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ABSTRACT In 5G-and-beyond wireless communication systems, Network Function Virtualization (NFV)
has been widely acknowledged as an important network architecture solution to meet diverse service
requirements in various scenarios. However, with the increase of network functions, the introduction of NFV
may significantly increase the delay of traffic flows, which is much undesired, especially for Ultra Reliable
and Low Latency Communication (URLLC) service. Network Function Parallelism (NFP) architecture has
been recently proposed as an effective technique to address the bottleneck of NFV technology. NFP can
potentially improve the reliability and reduce the delay of service function chains (SFCs). In this paper,
we propose a learning based SFC deployment strategy under NFP architecture with aim to improve the
service reliability while reducing the end-to-end service delay. Specifically, service reliability is improved
by deploying back-up virtual network function (VNF) nodes, while the flow delay is reduced via parallel
network function processing. We formulate the VNF deployment as an integer-programming problem with
objective of minimizing the reserved computing and bandwidth resources, while guaranteeing the service
reliability and end-to-end delay. Considering the hardness and properties of the problem, we transform it as
a Markov Decision Process (MDP), and employ a reinforcement-learning algorithm to solve it. We conduct
simulations and the numerical results demonstrate that the proposed strategy can significantly improve the
service reliability and delay performance, which are crucial for URLLC service.

INDEX TERMS URLLC, NFV, NFP, parallel network service function chain.

I. INTRODUCTION
As one of the three major application scenarios of 5G mobile
communication networks, Ultra Reliable and Low Latency
Communication (URLLC) service is essential for a wide
range of delay-sensitive applications, such as autonomous
or assisted driving, augmented reality (AR), virtual reality
(VR), tactile Internet, and industrial control. Although net-
work service operators try to support such applications by
using existing mobile communication systems, they cannot
meet more stringent requirements, such as lower latency,
higher reliability and security, of emerging applications. The
requirements of some applications in terms of end-to-end
delay and reliability are even lower than 1ms and higher than
99.9% respectively [1]. For example, remote surgery requires
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extremely high sensitivity and accuracy for object manipu-
lation, and the round-trip data transport time is required to
be lower than 1ms. Autonomous vehicles need to coordinate
with each other to queue and overtake, and thus the reliability
of message exchange should be higher than 99.9%. In current
deployed LTE networks, the end-to-end delay is approxi-
mately 50-100ms, which is about an order of magnitude
higher than that of 5G [2]. Therefore, achieving low latency
and high reliability requires improvement from the network
architecture.

In recent years, Software Defined Network (SDN), Net-
work Function Virtualization (NFV), and Mobile Edge Com-
puting (MEC) have been recognized as three key architectural
technologies for 5G. NFV is considered as the main entity
of the 5G core network, in which the vendors implement
network functions in Virtual Network Function (VNF) com-
ponents, and VNFs are deployed on high-capacity servers
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or basic cloud architecture instead of dedicated hardware,
thereby reducing costs and improving system flexibility.
The provisioning of a service requires the execution of a
set of VNFs, which in turn form a virtual Service Func-
tion Chain (SFC). NFV eliminates the dependence on the
hardware platform, and can improve throughput and cost
efficiency by flexibly deploying network functions. Mean-
while, using mobile edge computing and deploying the
VNFs on the edge network can effectively reduce service
delay [3]. However, the latency requirements of URLLC are
still very challenging in SDN/NFV based mobile networks.
While research on parallel computing in computer program-
ming and high-performance computing has become relatively
mature, NF parallelism has just been recently proposed to
improve NFV performance [4]. This kind of SFC supporting
network function parallelism is called a parallel network
service function chain [4]. Therefore, the rational deployment
of parallel network function service chains in NFV can enable
multiple independent network functions of service requests to
work in parallel, thus shortening the effective length of SFC,
and significantly reducing the delay.

On the other hand, URLLC service requires not only
extremely low latency, but also high reliability. Under the
NFV-based network architecture, SFC service requests usu-
ally involve multiple VNFs. Therefore, end-to-end service
reliability is not only determined by a single node, but also
by all VNFs of the serving SFC. Any failure of one VNF
of the SFC will cause the service to be interrupted, resulting
in wasted resources and service interruptions. Thus, ensur-
ing end-to-end reliability of SFCs is critical for providing
URLLC services. Redundancy is an effective method to
improve reliability [5], [6]. When a VNF node malfunctions,
the carried traffic may be re-routed to the backup node to
achieve fault recovery by reserving backup VNF and band-
width resources. Intuitively, the more redundant backups,
the higher the service reliability. However, this mechanism
may increase the routing length and thus the end-to-end delay
accordingly. Therefore, it is imperative to develop efficient
SFC backup scheme by considering delay and reliability
simultaneously. Obviously, after introducing the network
function parallelization, redundant backup design is different
from that in traditional NFV based networks. When VNFs
executed in parallel are deployed on different physical hosts,
there are multiple parallel links. Thus, the failure of a phys-
ical host implementing VNFs may cause some links failure
instead of all. This may cause a chain reaction as many pack-
ets cannot be merged. Therefore more attention should be
paid to the reliability of the parallel service function chains.

