalanced.

2) EFFECT OF TIME-SERIES REMOTE SENSING IMAGE
ACCUMULATION ON DATA STORAGE
AND QUERY EFFICIENCY
In a distributed database, some data are arranged in a con-
tinuous sequence to form data blocks, which are the basic
units of database management. Data blocks can be used as the
basic units of data organization and management to achieve
efficient big data storage and management. The size of a data
block in HDFS is 64 MB. If a data block can store 16 tiles,
then under the Geo-First Model, the changes brought about
by the accumulation of time-series remote sensing images in
the data blocks are shown in Fig. 2.
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As shown in Fig. 2, as the time-series remote sensing
images accumulate, the number of data blocks increases.
Assume that the image marked in Fig. 2 is a remote sensing
image showing a certain area that the user wants to query.
We know that when only one remote sensing image of the
area is stored, the tiles are stored in a data block, and the
database system needs to access and query only one data
block. However, when four remote sensing images of the
area are stored in the database, the database system needs
to access and query four different data blocks to obtain the
target tiles. Similarly, when there are eight images, eight data
blocks need to be accessed and queried. Obviously, for the
Geo-First model, accumulating time-series remote sensing
images causes tiles with the same spatial location to be stored
together and causes tiles belonging to the same image to
become scattered and stored in additional data blocks, which
increases the time consumed by a data query. Similarly, when
storing images according to the lexicographic ordering rules
of rowkeys, the tile storage system also needs to interact with
multiple data blocks, which increases the time consumption
of data storage.

B. GOOGLE S2
We use the global geographic grid Google S2 as a benchmark
for generating tiles and designing the storage and organi-
zation mode based on the S2 code. Before describing our
method, we explain why we adopt Google S2 to design tile
storage solutions instead of the better-known geographic grid
Geohash. We introduce Google S2 in detail, including its
grid division method and principles, and emphasize the data
structure of the S2 code because it is closely related to the
proposed method.

Google S2 is a multidimensional spatial point indexing
algorithm based on the Hilbert curve. Compared with Geo-
hash [29], the Hilbert curve used by Google S2 has a bet-
ter spatial clustering effect [30], and there are fewer spatial
jumps. In addition, S2 has more grid division levels: it pro-
vides 30 levels of grid division. The size range of S2 cells is
0.74 cm2 to 85,011,012.19 km2, while the size range of cells
provided by Geohash is 6.9 cm2 to 25,000,000 km2. In grid
division, the granularity of the cell size in S2 is regular and
can be applied for multiscale tile storage. Moreover, when the
grid division accuracy is maximized, 12 bytes are required for
storing the cell id of Geohash, while the cell code in S2 uses
a UInt64 for storage, which requires less space.

To further explain the specific implementation algorithm
of Google S2 and the data structure of cell id, we briefly
introduce the Hilbert curve before introducing Google S2.
As an excellent space-filling curve, the Hilbert curve maps
two-dimensional spatial positions into one-dimensional digi-
tal codes to give cells unique codes while ensuring the spatial
proximity of grid codes. The Hilbert curve is generated via
stepwise recursion, and an nth-order Hilbert curve consists
of four (n − 1)th-order Hilbert curves through the necessary
rotations and connections. Fig. 3 shows the generation pro-
cess for a fourth-order Hilbert curve.

FIGURE 3. The filling process of the fourth-order Hilbert curve.

The first-order Hilbert curve fills a 2 × 2 plane, as shown
in Fig. 3(a). For each cell where the inflection point of the
first-order Hilbert curve is located, the quadtree is divided
and filled with a first-order Hilbert curve. Then, the neces-
sary rotations and connections are conducted to generate a
second-order Hilbert curve, as shown in (b) and (c). Simi-
larly, third- and fourth-order Hilbert curves can be generated,
as shown in (d) and (e). Thus, through a step-by-step recur-
sive generation method, a Hilbert curve of any order can be
generated. Consequently, the plane can be filled and encoded
at an arbitrary granularity. Google S2 uses Hilbert curves to
fill and encode two-dimensional planes, thereby reducing the
two-dimensional space into one-dimensional digital codes.
Fig. 4 outlines the main ideas behind the implementation of
Google S2.

