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ABSTRACT The uncertain disturbance in the system signals can lead to biased state estimates and, in turn,
can lead to deterioration in the performance of state estimation for a nonlinear dynamic system. In order to
address these issues, this paper develops an adaptive fitting H-infinity filter (AFHF) based moving-window
by combining the novel noise estimator with fitting H-infinity filtering. Specifically speaking, the novel
noise estimator is designed to estimate the process and measurement noise characteristics during a fixed
window epoch on the basic of the moving-window technique. Subsequently, the noise characteristics at each
window epoch is regarded as the input noise means and covariances of fitting H-infinity filtering at next
epoch. Further, the attenuation level is adaptively calculated at each time step to change the structure of
AFHF. The Monte-Carlo simulations and INS/GPS integrated navigation experiments are set up for the sake
of verifying the superior performance of the proposed filtering with uncertain disturbances.

INDEX TERMS Robust estimation, adaptive fitting H-infinity filter, uncertain system disturbance, the noise
estimator.

I. INTRODUCTION
State estimation for the dynamic system is an important
research field. Its applications include integrated navigation,
fault diagnosis, target tracking, signal processing, informa-
tion fusion and so on [1]–[3]. Since almost all actual sys-
tems inherently involve nonlinearity of one way or another,
nonlinear filtering has received considerable attention to
estimating a nonlinear system via measurements [4]–[7].
The commonly used nonlinear Kalman-based filters, which
are the major research area of state estimation, include the
extended Kalman filter (EKF) [8]–[10], unscented Kalman
filter (UKF) [9], cubature Kalman filter (CKF) [11]–[13] and
particle filter (PF) [14], [15].

EKF is a typical example based on Taylor analytical
approximation [8]–[10]. It uses Taylor approximation as the
original nonlinear function [8], which is easy to implement.
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However, the use of Taylor approximation causes a model
error, making it unsuitable for the cases that the system
is not derivable or the linearizable degree of systems is
strong [9], [10]. Further, since it is using an approximation
at one point to replace the entire random distribution area
that ignores the randomness of the state, which affects the
filtering performance. In addition, EKF also needs to calcu-
late the complex Jacobian matrix, which is a cumbersome
process. Given as above, various extensions of EKF, such
as second-order extended Kalman filter [16] and high-gain
extended Kalman filter [17], were studied. However, these
methods improve the approximate performance of EKF at
the expense of increased computational complexity. Both
UKF and CKF are based on a numerical approximation to
improve EKF with the third-order accuracy for state estima-
tion [18], and also eliminate the cumbersome calculation of
Jacobian matrices, leading to a much easier implementation.
However, they are unable to deal with non-Gaussian noise.
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Based on the Monte-Carlo method, PF approximates the
posterior distribution utilizing a cluster of random samples
to settle a nonlinear system estimation with non-Gaussian
noise. However, its performance depends on the number of
randomly selected particles, which is the main barrier to
implement PF in practical applications [1]. Further, PF also
suffers from the problem of particle degeneracy [14]. Its
computational process is much more complicated than that of
the above methods [15]. In general, the above filters are based
on Bayesian estimation, requiring accurate system models
with exact noise statistics.

Robust filtering methods were reported to solve the perfor-
mance degradation involved in nonlinear Kalman-based fil-
ters [18], [19]. The H∞ filter as a kind of robust filter is based
on H∞ norm as the performance criterion for a variety of
system uncertainties [19]–[21]. Different fromKalman-based
filters which minimize the variance of estimation errors,
the H∞ filter minimizes the effect of the worst-case distur-
bances on system estimation [21]. The modeling errors or
the system uncertainties are treated as unknown but bounded
noises, which is more flexible than the prior condition of
noise statistics in Kalman-based filters. However, the H∞
filter is designed for linear systems, and then unsuitable for
nonlinear systems [22].

The extended H∞ Kalman filter (EHKF) [23] can han-
dle nonlinear systems with unknown-but-bounded noise,
however, it suffers from the same disadvantages as EKF.
To overcome its problems, unscented transformation,
spherical-radial cubature rules and fitting transformation [24]
are applied to the structure of EHKF or conventional
H∞ filter, leading to the unscented H∞ Kalman filter
(UHKF) [25], [26], cubature H∞Kalman filter (CHKF) [27]
and fitting H∞ filter (FHF) [28].