At present, the research on reliability for URLLC service
mainly focuses on sequential SFCs. Through the deployment
of highly reliable nodes and redundant backups of SFCs,
the reliability can be effectively improved [5]–[9]. In [7],
in order to ensure the end-to-end reliability of SFC, a priority-
based deployment schemewas proposed. VNFswith different
priorities are deployed on hosts with different reliability.
To improve the overall reliability, VNFswith higher priorities

are deployed on physical hosts with higher reliability. The
authors of [8] proposed a joint optimization framework
called reconfigurable awareness and latency-limited service
chain for sequential SFC. This framework combines itera-
tive backup selection and routing processes, and allocates
resources to the network serving host as much as possible
to ensure high reliability and low latency. The authors of [5]
proposed an efficient backup method, CERA, by selecting
sufficient backup VNFs to meet the reliability requirement
of services. In view of the shortage of traditional redundant
backups, the authors of [6] proposed an efficient redundant
backup algorithm GREP, which can guarantee the reliabil-
ity of the service within the polynomial time complexity
and reduce the backup cost. The authors of [9] proposed
to model the procedure of determining the required number
of VNF backups as an incremental problem, and proposed
a heuristic algorithm to solve it. Unfortunately, all of the
aforementioned research work is mainly focused on sequen-
tial SFC, which is far from adequate for meeting the delay
and reliability requirement of URLLC service. Intuitively,
recently emerging Network Function Parallelism (NFP) [4]
can potentially improve both service reliability and delay
performance. In [10], we propose a new joint Two-Tier NF
Parallelization (TNP) framework, which can agilely and flex-
ibly organize parallel NF processing to greatly improve SFC
performance in terms of latency and throughput. But the
reliability aspect is not taken into account.

In this paper, with aim to minimize reserved resources
under the premise of meeting end-to-end reliability and delay
constraints under NFP architecture, we propose an intelligent
VNF backup node deployment strategy for parallel SFC.
Based on the properties of NFP, anMDPmodel is formulated,
and a backup scheme using Q-learning framework is pro-
posed. We evaluate the performance of our proposed backup
mechanism using simulation experiments. Numerical results
show that the proposed learning based backup algorithm can
achieve higher network throughput on the premise of meeting
the reliability and delay requirements, compared with ‘‘The
parallel SFC based Q-learning (QL-P)’’, ‘‘lowest reliability
first (LRF)’’, ‘‘minimum computing resource first (MCRF)’’,
‘‘Random backup’’ and ‘‘sequential SFC-based Q-learning
(QL-S)’’ algorithms. The remainder of the paper is orga-
nized as follows. Section II describes the system model.
In Section III, we describe the high-reliability SFC deploy-
ment model under NFP architecture and formulate the opti-
mal SFC deployment strategy problem. Next, we elaborate
the reinforcement learning algorithm for solving the problem
in Section IV. Section V presents numerical results as well as
discussions. Finally, Section VI concludes this paper.

II. SYSTEM MODEL
In NFP architecture [4], network functions could be executed
in parallel in NFV network architecture. Fig.1 shows a paral-
lel SFC model. Each service request can be accomplished by
a set of VNFs, and a virtual SFC composed of multiple VNFs
is formed in accordance with the execution order. When a
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FIGURE 1. Parallel SFC model.

service request reaches the ingress network element of the
core network, the corresponding SDN controller deploys cor-
responding VNFs on physical nodes and arrange the execu-
tion order for all VNFs of the SFC according to every VNF’s
requirements on computing resources, bandwidth resources,
storage resources etc.. A physical link in the network with
bandwidth resources is used for data packet transmission
and a physical node with computing and storage resources
performs corresponding VNF. In this paper, we assume that
every physical node is able to execute every VNF. The phys-
ical node will process, forward, copy, and merge the data
packets according to the instructions of the controller, and
finally transmit the data packets to the destination node.

We assume that each SFC in the network corresponds to
a service request. The network elements for all data packets
entering and exiting the network are known and fixed. The
VNFs required for all data packets execution of one request
are the same [4]. NFP compilers are responsible for the
parallelized deployment of each SFC, which is called parallel
SFC. Specifically, the NFP compiler first identifies the VNFs
that can be executed in parallel, and then constructs a parallel
service function structure. In the example of Fig. 1, the dashed
curve represents a deployed parallel SFC. AsVNF2 andVNF3
can be executed in parallel, after executing VNF1, the data
packets are copied into two copies and forwarded to traverse
different paths, and the merge is completed before VNF4 is
executed.

The physical network of Fig. 1 can be represented as an
undirected graph G (V ,E), where V and E represent the
physical nodes set and link set respectively. For any physical
link e ∈ E , the bandwidth and transmission delay are denoted
by Be > 0 and Te > 0 respectively. For physical node
v ∈ V , the computing resource is denoted by Cv > 0.
A set of VNFs deployed on any physical, etc.). Thus, each
node has a reliability level, and all the VNFs running on the
node inherits the reliability level of this node. Assume that
the failure probability of each node is independent of each
other, and only the failure of the physical node is considered
here, and the failure of other network components, such as
routers, switches, bridges, etc., is not considered. To improve

the reliability, someVNFswill be backed up.When a physical
node fails, the backup VNFs running on other physical nodes
are executed instead of the working VNFs deployed on the
failure node. The node where the backup VNF is deployed
should be connected to the predecessor and successor nodes
of the failure node. We call the connections between backup
node and the predecessor or successor node as backup links.
Apparently, the backup links and backup node should reserve
adequate bandwidth resources and computing resources for
the backup VNF.

Let the set of all service requests be S. After NFP com-
pilation of all parallel SFCs, the deployment scheme can
be represented as a directed subgraph Gi

(
Vi,Ei, ψ i

req

)
of

the physical network G (V ,E),where Vi = {v1i , . . . , v
|Fi|
i }

represents the set of physical nodes used to deploy the VNFs
of the parallel SFC i and Fi is the VNF set of parallel SFC i. Ei
and ψ i

req represent the set of links that link all the nodes and
the reliability requirement for the parallel SFC i, respectively.
For simplicity, we assume that the bandwidth requirement
of the SFC remains unchanged, which is equal to the initial
bandwidth bireq. Let c

i,j
req represent the computing resources

required for the backup VNF j ∈ Fi of the parallel SFC i.