First, the three-dimensional Earth is projected onto an
external cube, and the deformation generated by the projec-
tion is corrected so that the spherical coordinates are mapped
to the projected coordinates. Then, the cube is expanded
into 6 two-dimensional planes, each of which is divided
into 2l × 2l cell sets according to the level of S2, and the
projection coordinates are mapped onto the coordinate axis
points. Finally, theHilbert curve is used for filling and coding,
and the geographic coordinates are mapped to the cell id. The
S2 algorithm constructs a suitable data structure to character-
ize an arbitrary spatial position at a specified grid level. This
data structure is the basis of our proposed method. Therefore,
we introduce the data structure of the S2 code in Fig. 5.

As shown in Fig. 5, the S2 code is a 64-bit binary string.
According to our previous description, the projection cube is
expanded into 6 planes. The first three bits (yellow blocks)
represent the cube plane where the cell is located. The blue
block is the tagged bit. The binary string (green blocks) from
the fourth bit to the previous bit of the tagged bit is the Hilbert
code of the cell. The Hilbert order is increased by one order;
thus, 2 bits need to be added to indicate the position of the
cell. Because the Hilbert order corresponds to the S2 level,
when the level of S2 is 30, 60 bits are required to form the
Hilbert code of the cell. The S2 cell code is fixedly stored
by UInt64; thus, when the level of S2 is less than 30, the bits
after the tagged bit are set to 0. In (b), 101 represents the plane
where the cell is located, the next 8 bits represent the Hilbert
code of the cell, the red number 1 represents the tagged bit,
and the bits after the tagged bit are filled with 0s.

Using this data structure, the S2 algorithm can assign a
unique code to any region on Earth according to the accuracy
requirements. In addition, due to the superior performance of
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FIGURE 4. The main implementation process of the Google S2 algorithm.

FIGURE 5. Data structure of the cell code of s2.

the Hilbert curve, the S2 codes obtained by cells with high
spatial correlations are close together; thus, this method can
be applied for the storage and analysis of spatial data on a
global scale.

III. METHODS
We propose a remote sensing image storage method that is
more efficient than the Geo-First model. We introduce our
method in Section III.A. In addition, ourmethod includes spe-
cific strategies for the two problems described in Section II.A.
Section III.B introduces the BPS for tiles, which addresses
the problem of unbalanced load among nodes. Section III.C
introduces the PSS for tiles, which alleviates the negative
impact of the accumulation of time-series remote sensing
images on tile storage and query efficiency.

A. STORING REMOTE SENSING IMAGES BASED
ON HBASE AND GOOGLE S2
When using HBase to store remote sensing images, tiles must
be acquired for storage and queries. Before obtaining the
tiles, we need to determine the pixel size of the tiles. In our
proposed method, we set tile size to 512× 512 pixels, which
is a commonly used size. In addition, we considered that
manymachine learning algorithms require the input data with
a size of 512 × 512 pixels. After determining the tile size,
we designed the method for obtaining tiles. Fig. 6 shows the
tile acquisition process in our method.

First, we need to choose the appropriate S2 level accord-
ing to the spatial resolution of the image. The cell sizes
under different S2 levels are shown in Table 1. For example,
when we store images with a spatial resolution of 8 metres,
the ground area corresponding to a tile is approximately
16.7 km2 (82 ∗ 0.5122 ≈ 16.7). According to the data shown
in Table 1, the S2 level must be 12 to ensure that the largest
cell at this level can be covered by 512 × 512-pixel tiles.

TABLE 1. The cell sizes corresponding to different s2 levels.

After determining the S2 level, we obtain the S2 cells based
on the geospatial range of the image, as shown in step 1 of
Fig. 6. Then, we segment the image based on the cells.We use
the centres of the cells as the centres of the tiles and cut
512 × 512-pixel tiles from the original image. Based on
the S2 geographic grid, this converts the basic storage unit
for remote sensing images from image to tile, which greatly
reduces the amount of useless data transmitted in subsequent
data queries. A certain amount of redundancy exists in this
cutting method; we plan to reconstruct lost tiles from redun-
dant data in subsequent research. Next, the acquired tilesmust
be stored.