FHF [28] in the previous paper of authors is a
derivative-free nonlinear H∞ filter based on numerical
approximation with a low computational cost. It adopts
fitting transformation [24], [28] to approximate the non-
linear system model by minimizing the errors between the
nonlinear function and the multivariate fitting function and
then applies the structure of the conventional H∞ filter to
estimate the system state. The use of fitting transforma-
tion not only avoids complex computation but also pro-
vides a numerical coefficient matrix, especially when a
nonlinear function lacks an analytical expression [28]. It is
also robust to uncertain system disturbance since the use
of the upper bound compared with Kalman-based filters.
Nevertheless, the estimated bias at each step time can only
be partially compensated by the upper bound especially
when the mean or covariance of uncertain noise is greatly
biased.

In engineering practice, it is common that the system
involves errors or uncertainties due to various sources such
as sensor manufacturing errors, sensor failures or mechanical
disturbances, and various environmental factors such as air
resistance, weather conditions and radiation [29]. Further,

the process model is only an approximation to a physical
system, and thus it inevitably involves uncertain error [29].
Due to the existence of these uncertain disturbances, the esti-
mated precision of traditional filtering methods is relatively
poor or even divergent [30], [31]. For solving the above
problems, the adaptive windowing approach is presented to
estimate system noise statistics [30]. It applies the inno-
vation or residual item about historical epochs to evaluate
the system noise characteristics at the present epoch. It can
calculate the noise statistics online and is easy to implement.
Wang et al. developed a novel H∞ filter based on the adap-
tive windowing to handle the unknown prior information of
noise statistics for improving the estimation precision [31].
However, the adaptive windowing method combined with
the H∞ filter is only used to improve the estimation accu-
racy of uncertain linear systems. Meanwhile, the fixed upper
bound of H-infinity based filtering that determines the fil-
tering robustness is not always the optimal value. Thus,
filtering robustness can be reduced or even lead to filter-
ing interrupt when it is applied to the practical dynamic
systems.

In order to solve the above challenges of nonlinear robust
estimation, we propose a novel adaptive fitting H-infinity fil-
ter (AFHF) based on the moving-window technique. Specifi-
cally, the main contributions of this paper are mainly state as
follows.

1) The novel nonlinear noise estimator is derived under
the concept of the moving window technique and FHF.
By estimating the process andmeasurement noise char-
acteristics during a fixed window epoch, it provides the
noise means and covariances for state estimation with
uncertain system disturbances.

2) For a nonlinear system with an uncertain disturbance,
AFHF is proposed by combining the novel noise esti-
mator with FHF algorithm, which is to resist the influ-
ence due to noise uncertainties involved in a dynamic
system. Primarily, the process and measurement noise
characteristics at a window epoch provided by the noise
estimator are regarded as the input noise means and
covariances of FHF at the next time. With the com-
pensation of the noise signals by the noise estimator,
the precision of state estimation can be effectively
improved for nonlinear dynamic systems with uncer-
tain disturbance. Moreover, the local attenuation level
γk in AFHF is adaptively calculated at each time step
to change the structure of AFHF. This time-varying
factor is more flexible than the conventional constant
mode. It is used to select the suboptimal upper bound of
estimation errors during [0, k−1]. Thus, it is eventually
to improve the filtering flexibility and robustness in the
estimation process.

Finally, experiments and comparative analyses are conducted
to demonstrate the superior precision, robustness and flex-
ibility of the proposed AFHF for nonlinear systems with
uncertain disturbances.
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II. PRELIMINARIES
A. FITTING H-INFINITY FILTER
Consider the discrete-time nonlinear dynamic state-space
model [25] as {

xk+1 = f (xk )+ wk
zk = h(xk )+ vk

(1)

where xk ∈ Rn is the n-dimensional state; zk ∈ Rm is the
m-dimensional measurement; wk is the process noise with
non-zero mean and unknown or deterministic covariance Q
as well as bounded energy, i.e.,

∑
∞

k=0w
T
k wk < ∞; vk is

the measurement noise with non-zero mean and unknown
or deterministic covariance R, as well as bounded energy,
i.e.,

∑
∞

k=0v
T
k vk < ∞; wk and vk are uncorrelated with each

other.
Define ||f ||22 = f T f or ||f ||2S = f TSf , ∀f ∈ Rn,

where S is a symmetric and positive definite matrix. The
standard transfer operator (the cost function) of H∞ norm
is represented by

Jk = sup
x0,w,v∈l2

∑ k
j=0||xj − x̂j||

2
2

||x0 − x̂0||2P−10
+
∑ k

j=0(||wj||
2
Q−1 + ||vj||

2
R−1)

< γ 2
o (2)

where γo > 0 is the attenuation level specified by users
and P0 is the covariance of the state estimation error at the
initial time. The operator || · || is the Euclidean norm in the
n-dimensional space Rn.