III. PROBLEM FORMULATION
A. HIGH-RELIABILITY DEDICATED BACKUP MODELING
Assume that the required reliability for any SFC i isψ i

req (0 <
ψ i
req < 1), and the required bandwidth is bireq > 0. The VNF

set of the SFC i is Fi ⊆ F . The ingress and egress network
elements are σi and δi respectively. The reliability of any node
deploying VNF j,∀j ∈ Fi can be expressed as:

rj =
MTBFj

MTBFj +MTTRj
, (1)

where MTBFj and MTTRj represent the mean time between
failures and the mean time to repair the physical node deploy-
ing the VNF j, respectively. Obviously, 0 < rj < 1. It has
mentioned in [11] that to avoid load imbalances and improve
reliability, any non-parallel VNFs cannot be deployed on the
same node. Meanwhile, for a service to work properly, all
involved VNFs need to be executed appropriately. In other
words, all the nodes deploying all VNFs of the same SFC
should work properly.

Thus, for sequential SFCs, we assume that any two VNFs
cannot be deployed at the same physical node, and the service
reliability can be expressed as

9 =

F∏
j=1

rj. (2)

In the deployment of parallel SFC,multipleVNFs executed
in parallel may be deployed on the same physical node. If a
physical node with multiple VNFs fails, all VNFs deployed
on this node will fail accordingly. Thus, the reliability calcu-
lation is different from that for the traditional sequential SFC.
Specifically, the reliability of the parallel SFC is a product of
the reliability of all mapped physical nodes. Some reliability
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FIGURE 2. Illustration of the SFC parallel execution.

FIGURE 3. Dedicated backup model for parallel SFC.

calculation methods of parallel network functions are given
in references [7] and [10]. As shown in Fig.2, a parallel SFC
is divided into different subsystems according to different
nodes. Each subsystemmay deploy multiple VNFs. Let a par-
allel SFC consists of K (K ≥ 1)subsystems S̃ = {s1, . . . , sk},
and each subsystem sn consists of kn, (kn ≥ 1,

∑
kn =

|Fn|)VNFs. In general, the reliability of the parallel SFC can
be expressed as:

ψ =

K∏
n=1

Re(sn), (3)

where Re(sn), 0 < Re(sn) < 1 indicates the reliability of
the physical node where the subsystem n is located. Obvi-
ously, for the same request, K and F represent the number
of multiplication factors when calculating the reliability for
parallel and sequential VNF deployment respectively, and
K < F . It can be seen that when multiple VNFs deployed
on the same physical node n can be executed in parallel,
the reliability of the entire SFC can be improved to a certain
extent.

There are generally two types of backup models, namely
dedicated backup and shared backup [12]. In order to sup-
port highly reliable services, we adopt the dedicated backup
model. Fig. 3 shows a dedicated backup model with parallel
network functions. The backup VNFs VNFb1 and VNFb2 pro-
vide dedicated backup for working VNFs VNF1 and VNF2,
respectively. Meanwhile, the required backup links are added
between the backup nodes and their neighboring working
nodes. Unlike traditional sequential SFC backup, a VNF
mapping node may have multiple inbound and outbound
flows. Therefore, when considering the selection of node for
backup VNFs, it is necessary to choose the node with least
backup links to reduce the reservation of backup bandwidth
resources, and then lower the resource occupation ratio to the

greatest extent. We define binary 0-1 variables xvi,j(i ∈ S, j ∈
Fi, v ∈ V ) to represent the backup deployment of VNF j in
the SFC i, i.e.,

xvi,j =

{
1, VNF j of SFC i is deployed on node v
0, otherwise

. (4)

We define the binary 0-1 variable yei,j(i ∈ S, j ∈ Fi, e ∈
E) to represent the link occupied by VNF j in the SFC i,
which means that the link e is occupied to execute the packet
transmission which is served by the VNF j of SFC i.

yei,j =

{
1, link e occupied by VNF j of SFC i
0, otherwise

. (5)

The binary 0-1 variable hi,j(i ∈ S, j ∈ Fi) is introduced to
indicate whether the VNF j of the SFC i is backed up, and we
define

hi,j =

{
1, VNF j of SFC i is backed up
0, otherwise

. (6)

B. HIGH-RELIABILITY DEDICATED BACKUP MODELING
In our system, the highly reliable backup of services is
considered in a resource limited environment. Thus, when
selecting backup nodes, it is necessary to jointly consider
node computing resource, reliability, link resource and link
delay limits.

1) NODE CONSTRAINTS
As a failure of the physical nodewill cause all VNFs deployed
on the node to fail, all the nodes deploying working VNFs are
inappropriate to serve as backup nodes. Meanwhile, to save
resources, we only consider the case of a maximum of one
backup copy. The node constraints are given as follows:

xki,j = 0, ∀i ∈ S, ∀j ∈ Fi, ∀k ∈ Vi, (7)∑
k∈V

xki,j 6 1, ∀i ∈ S, ∀j ∈ Fi. (8)

When a VNF is deployed on a physical node, the physical
node needs to reserve computing resources for executing this
VNF. Assume the actual computing resource of node k is Ck ,
another node constraint is∑

i∈S

∑
j∈Fi

xki,j × c
i,j
req 6 Ck , ∀k ∈ V . (9)

To improve the reliability of the SFC with parallel network
functions, multiple backup VNFs may be backed up on the
same node, and two VNFs that cannot be executed in par-
allel cannot be backed up on the same node. We define the
0-1 variable zif ,f ′ . If and only if z

i
f ,f ′ = 1, the VNF f and f ′ of

SFC i can be executed in parallel, and not vice versa. Thus,
there’re one more node constrain as

xki,f +x
k
i,f ′ 6 1+zif ,f ′ , ∀i ∈ S, ∀f , f

′
∈ Fi, ∀k ∈ V . (10)

Assume there are n VNFs of an SFC are deployed on
the same physical node, of which m(m < n) VNFs are
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backed up VNFs. When the working node fails, the service
cannot be provisioned normally. In this case, the backup only
cause waste of resources rather than improving end-to-end
reliability. Thus, all VNFs deployed on the same working
node can only be backed up VNFs or working VNFs. For
two different network functions deployed on the same node,
the following constraint must be met:

xui,f ⊕ x
v
i,f ′ = 0, ∀i ∈ S, ∀f , f ′ ∈ Fi, ∀u, v ∈ V . (11)