Before storing the tiles, the tile rowkey structure and
the data table structure must be designed. To meet the
query requirements and avoid the problems described in
Section II.A, we designed the rowkey structure shown
in Fig. 7.

The partition code is used to address the load imbal-
ance among nodes: we explain this method in detail in
Section III.B. The period code is used to address the accu-
mulation of time-series remote sensing images on data stor-
age and query efficiency: we explain this method in detail
in Section III.C. The geolocation code is the S2 cell code.
In this way, we can store tiles with high spatial correlation
together to improve query efficiency. The attribute code is
a combination of query conditions such as satellite, sensor,
image production time, and cloud cover. The unique code is
used to ensure the global uniqueness of the tile’s rowkey. For
example, when storing GF images, we choose the product
number as the unique code.

A well-designed data table structure is also important.
In our design, the tile data table structure contains the infor-
mation necessary for tile queries and tile generation as well
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FIGURE 6. Tile acquisition based on S2 grid.

FIGURE 7. The rowkey structure of the tiles.

the information related to satellites, sensors, band data, affine
transformation parameters, and projection coordinate sys-
tems. According to the storage mechanism of HBase, data
of a column family will be stored together; thus, we use one
column family to store this information, which decreases the
target data query time. Therefore, we designed the data table
structure shown in Fig. 8.

The storage model described in this section can quickly
store and query remote sensing images. Most importantly,
this method includes two strategies that help eliminate the
two problems described in Section II.A. In Sections III.B
and III.C, we describe both strategies in detail, as well as the
process to obtain the partition code and period code shown
in Fig. 7.

B. BALANCED PLACEMENT STRATEGY FOR TILES
To address the problem of load imbalance among nodes,
we designed a BPS for tiles based on the characteristics of
the S2 code.

As shown in Fig. 9, when there are 4 HBase nodes the
image contains a total of 64 tiles; the red blocks indicate the
tiles of interest to the user. As described in Section II.A, when
we store the image in the Geo-First model, the tiles will be
written to the nodes in the order of the Hilbert ID. After region
splitting and transfer, the tiles will be distributed among the
nodes as shown in Fig. 9, which shows a large gap in the
number of tiles stored between nodes, and data skew occurs.
In addition, the user’s interest data are concentrated in one
region, which forces Node 3 to address all queries because
it maintains this region. Clearly, the load is seriously unbal-
anced, and the system cannot achieve optimal performance.

To solve this problem, we propose BPS. Our goal is to
enable the tiles to be distributed in the form shown in Fig. 10.
Unlike the Geo-First model, we subjectively control the node
in which the tile is stored. We perform a modulo operation
on the Hilbert ID of the tile and store the tile in the corre-
sponding numbered node based on the result of the operation.

For example, when there are n nodes, the nodes are sequen-
tially numbered (0, 1, 2, 3, . . . , n − 1). If the result of the
modulo operation of the Hilbert ID of a tile is equal to 1,
the tile will be stored in Node 1. This storage method ensures
that the storage loads on the nodes are similar. After storing
the tiles, by observing the distribution pattern of the tiles in
the cluster, we find that each node stores the same number of
tiles. Consequently, the tiles covered by the area of interest are
evenly stored across all the nodes, preventing data skew and
hotspotting. In addition, tiles with high spatial correlations in
each node are still stored in adjacent locations.

In this way, the load pressure is evenly distributed while
still ensuring query efficiency. Below, we introduce the
implementation method of BPS in detail.