2) TRAFFIC CONSTRAINTS
For ∀e ∈ E , the sum of the reserved bandwidth of all backup
links mapping to e cannot exceed the maximum bandwidth
provided. We thus have the following constraint:∑

i∈S

∑
j∈Fi

yei,j · b
i
req 6 Be, ∀e ∈ E . (12)

Due to the involvement of backup, the traffic of working
VNF nodes will no longer be conserved, and the traffic
conservation constraints cannot be used. We call the physi-
cal node where the previous VNF of current working VNF
resides as the predecessor node, and the physical node where
the next VNF of current working VNF resides as the suc-
cessor node. A backup VNF node in Gi may have multiple
predecessors and successors. Assume that the set of prede-
cessor nodes of the backup VNF j ∈ Fi of the SFC i is
V F
i,j(V

F
i,j ∈ Vi) and the set of successor nodes is V

L
i,j(V

L
i,j ∈ Vi).

If the predecessor (successor) of the backed up VNF j is
the ingress network element (egress network element), then
V F
i,j = σi, (V L

i,j = δi). In this case, these nodes should meet
the following constraints instead of the traffic conservation
constraints:∑

l.head=vm

yli,j = hi,j, ∀i ∈ S,∀j ∈ Fi,∀vm ∈ V F
i,j∑

l′.tail=vn

yl
′

i,j = hi,j, ∀i ∈ S,∀j ∈ Fi,∀vn ∈ V L
i,j. (13)

The node where the backup VNF is located on no longer
meets the traffic conservation, and the inflow and outflow
are as the same as the working VNF node. The inflow and
outflow of the backup node is |V L

i,j| and |V
F
i,j|, respectively.

Thus following constraints should be satisfied:

xvi,j ×
∑

l.head=v

yli,j = xvi,j × |V
L
i,j|, ∀i ∈ S, j ∈ Fi, ∀v ∈ V

xvi,j ×
∑

l.tail=v

yli,j = xvi,j × |V
F
i,j|, ∀i ∈ S, j ∈ Fi, ∀v ∈ V .

(14)

If the working link is a serial link, that is |V L
i,j| = |V

F
i,j| = 1,

then
∑

l.head=v
yli,j =

∑
l.tail=v

yli,j, which satisfies the traffic con-

servation. For the other nodesmeeting the traffic conservation
should satisfy the following constraint:∑
l.head=v

yli,j =
∑

l.tail=v

yli,j,

(∀i ∈ S, j ∈ Fi, ∀v ∈ V − V F
i,j − V

L
i,j, x

v
i,j = 0). (15)

FIGURE 4. Backup SFC update model.

3) RELIABILITY CONSTRAINTS
In sequential SFC backup, it is only necessary to consider
the constraint that the backup of different VNFs cannot be
placed on the same node, and thus the backup design for
reliability is easy. In parallel SFC backup, multiple VNFs
can be deployed on the same physical node to execute in
parallel. Meanwhile, multiple VNFs can also be divided into
multiple branches to execute concurrently and then the results
are merged. In this case, the backup design for reliability
becomes much more complicated. To address this difficulty,
we continuously update the parallel SFC structure by com-
bining working VNFs and backup VNFs into new VNFs.
As shown in Fig 4, several possible situations for backing up
VNFs in the NFP architecture are listed.

As mentioned above, at most one copy is backed up for
VNF j of SFC i. If only one backup VNF is deployed on the
physical node, the model can be illustrated in Fig 4 (a). The
reliability after backup is:

ψ2 = 1− (1− r2) · (1− rb2), (16)

where r2, rb2 represent the reliability of the physical node
whereVNF2 andVNFb2 are deployed, andψ2 is the reliability
of the combined new VNF. As shown in Fig 4(b), if several
backup VNFs deployed on one physical node are executed in
parallel, while the correspondingworkingVNFs are deployed
on several physical nodes, the reliability after backup is:

ψ2 = 1− (1− rb2) · (1−
n∏
i=1

r2−i). (17)

It is obvious that the reliability of the backed up VNFs is
higher than that of the same VNFs without backup. The
higher the reliability of the node with backup VNF is,
the greater the reliability of the backed up VNF is. Mean-
while, backup on the same physical node can reduce opera-
tion and maintenance costs.
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Next, we consider that n working VNFs are deployed on
one node as shown in Fig 4(c). In this case, all the backup
VNFs may be backed up on the same node or on different
physical nodes. Let nworking VNFs be backed up onm(m 6
n) physical nodes and the reliability of the updated VNF2 is:

ψ2 = 1− (1− r2) · (1−
m∏
i=1

rb2−i), (18)

where r2 and rb2−i represent the reliability of the physical
node on which the n VNFs are deployed and the reliability of
the ith backup node, respectively. Obviously, the reliability of
the updated VNF2 after backup is enhanced.
At last, a more complicated situation is considered as

shown in Fig 4(d). The working VNFs, VNF2−a and
VNF2−1 − VNF2−n, are executed in parallel on different
physical nodes, while the physical node with backup VNF
VNF2−a also backs up other VNFs. We assume that the
backup node of VNF2−a is as the same as the backup node
of VNF2−1. Let the event p′ indicate that the physical node,
where VNF2−1-VNF2−n are deployed, is working normally,
the event p′′ indicate that the physical node, where VNF2−a
are deployed, is working normally, and the event pi indicate
that the physical node, where VNFb2−i are deployed, is work-
ing normally. Then the reliability of the updated VNF VNF2
is

ψ2 = P(p′p′′)+ P(p̄′p′′) · P(p1 . . . pm)+ P(p′p̄′′) · P(p1)

+P(p̄′p̄′′) · P(p1 . . . pm)

= P(p′p′′)+ P(p̄′) · P(p1 . . . pm)+ P(p′p̄′′) · P(p1)

= ra · rb + (1− ra) ·
m∏
i=1

ri + ra · (1− rb) · (1− r1)

> ra · rb, (19)

where ra and rb represent the reliability of the physical node
on which the VNF2−a is deployed and on which the VNF2−1-
VNF2−n are deployed, respectively. In this case, the overall
reliability of the updated VNF decreases with the number of
backup hosts.

For each SFC i, there is a reliability requirement ψ i
req, and

the links deployed on the physical network have a reliability
ψi. The new reliability after backup can be denoted by ψ ′i .
Then the reliability needs to meet the constraints:

ψi
′ > ψ i

req, ψi
′ > ψi, ∀i ∈ S. (20)

4) DELAY CONSTRAINT
Dedicated redundant backup will not change the deployed
structure of the parallel SFC. When a node fails, the working
VNF will be transferred to the backup VNF node for execu-
tion. Assume that the execution time of the working VNF and
the corresponding backup VNF are the same, the change in
the delay for executing the backup VNF instead of the work-
ing VNF is only the change in the link delay. If the backup
VNF node is far from the working VNF node, it will cause
a sharp increase in link delay. Therefore, when considering

the selection of backup nodes, the change of link delay also
needs to be considered.

Different service function structures have different end-
to-end delay calculation methods. For description simplicity,
we define network function delay 1 as the delay required to
execute a VNF, including the link delay of routing to the VNF
node and the processing delay performed by the VNF, Then
we have

1 = max(EtL)+ t̄P +max(
←

t L
′

), (21)

where EtL is the maximum link delay from the previous VNF
mapping node to the current VNF mapping node; t̄P is the

processing time of current VNF;
←

t L
′

is the maximum link
delay from the current VNF mapping node to next VNF
mapping node. Thus, the actual requested network function
latency is:

ti =
∑
j∈Fi

[1i,j · hi,j +1i,j
′(1− hi,j)], ∀i ∈ S, (22)

where1i,j and1i,j
′ are the network function delay for backup

VNF j and working VNF j of SFC i, respectively. Meanwhile,
the average requested network function latency t̄i =

ti
|Fi|
,

∀i ∈ S, which will be used in the next Sec.
To quantify the delay incurred by the switching process

from working VNF node to the backup VNF node, we define
the constraint factor τ as the tolerable delay increment fac-
tor. Thus, to avoid the delay increased too much, the delay
constrain ti should satisfy

ti 6 τ ×
∑
j

1i,j
′, ∀i ∈ S, (23)

where
∑
j
1i,j
′ is the service delay of SFC i before backing

up.

C. PROBLEM FORMULATION
In the deployment of parallel SFC, there are a large number
of VNFs that can be executed in parallel, and the reliability is
supposed to be higher than that of traditional sequential SFC
deployment. However, there are still some low-reliability
physical nodes, which affect the reliability of the entire
link seriously. Fortunately, we could improve the reliability
of these nodes through backup. Considering parallel SFC
backup in a known network, our goal is to obtain an optimized
VNF backup scheme with the smallest resource occupation
under a specific reliability constraint. To back up a VNF
on a physical node, it is necessary to reserve computing
resources on the node as well as reserve bandwidth resources
for certain links. Different VNFs require different resources.
Thus, the resources reserved for different backup VNFs are
also different. Thus, the backup problem mentioned above
can be formulated as a 0-1 integer-programming problem.
As minimizing bandwidth and computing resources are con-
sidered simultaneously, we can formulate our problem as a
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multi-objective constrained optimization problem as

min(
∑
i∈S

∑
j∈Fi

∑
k∈V

xki,j × c
i,j
req,

∑
i∈S

∑
j∈Fi

∑
m∈E

yei,j × b
i
req). (24)

Note that we did not present the constraints in (23) for brevity.
A common method for solving multi-objective optimization
problems is to transform the multi-objective optimization
problem into a single-objective optimization problem through
mathematical transformations, e.g. the evaluation function
method. Then, an approximate optimal solution of the origi-
nal problem can be obtained by solving the single-objective
optimization problem. In this paper, we choose the weighted
summation of the two objective functions after normalization
as the evaluation function. The weighting factors are α and
β (α + β = 1). Then the objective function of the original
problem can be transformed into:

min (
α∑

k∈V
Ck
×

∑
i∈S

∑
j∈Fi

∑
k∈V

(xki,j × c
i,j
req)

+
β∑

e∈E
Be
×

∑
i∈S

∑
j∈Fi

∑
e∈E

(yei,j × b
i
req))

s.t. Constraints(6) ∼ (14), (19), (22). (25)

where (6) ∼ (10) are the node constraints, (11) ∼ (14) are the
traffic constraints, (19) is the reliability constraint, and (22) is
the delay constraint. Obviously, this is a typical 0-1 integer-
programming (0-1 IP) problem with multi-constraints, and
some traditional continuous region solutions are infeasible
for this problem as our 0-1 IP problem is discrete. Cur-
rently, there are three types of algorithms for solving such
problems: precise algorithms (i.e. dynamic programming,
recursive method, retrospective method, branch-and-bound
method, etc.), approximation algorithms (i.e. greedy algo-
rithm, Lagrange algorithm, etc.), and intelligent optimization
algorithms [13]. Normally, precise algorithms could achieve
the global optimal with surprisingly high computational com-
plexity, while intelligent optimization algorithm could only
achieve the suboptimal solution with high accuracy and small
time complexity. The performance of approximation algo-
rithm is between both. Meanwhile, if the static environ-
ment is considered, the common optimization solver can be
used to solve the problem. However, in practical network
environments, there are too many random attributes such as
link congestion. As the network environment is constantly
changing, we need to predictively obtain the backup strategy
quickly. Thus, the traditional method is no longer applicable.
Fortunately, Reinforcement learning (RL) algorithms can be
exploited to make sequential decisions towards the long-term
objective by continuously interacting with the environment.