In the HBase storage specification, data partitioning and
sorting are controlled by the rowkey. The structure of the
rowkey directly determines the data distribution mode in the
cluster. As shown in Fig. 7, the partition code is designed to
implement the tile distribution pattern shown in Fig. 10. The
partition code is used to control the region in which the tile is
stored. The ultimate goal is to eliminate the load imbalance
among nodes. To store tiles in specified nodes, we need to
partition the data table, and the number of partitions needs
to be consistent with the number of nodes. We need to let
each node maintain a region before tile storage to achieve an
initial node load balance. If there are 4 nodes, we number the
nodes in sequence (i.e., 0, 1, 2, 3). The rowkey ranges of these
4 regions will then be (0, 0|), (0|, 1|), (1|, 2|), and (2|, 3|), and
they will be maintained by the corresponding nodes. Based
on the lexicographic order of the data, the partition code will
store the tiles in the nodes that maintain the corresponding
partitions. For example, if the partition code is 0, then the
rowkey formed by the partition code will fall into the (0, 0|)
partition, and the tile will be stored in Node 0. Next, we intro-
duce the method used to obtain the partition code.

As shown in Fig. 11, the S2 code is used as the initial
code, and certain operations are performed on it to derive the
Hilbert ID of the tile. The Hilbert ID acquisition process is
divided into three steps.

First, the S2 code of the tile is obtained according to the
latitude and longitude of the tile and the S2 level. Second,
combined with the data structure of the S2 code we intro-
duced in Section II.B, the Hilbert code representing the plane
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FIGURE 8. The structure of the tile data table.

FIGURE 9. The distribution of tiles for the Geo-First Model.

position of the tile is obtained. Finally, we converted the
Hilbert code to a long integer, which is convenient for the
next operation. We record the obtained Hilbert ID as h and
the number of partitions as n; then, the partition code p can
be calculated by (1).

p = h mod n (1)

TABLE 2. Number of occurrences of each partition code under different
S2 levels.

Using the above method, we can calculate a partition code
for any tile. To prove that the numbers of tiles in the partitions
are similar, we used the above method to count the number of
occurrences of partition codes for all tiles in a GF1 image.
There are 4 nodes in the cluster, and the results are shown
in Table 2. The CV in Table 2 means the coefficient of varia-
tion. We counted the number of occurrences of each partition
code and obtained the standard deviation σ and mean µ. The
CV can be obtained by (2).

CV = σ/ |µ| (2)

We divided the data table into 4 partitions (0, 0|),
(0|, 1|), (1|, 2|), and (2|, 3|), which are maintained by

FIGURE 10. The distribution of tiles after using BPS.

the corresponding nodes. According to Table 2, at a given
S2 level, the partition codes counts are highly similar; thus,
the numbers of tiles in the partitions are also highly similar.
Therefore, we can conclude that the numbers of tiles main-
tained by different nodes are also similar.

The BPS strategy maximizes the overall performance of
the distributed database by storing the tiles uniformly, which
avoids data skew and hotspotting and balances the load
among nodes. After ensuring the balanced distribution of the
tiles among the nodes, the tiles within the nodes are still stored
together according to the spatial correlation, which improves
query efficiency.

C. A PERIODIC STORAGE STRATEGY FOR TILES (PSS)
To address the accumulation of time-series remote sensing
images, we designed a PSS for tiles.

As we described in Section 2) of Section II.A, when we
store the tiles according to the Geo-First model, as time-series
remote sensing images accumulate, tiles of the same image
become scattered and stored in additional data blocks. When
users need to store or query these images, the database must
interact with many data blocks, which greatly reduces the
query and storage performance of the data. Thus, we propose
PSS to change the storage model of the tiles in each node and
improve the data storage and query efficiency. PSS aggregates
the tiles by time period to store tiles of the same image in
fewer data blocks, reducing the time required to interact with
the data blocks and improving the efficiency of data storage
and queries. As shown in Fig. 12, the image we need to store
and query contains four areas: Areas A–D. StorageModel 1 is
the storagemodel of tiles without PSS, and StorageModel 2 is
the storage model of tiles with PSS.

As shown in Fig. 12, we added time period control to
Storage Model 2. We used 5 days as a time period and
stored the tiles in the corresponding time period based on
the image production time. We can select the year, month,
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FIGURE 11. The acquisition of the Hilbert ID.