IV. Q-LEARNING BASED VNF BACKUP ALGORITHM
We consider to back up some VNFs of an existing request
in a network with limited resources. As the request arrives
in sequential order, it is unnecessary to consider all requests
simultaneously. Thus, we will back up each request one by

one in this paper. In this case, the problem is transformed
into a cost minimization problem about how to back up a
parallel SFC with least bandwidth and computing resource
occupation under some constraints in a dynamic network
environment. RL is especially appropriate for solving deci-
sion problems in dynamic environments. This inspires us to
use Q-learning algorithm to solve the problem of (24), and
obtain a backup scheme for parallel SFC that meets reliability
requirement.

A. Q-LEARNING BASED HIGH RELIABILITY BACKUP
ALGORITHM
The backup procedure can be modeled as a Markov Deci-
sion Process (MDP), in which the transition probability is
unknown. Thus, we intend to adopt Q-learning algorithm to
solve our problem under the MDP framework. Q-Learning
(QL) is a representative algorithm for reinforcement learning.
It does not need to know the environment model and can be
used for continuous tasks. The backup decisionmaker ismod-
eled as an agent to choose the best backup candidate nodes
for each service, thereby improving the reliability. When a
node is selected or cancelled, the reliability of the service
changes and the resource status in the network also changes.
Therefore, the MDP can be represented asM = {S,A,P,R},
where S represents state, A represents action, P denotes the
transition probability, which is unknown in our system, and R
represents the reward. The details of the model are elaborated
as follows.
Agent: The controller for making SFC deployment deci-

sions, such as the Management and Orchestration (MANO)
entity of NFV [14].
State S: We use the backup node selection status of each

request, reliability of each VNF, and the network status
to represent the system state. Let S be the entire possible
state space, and s(t) ∈ S is the state at time t . Let there
be V physical nodes and E links in the network. If the
deployed parallel SFC includes F VNFs, we have s(t) =
[(j, k), θ1, θ2, . . . , θF , c1, c2, . . . , cN , b1, b2, . . . , bE ], where
(j, k), 1 6 j 6 F, 1 6 k 6 N means the backup status
at time. If (j, k) = 1, it means the that the VNF j is backed
up in the node k , otherwise, (j, k) = 0. θi is the reliability
of the working VNF. ci(ci > 0) means the available idle
computing resource and bi(bi > 0) means the available
bandwidth resource of link i.
Action A: We define the selection of VNF backup nodes

as the action. When a VNF needs to be backed up, a certain
node in the network is selected as the backup node according
to certain constraints. Thus, we define the action as a(t) ∈ A,
a(t) = (a1, . . . , ai, . . . aN ), ai ∈ {0, 1}, where ai = 1 means
that the physical node i is selected as the backup node at
time t , otherwise, ai = 0 means that the physical node i is
abandoned as the backup node at time t .
Transition Probability P: Let P = {pas,s′ |s, s

′
∈ S, a ∈

A} represent the set of transition probabilities of the states.
pas,s′ = P[s(t + 1) = s|s(t) = s′, a(t) = a] means that
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the transition probability of performing action a from current
state s to next state s′.
Reward R:When action a(t) is performed, the correspond-

ing reward will be obtained. Many factors should be taken
into consideration when defining the reward function. First,
the state s′(t) after taken action a(t) should satisfy all the
constraints of (6) ∼ (14), (19), (22). Thus we define R(s, a)
as (25) if all constraints are satisfied and otherwise,R(s, a) =
−φ, where φ is a penalty factor, which is a sufficiently
large positive real number. As our performance is jointly
determined by reliability, delay, and resource occupation rate,
we define the reward function as

R(s, a) = Rre(s, a)× Rd (s, a)× Rce(s, a), (26)

where Rre(s, a) is the reliability reward function at state
s(t) = [(j, k), θ1, θ2, . . . , θF , c1, c2, . . . , cN , b1, b2, . . . , bE ].
Rre(s, a) is defined as

Rre(s, a) =

{
1, if ψ > ψreq

ψ, otherwise
, (27)

where ψ is the service reliability after backup. Rd (s, a) is the
delay reward and is defined as [15]:

Rd (s, a) =


0, t̄ > τ × η

τ

τ − 1
−

t̄
η(τ − 1)

, τ × η > t̄ > η

1, t̄ < η

, (28)

where η is the average SFC mapping delay, and τ is the delay
tolerant factor. If the delay of the backup link is increased too
much to satisfy the URLLC requirement, it will be an invalid
backup.
Rce(s, a) is the resource occupation reward function and is

defined as

Rce(s, a) = χ ×

∑
ci

Ctotal
+ ω ×

∑
bi

Btotal
, (29)

where Ctotal is the sum of all computing resources of the
physical nodes, and Btotal is the sum of bandwidth resources
of the physical link. The coefficients χ and ω represent
weight values, satisfying χ + ω = 1. At state s, considering
the backup relationship (j, k), the VNF is unnecessary to
backup if the backup node is the same as the original working
node. Meanwhile, to occupy as few resources as possible,
the value of the reward function should be greater if the
occupied resource is less.