FIGURE 12. Tile storage modes with and without using PSS.

tenth, week, etc., as a time period to meet specific storage
requirements. Under Storage Model 1, when we need to store
or query an image, we need to interact with 4 data blocks,
while Storage Model 2 needs to interact with only 1 data
block. In this way, tiles of the same image are stored closer
together and distributed over fewer data blocks, improving
the query and storage efficiency of the target data. Note that
for the tiles in each defined time period, we still store the
tiles according to their S2 codes, which ensures their spatial
correlation and improves query efficiency. Based on Fig. 12,
we designed the period code shown in Fig. 7 to control the
storagemodel for the tiles in a single node. Next, we introduce
the implementation of the period code in detail.

First, we choose a certain time of practical significance as
the initial time (St) for data management. Because the first
satellite was launched on October 4, 1957 [30], we set St to
00:00:00 on October 4, 1957. We refer to a certain time range
as a fixed period, called the basic time unit C. For the storage
and management of remote sensing images, we recommend
using a year, month, or week as the basic time unit. Finally,
the period code T of the tiles of the image is the difference
between the image acquisition time Pt and St divided by C.
The calculation method for the period code T is shown in (3).

T = b(Pt − St) /Cc (3)

We can choose a suitable period for summarizing the data
based on the collection density of the time-series remote sens-
ing images. For example, when data collection is frequent,
3 days is used as a basic time unit, while for sparse image
collection, 1 year is used as a basic time unit. PSS makes it
possible to reduce the number of data blocks that need to be
traversed and processed, thereby improving the efficiency of
tile query and storage.

IV. EXPERIMENTAL STUDY
In this section, we first introduce the experimental environ-
ment and experimental data. Then, we introduce the experi-
ment conducted to compare our method with three common
Geo-First models in terms of tile storage and query efficiency.
Finally, we introduce the experiments conducted to evaluate
BPS and PSS.

A. EXPERIMENTAL ENVIRONMENT AND DATA
This experiment uses an Inspur P8000 server infrastructure
with 4 virtualized nodes, 3 of which serve as data nodes to
provide HDFS services. The hardware and software parame-
ters of the experiment are shown in Table 3.

We selected a time series of GF1 images of the Erhai area as
the data source; there are 12 images produced from January to
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TABLE 3. The hardware and software parameters of the experiments.

December. We use the 11-level S2 grid as the benchmark to
cut the image. The tile size is 512 × 512 pixels, resulting
in 35,260 tiles. The total data size is approximately 70 GB.

B. EXPERIMENTS
To evaluate our method, we implemented experiment 1.
Then, to evaluate BPS and PSS, we implemented experiments
2 and 3. For each experiment, we introduce the experimental
process and analyse the results.

1) METHOD EVALUATION EXPERIMENT
a: EXPERIMENTAL METHOD
As introduced in the related work discussion, three space-
filling curve codes, i.e., the line-filling curve, Z-order curve,
and Hilbert curve, are often used to obtain geolocation codes,
as shown in Fig. 13.

FIGURE 13. Common space-filling curves: (a) line-filling curve, (b) Z-order
curve, and (c) Hilbert curve.

We construct three Geo-First models based on the three
curves. For the three Geo-First models, the rowkey structure
is designed as shown in Fig. 14.

FIGURE 14. The rowkey structure of the three Geo-First models.

The three codes are explained in Section III.A, and that
information is not repeated here. For the model based on
the line-filling curve, we choose latitude and longitude as
the geolocation code. For the model based on the Z-order
curve, we choose the Geohash code as the geolocation code.
Genhash is a practical application of the Z-order curve
that is widely used to index spatiotemporal data [31]–[35].

For the model based on the Hilbert curve, we choose the
Google S2 code as the geolocation code.

In this experiment, we compare our method with the three
Geo-First models in terms of storage and query efficiency for
different numbers of tiles.We use query time and storage time
as metrics for the comparison. In addition, to compare the
stability of query efficiency of the four models in different
query areas, we select 5 regions with aspect ratios of 16:1,
4:1, 1:1, 1:4, and 1:16 as experimental areas. The number of
tiles covering each region is 5,000. We use query time as a
metric for comparison.

b: EXPERIMENTAL RESULT ANALYSIS
Analysis of Tile Storage and Query Efficiency:

The storage time and query time of the tiles in the four
storage models are shown in Fig. 15(a) and (b).