B. THE Q-LEARNING BASED HIGH RELIABILITY
BACKUP ALGORITHM
The Q-learning algorithm is a value-iterative algorithm,
which has nothing to do with the environment model, and
thus it does not depend on the state transition matrix. The
state-action matrix Q is the key to the Q-learning algorithm.
At any time t , the corresponding action a is chosen based on
the state-action matrix Q, and it should satisfy

Q(s, a) = max
a
{Q(s, a)}, (30)

where Q(s, a) is the Q value in the state-action matrix under
action a and state s.
When a specific action is performed, the system enters the

next state, obtains a feedback value at the same time, and
updatesQ value iteratively according to the following training
function

Q(s, a) = Q(s, a)+ α[r + γ max
a′

Q(s′, a′)− Q(s, a)], (31)

where s′ and a′ represent the next state and next action respec-
tively. α > 0 is the learning rate, and γ is the discount factor.
It can be seen that the larger the learning rate α, the less the
effect of retaining from the previous training. The larger the
discount factor γ , the greater the role of subsequent decisions.
After that, the Agent performs a loop operation on the next
state until the optimal value Q∗(s, a) in the Q-value matrix
Q(s, a) satisfies the Bellman equation:

Q∗(s, a) = E[r +maxQ∗(s′, a′)]. (32)

Compared with traditional statistic backup solutions, our pro-
posed Q-Learning based high reliability backup algorithm is
more flexible as it updates states through iterative interactions
with the network.When for solving problems such as network
congestion, busy computing resources, and node outages
occur in the network, the Q-learning algorithm can update the
backup scheme in real time according to the current network
status and make dynamic adjustments. The Q-Learning based
high reliability backup algorithm is illustrated as algorithm 1.

Algorithm 1 : Q-Learning Based High Reliability Backup
Algorithm
1: Step 1: Initialization
2: InitializeQ = 0, state value s ∈ S, action a ∈ A, learning

rate α, and discount factor γ .
3: Obtain current reward r(s, a).
4: Step 2: Chose and execute action
5: Chose an action based on ε − greedy algorithm.
6: If the chosen action a′ ∈ A, obtain current reward r(s, a)

and observe next state s′.
7: Step 3: Update Q value
8: Update Q value based onQ(s, a)← Q(s, a)+α[r(s, a)+
γ max

a′
Q(s′, a′)− Q(s, a)].

9: Step 4: Update state
10: Update state as s = s′, repeat Step 2.

V. SIMULATION AND RESULT ANALYSIS
Based on the analyzing result of [5]–[7], [9] that the service
reliability can be improved by backing up related virtual net-
work functions (VNFs), in this paper we develop a Q-learning
based algorithm (QL-P) for parallel SFC to obtain the opti-
mized VNF backup strategy efficiently. And then, we verify
the advantage of our proposed QL-P algorithm by comparing
the performance of different VNF backup strategies obtained
by different algorithms. To the best of our knowledge, there
is no existing known algorithm for the parallel SFC backup
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FIGURE 5. Flowchart of LRF, MCRF and Random algorithms.

problem can be used as comparison reference. Thus, we use
three heuristic based backup strategies for performance eval-
uation of our proposed algorithm, namely Lowest Reliability
First (LRF), Minimum Computing Resource First (MCRF),
and Random algorithms. To highlight the advantage of the
parallel SFC, the Q-learning based algorithm is realized for
both parallel SFC and sequential SFC back up. Thus, five
algorithms are compared to verify the performance of our
proposed algorithm in this section, which are parallel SFC
based Q-learning (QL-P) algorithm, reliability-first algo-
rithm, computing-resource-first algorithm, random backup,
and sequential SFC-based Q-learning (QL-S).

As shown in Fig. 5, the LRF algorithm starts from exam-
ining the reliability of the SFC. When the reliability of the
SFC does not meet the conditions, the most reliable node of
the physical node is backed up to the less reliable VNF in the
SFC under the constraint conditions. The MCRF algorithm
considers the limited computing resources. When the request
does not meet the reliability requirements, the node with the
most abundant computing resources is selected as the backup
node. TheRandom algorithm only considers reliability.When
the reliability of the request does not meet the conditions, the
backup node is randomly selected under the constraint of the
backup node. To evaluate the performance of the proposed
QL-P algorithm, we assume that one VNF is required to
be backed up to meet the service reliability requirement.
However, the QL-P algorithm is also feasible for the situation
that more than one VNFs backup is required.

A. SIMULATION ENVIRONMENT AND
PARAMETERS SETTING
The network topology considered in this paper has 14 nodes,
21 links, and the computing resources are counted with
the number of processor cores of the physical nodes. The
computing resources of each node are any number between
4 to 64. The bandwidth of each link is any between 80Mbps
to 100Mbps [16], [17], and the reliability of each node is
between 0.9999 to 0.99999 [17]. Commonly, the number of
VNFs for each service request is 4, and the deployment of
backupVNF requires The computing resources are uniformly

TABLE 1. Simulation parameters.

FIGURE 6. Reward comparison with increasing backed up request.

distributed in [1, 5]. The latency tolerance factor τ due to
backups is 2. The learning rate α = 0.5, and the discount
factor γ = 0.8. All parameters are illustrated as table 1.
The following performance metrics are used to evaluate the
performance of our proposed backup scheme.

1) Delay: The average network function execution delay
Ted .

2) Reliability: The reliability of the entire service after
backup ψi′.

3) Computing occupation ratio: All computing resources
requested for backup reservation Ratioc, Ratioc =∑
i∈S

∑
j∈Fi

∑
k∈V

xki,j × ci,j.

4) bandwidth occupation ratio: All bandwidth resources
requested for backup reservation Ratiob, Ratiob =∑
i∈S

∑
j∈Fi

∑
m∈E

ymi,j × bi.

B. NUMERICAL RESULTS AND DISCUSSIONS
1) REWARD
Fig. 6 shows the cumulative reward function as a function of
the number of requests. We can observe that as the number
of requests continues to increase, the value of the reward
function continues increasing and eventually converges to a
fixed value. In the same situation, the Q function is the highest
reward function, while the stochastic algorithm has the lowest
reward function. The definition of the reward function in
the Q-learning algorithm is related to the three aspects of
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reliability, resource occupancy, and average execution net-
work function delay. The LRF algorithm backup method
considers physical nodes with high reliability nodes to ensure
high reliability. The value of the reward function of LRF is
higher than that of Random andMCRF. TheMCRF algorithm
considers selecting a physical node with more resources as a
backup node to ensure less resource occupation. When the
Random algorithm is used, the backup node is randomly
selected without considering reliability, resource occupation,
and delay, so the reward value obtained is relatively low.
Meanwhile, when the sequential SFC adopts the Q-learning
algorithm under the same circumstances, the return obtained
is lower than the return value of the parallel SFC. It is because
the introduction of network function parallelism makes fewer
physical nodes mapped.