FIGURE 15. The (a) storage and (b) query consumption of tiles in the four
storage models.

In terms of data storage efficiency, the three Geo-First
models perform similarly, as shown in Fig. 15(a), because
the tiles in the three models are stored sequentially in the
nodes according to the lexicographic order of the geoloca-
tion code. The steps for storing and transferring the tiles in
the cluster are almost identical, as reflected in Fig. 1; thus,
the storage efficiencies of the three models are also similar.
In Fig 15(b), in terms of data query efficiency, the Lonlat
model performs the worst, while the Geohash and Google
S2 models have similar query efficiencies. The spatial corre-
lation performance of the Z-order curve and the Hilbert curve
are similar, but both are better than the line-filling curve; thus,
the Geohash andGoogle S2models based on these two curves
are similar but better than the Lonlat model. Our method has
both high query and storage efficiency, as Fig. 15 shows.
In terms of data storage, the storage efficiency of our method
is approximately 2.6 times better than that of the three
Geo-First models. In terms of the data query, the query effi-
ciency of our method is approximately 3.3 times better than
that of the Lonlat model and approximately 2.5 times higher
than that of the Geohash model and the S2 model. Unlike
the three Geo-First models, our method uses BPS and PSS.
As introduced in Sections III.B and III.C, these strategies
improve the storage and query efficiency of tiles, and the
experimental results verified this hypothesis.
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Analysis of the Stability of Query Efficiency:
In query areas with different aspect ratios, the query effi-

ciencies of the four storage models are shown in Fig. 16.

FIGURE 16. The query time of the four storage models in the query area
with different aspect ratios.

As shown in Fig. 16, the stability of the query efficiency of
the Lonlat model based on the line-filling curve is the worst,
and it is closely related to the aspect ratio of the query area.
The other two Geo-First models and our proposed method
are barely affected by the aspect ratio of the query area. This
result occurs because the Lonlat model is implemented based
on the line-filling curve, which has poor spatial proximity.
Therefore, the query efficiency is greatly affected by the
aspect ratio of the query area. The other models are based on
the Z-order curve or the Hilbert curve, which produce good
spatial neighbours. Therefore, the query efficiency of the data
is not easily affected by the aspect ratio of the query area. Our
method has the highest query efficiency because it uses both
BPS and PSS, which promote tile query efficiency.

2) BPS EVALUATION EXPERIMENT
a: EXPERIMENTAL METHOD
This experiment evaluates the performance differences
between storage models with and without BPS in terms of
tile storage and query efficiency, node load, data skew, and
HBase’s ability to resist pressure. The rowkey structure of
the former is shown in Fig. 17 and that of the latter is shown
in Fig. 14.

FIGURE 17. The rowkey structure of the storage model with BPS.

We evaluated the performance of the two storage models
at different scales and used query time and storage time as
the metrics for comparison. We reflect the load of a node by
counting the number of requests received by that node. Data
skew is described based on the size of the storefiles stored
by the nodes. We define HBase’s resistance to pressure as
the maximum number of concurrent requests that HBase can
withstand, and we calculate the standard deviation RSD of the
number of requests among nodes.

b: ANALYSIS OF THE EXPERIMENTAL RESULTS
Tile Storage and Query Efficiency Analysis:

The storage and query times of the tiles in the two storage
models are shown in Fig. 18.

FIGURE 18. The (a) storage and (b) query times of tiles in the two storage
models.

As shown in Fig. 18(a) and (b), in terms of data query
and storage efficiency, the storage model using the BPS strat-
egy has higher efficiency. On average, after applying BPS,
the storage efficiency of the data increases by approximately
1.2 times, while the query efficiency approximately doubles.
As described in Section III.B, the BPS strategy changed the
distribution characteristics of the tiles and evenly distributed
the data storage and query pressure on each node, making
full use of the storage and computing resources of the cluster.
Therefore, the data storage and query efficiency is improved.
Analysis of Node Load:
The storage load pressure experienced by a node directly

determines the future data query load pressure. We counted
the number of requests received by each node with stored tiles
and calculated the standard deviation and range of the number
of node requests on this basis, as shown in Fig. 19.

FIGURE 19. Load differences between nodes in the two storage models:
(a) range of the number of requests; (b) standard deviation of the number
of requests.

From Fig. 19(a) and (b), after applying BPS, the standard
deviation and range of the number of requests among nodes
are smaller and more stable. Thus, BPS is effective and
helps to ensure that the load among nodes is balanced. Thus,
under the BPS strategy, the numbers of requests accepted by
the nodes in the cluster are similar, indicating that the load
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pressure on the nodes is largely balanced, and hotspotting
does not occur during data storage and querying. BPS trans-
fers the cluster load pressure from only a few nodes to all
nodes, which greatly improves the data query and storage
efficiency, as confirmed by Fig. 18.
Data Skew Analysis:
Storefiles are the basic form of data storage in HBase. The

data skew among nodes is reflected by the differences in the
sizes of the storefiles stored by the nodes. Therefore, we use
the standard deviation and range of the sizes of the storefiles
stored by the nodes to represent the data skew. The results are
visualized in Fig. 20.

FIGURE 20. The gaps between the sizes of storefiles stored by nodes in
the two storage models: (a) size range of the storefiles stored by nodes in
the two storage models; (b) standard deviation of storefile sizes stored by
nodes in the two storage models.

From Fig. 20(a) and (b), after using BPS, the range and
standard deviation of the size of the storefiles stored in each
node are smaller and more stable. The experimental results
show that BPS can effectively avoid large differences in the
amount of data stored among nodes and solve the problem
of data skew. This improvement is possible because BPS
subjectively controls the node in which the tile is stored
to ensure that the number of tiles stored by each node is
basically the same. In terms of impact, after using BPS,
the amount of data stored by each node is also basically
the same, which alleviates load imbalance and improves data
query and storage efficiency. These conclusions are verified
in Figs. 18 and 19.
Analysis of HBase’s Ability to Resist Pressure:
The maximum number of concurrent requests (Rmc) that

a database can receive is an important indicator of the
database’s ability to resist pressure. We use various methods
to query the tiles and design different numbers of query tiles
to determine the changes in the anti-stress performance of
the cluster before and after using BPS. We calculate the
standard deviation of the number of requests received by
the nodes (Rsd) and the state of the nodes. Finally, we found
the maximum number of concurrent requests that the two
storage models can withstand, as shown in Table 4. Fig. 21 is
based on Table 4.

According to Table 4, in the concurrent query sce-
nario, the storage model using BPS achieves superior query
performance. The number of requests received by the nodes

TABLE 4. Concurrent query performance and anti-stress performance in
the two storage models.

FIGURE 21. Query performance and anti-stress performance in the two
storage models: (a) standard deviation of the number of requests;
(b) maximum concurrent requests that HBase can receive.

remains the same after using BPS, which is in sharp con-
trast to the number of requests before using BPS, as shown
in Fig. 21(a). The maximum number of concurrent requests
(Rmc), that HBase can withstand before and after using
BPS are 60 and 250, respectively. Without BPS, when the
Rmc exceeds 60, nodes will successively die, and the entire
cluster will eventually become paralysed. When using BPS,
the Rmc reveals that the cluster can withstand approximately
4 times the number of requests as a cluster without BPS—
which occurs because each cluster has 4 nodes. BPS evenly
distributes the cluster load across each node, which improves
the cluster resistance. Therefore, under the same hardware
configuration, BPS effectively improves cluster query perfor-
mance and increases its pressure resistance.

3) PSS EVALUATION EXPERIMENT
a: EXPERIMENTAL METHOD
This experiment evaluates the performance differences in the
storage models with and without PSS from two aspects: tile
storage and query efficiency, and image storage and query
efficiency. The former’s rowkey structure is shown in Fig. 22,
and the latter’s rowkey structure is shown in Fig. 14.