2) RELIABILITY
The reliability comparison among all the algorithms is illus-
trated as Fig. 7. We can see that the reliability decreases
with the number of backed up requests. The is due to the
limited physical resources in the underlying network, as the
number of backed up service requests increases, the sys-
tem cannot provide sufficient resources to meet the backup
requirement for all service requests. When system resources
are sufficient, all algorithms can meet the reliability require-
ments of the service. According to the definition of the
reward function, the reward value equals 1 if the reliability
constraint is satisfied. In this case, as the Q-learning based
algorithm comprehensively considers the trade-offs between
reliability, resource occupation and delay, it is less reliable
than other algorithms. However, in the resource limited sce-
nario, Q-learning considers the balance between resource
occupation and reliability, so it can satisfy more requests.
Meanwhile, if the reliability does not meet the reliability
requirements, the Q-learning based algorithm can obtain the
maximum reliability compared to the other algorithms. The
QL-S algorithm is dedicated for sequential SFC, so differ-
ent VNFs have to be deployed on different physical nodes.
However, as parallel network functions in the parallel SFC
can be deployed and executed on the same physical node,

FIGURE 7. Reliability comparison with increasing backed up request.

the number of involved physical nodes for an SFC in the
parallel execution way is less than that for the same SFC
in the sequential execution way. Based on the calculation
of reliability, it can be known that the more physical nodes
mapped by the VNF, the lower the reliability, so that the more
resources need to be backed up to achieve the same reliability.
Obviously, the Q-learning algorithm is appropriate to meet
the reliability requirements of URLLC scenarios in 5G, and
it can obtain higher reliability when resources are insufficient.

3) RESOURCE OCCUPANCY
Fig. 8 shows a comparison of bandwidth and comput-
ing resource occupancy. As the number of SFC requests
increases, the resources occupied by VNF backups grad-
ually increase accordingly. When the underlying physical
resources cannot provide backups service, the resource occu-
pation tends to stabilizing. The Q-learning based algorithm
considers resource occupation as a part of the reward func-
tion, and thus the Q-learning method uses the least computing
and bandwidth resources. Fig. 8 (a) shows the comparison
of bandwidth resource occupancy rate for different algo-
rithms. Using the Q-learning based algorithm can reduce
the bandwidth occupancy rate for both parallel SFC and
sequential SFC backup, and the difference of bandwidth

FIGURE 8. Resource occupancy comparison.
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FIGURE 9. The average network function execution delay comparison.

resources occupation is very little for the sequential SFCs
and parallel SFCs. The MCRF algorithm, LRF algorithm,
and Random algorithm select backup nodes with the most
computing resources, maximum reliability, and randomness
at the time of backup. They do not consider the limitations
of bandwidth resources. Therefore, these three algorithms
occupy more bandwidth than the Q-learning based algorithm.
The comparison of computing resource occupation rate is
shown as Fig. 8(b). We can observe that compared with other
algorithms, the Q-Learning based algorithm occupies less
computing resources, but the QL-S algorithm occupies more
computing resources. This is because that the sequential SFCs
require more VNFs to be backed up for the same reliability,
which may result in more computing resources occupied.

It is obvious that the Q-Learning based algorithm can
occupy the least bandwidth and computing resources, obtain
the greatest reliability improvement, and effectively uti-
lize the remaining resources in the actual physical network
topology.

4) THE AVERAGE EXECUTION TIME OF NETWORK FUNCTION
The average execution time of network function for different
algorithms is compared in Fig. 9. We can observe that in
the same environment, the QL-P algorithm can reduce the
average execution time by 20% compared with the LRF,
MCRF, and Random algorithms. The average execution time
of the QL-S algorithm is 12.5% lower than that of the QL-P
algorithm. The average execution time of the QL-P algorithm
and the QL-S algorithm is relatively stable. The average
execution time is a part of the value of the reward func-
tion. When selecting a backup node, the node with the least
delay will be considered as the deployment node. As the
parallel network function needs to consider the parallel link
during the backup, so the average execution is larger than the
sequential network function. For LRF, MCRF and Random
algorithms, when the number of the SFC requests is small,
which means that resources are sufficient to provide backup
service, the average execution time is stable. As the number of
SFC requests to be backed up increases, the average execution

time decreases due to the resources are insufficient to provide
backup service. It is because that based on the definition
of average delay, when no backup is selected for a VNF,
the average delay is equal to the average delay of the working
VNF. Thus, the backups cannot be completed when there
are insufficient resources and the average delay is reduced.
Obviously, the QL-P algorithm can obtain a smaller average
delay, and when a network function is migrated to a backup
physical node for execution, the end-to-end delay difference
is smaller.

VI. CONCLUSION
In this paper, we have addressed the requirements of
low-latency and high-reliability scenarios for 5G networks.
We have considered the issue of improving reliable backup
of parallel SFC, and proposed a Q-learning-based backup
mechanism to obtain the optimal backup solutions in
resource-constrained networks. To satisfy the high reliability
requirement, the backup deployment of parallel SFC is firstly
considered by jointly considering the impact of reliability
improvement, resource consumption, as well as the impact of
additional delays, brought by selecting a VNF backup node.
Simulation experiments show that the algorithm can meet the
reliability requirements of low-latency and high-reliability
scenarios with the lowest resource consumption, and con-
siders the problem of increased delay caused by backup.
Compared with traditional algorithms, Q-learning algorithm
has great advantages and is suitable for the backup problem
of parallel SFC.
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