VOLUME 8, 2020 74953



X. Wang et al.: Storage Method for Remote Sensing Images Based on Google S2

FIGURE 22. The rowkey structure of the storage model with PPS.

We evaluated the storage and query performance of the two
storage models in terms of the amount of data at different
scales. We use the storage and query times for comparison.
In addition, to evaluate the difference in efficiency of the two
storage models in practical applications, we compared the
storage and query times for a GF1 remote sensing image.

b: EXPERIMENTAL RESULT ANALYSIS
Analysis of the Tile Storage and Query Efficiency:

Fig. 23(a) and (b) shows the time consumption required for
storage and queries.

FIGURE 23. The (a) storage and (b) query consumption of tiles in the two
storage models.

According to Fig. 23(a) and (b), in terms of data query
and storage efficiency, the storage model using the PSS strat-
egy has higher efficiency. On average, after applying PSS,
the data storage efficiency increases by approximately 15 per-
cent, and the query efficiency increases by approximately
45 percent. As described in Section III.C, PSS causes changes
in the distribution patterns of the tiles within a node. Storing
and querying target tiles require interactions with fewer data
blocks, increasing the storage and query efficiency of the
tiles.
Analysis of the Storage and Query Efficiency of an Image:
Fig. 24 shows the store and query time consumption of

a GF1 remote sensing image using the two storage models.
The storage times for the image in the two storage models
are shown in Fig. 24(a), and Fig. 24 (b) shows the query
times for the image in the two storage models. Notably, in the
traditional image storage method, an image query needs to
obtain only a record in the database. To store remote sensing
images as tiles, we need to traverse all the tiles in the image
when querying and downloading the image. Therefore, the
query time of an image in this experiment is the total time
taken to traverse all the tiles in the image.

According to Fig. 24(a), under the scenario where the
entire GF1 image needs to be stored, the storage model using
PSS has higher storage efficiency because, after using PSS,

FIGURE 24. The (a) storage and (b) query consumption of a GF1 image in
the two storage models.

the number of data blocks that must be interacted with to
store the GF1 image is greatly reduced, which improves the
image storage efficiency, as hypothesized in Section III.C.
Compared with the storage model without PSS, the storage
time of the image can be reduced by approximately 45 s. Sim-
ilarly, according to Fig. 24(b), when querying all the tiles in
the GF1 image, the storage model using PSS has higher query
efficiency. Compared with the storage model without PSS,
the image query time is reduced by approximately 2 s. These
experimental results show that PSS effectively improves the
storage and query efficiency both for tiles and for an entire
image.

V. CONCLUSION
We propose a method for storing remote sensing images
based on HBase and Google S2. Unlike the Geo-First model,
our method considers both load imbalance among nodes and
the negative impact of accumulating time-series remote sens-
ing images on tile storage and query efficiency. To solve these
two problems, we designed two strategies: BPS and PSS.

First, we evaluated the differences in the tile storage and
query efficiency between our method and three common
Geo-First models. Then, we evaluated the specific effects
of BPS and PSS. The results show that our method has
the highest storage and query efficiency compared with the
other tested storage models. In terms of storage efficiency,
our approach requires approximately 2.6 times less space
than do the three Geo-First models, and its query efficiency
is approximately 3.3 greater that of the Lonlat model and
2.5 times that of the Geohash and S2models. Specifically, the
results show that BPS is effective at balancing the load among
nodes, eliminates data skew and hotspotting, and improves
the system’s ability to resist stress by approximately 4 times.
Overall, BPS increases the data storage and query efficiency
by approximately 1.2 and 1 times, respectively. PSS opti-
mizes the storage model of the tiles in each node, which
increases the storage efficiency of the data by approximately
15 percent and improves the query efficiency by approxi-
mately 45 percent. The storage and query efficiency for entire
images is also improved. Our approach reduces the query
time for a GF1 image by approximately 2 s and the storage
time by approximately 45 s.
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In future work, we plan to apply the proposed remote
sensing image storage method to other distributed databases.
Furthermore, our future research will focus on lost tile recon-
struction and mining fine-grained remote sensing data.
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