In the numerator of (2), xj − x̂j is the estimation error of
state vector at time j and

∑ k
j=0||xj− x̂j||

2
2 represents the total

energy of estimation errors from the initial time to the time
k . In the denominator,

∑ k
j=0(||wj||

2
Q−1 + ||vj||

2
R−1 ) is used

to describe the total energy of state and measurement noises
from the initial time to the time k and ||x0 − x̂0||2P−10

is the

energy of setting error at the initial time, where the vector
wj and vj are disturbances with unknown statistics. At step
time k , function cost Jk owns the upper bound γ 2

o .
The procedure of FHF includes the following steps:
Step1. Update the state and measurement parameters by

fitting transformation as shown in Algorithm 1.
ˆ̄xk = [x̂Tk 1]T

8̄k ← FT(f (·), ˆ̄xk ,Pk )
H̄k ← FT(h(·), ˆ̄xk ,Pk )

(3)

where f (·) and h(·) are the state and measurement func-
tions; 8̄k and H̄k are the approximate matrices obtained in
Algorithm 1.

Step2. The following condition must be satisfied.

Mk = Pk−1 − γ−2o In +HT
k R
−1
k Hk > 0 (4)

where γo is the attenuation level to adjust the robustness and
accuracy of state estimation.

Algorithm 1 Fitting Transformation Algorithm(FT)

Input : `(·), x̄0 ∈ R(n+1)×1 and P0 ∈ Rn×n

Output : the coefficient matrix ˆ̄A
1. Generate 2n sample points of x̄00 and their weight
coefficients

[X̄, W] = sp [x̄00,P00]

where X̄ =
[
x00 +

√
P00ξ

11×2n

]
, W = 1

2n I2n, the unit points

are ξ = [
√
nIn,−

√
nIn] and 11×2n represents a 1 × 2n

vector with all elements are 1.
2. The vector Z is obtained by `(X̄) as

Z = [`(x̄1), · · · , `(x̄2n)]

where X̄ = [x̄1, · · · , x̄2n] is a (n + 1) × 2n matrix, `(·)
denotes the analytic function ( f (·) or h(·))andZ is am×2n
matrix.
3. Estimation of the matrix Ā by WLS algorithm, i.e.

ˆ̄A = [( ¯XWX̄T )−1 ¯XWZ
T
]T

Step3.Update the state estimation x̂k+1 and the covariance
Pk+1 as follow

Kk =M−1k HT
k R
−1

Pk+1 = 8kM−1k 8T
k +Q

x̂k+1 = 8̄k ˆ̄xk +8kKk (zk − H̄k ˆ̄xk )
(5)

where8k andHk are the numerical Jacobian matrices of f (·)
and h(·), and they are the matrices 8̄k and H̄k without the last
column, respectively.
Remark 1: The prerequisite of the FHF filtering process,

i.e., Jk < γ 2
o described in (2), means that the estimation error

1xk is bounded. Letting γ 2
o →∞, FHF is same as the linear

fitting Kalman filter [24]. Some explanations of the sampling
sets {X̄,Z} in FT can be found in [29].
Remark 2: For FHF, f (·) is known (or unknown)

with (without) an analytic expression and h(·) always known
by sensor types. In algorithm 1, `(·) denotes the analytic
function ( f (·) or h(·) ). If f (·) or h(·) is known, it can be taken
as the input function of FT algorithm, and then the fitting
matrix 8̄k or H̄k of process or measurement system can be
gotten by (3), respectively. If state function f (·) is unknown,
we can obtain its fitting matrix according to Appendix A.

B. PROBLEM DESCRIPTION
It can be seen from the previous section that FHF suffers from
the following problems:

a) Assume that the original process noises wk∼N (0, Q)
(N (m,B) represents a normal distribution with the mean
m and the covariance B), if the process noise statistics are
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biased, i.e.

w′k∼N (q0, Q0) (6)

where Q0 = Q+1Q (1Q is the positive definite matrix).
Letting γ 2

o →∞, the Kalman-based filter is the unbiased
method when the exact bias characteristics are known. Sub-
stituting (6) into (5) yields

P′k =8k−1[(P′k−1)
−1
+HT

k−1R
−1Hk−1]−18T

k−1+Q0 (7)

K′k = [(P′k−1)
−1
+HT

k−1R
−1Hk−1]−1HT

k R
−1 (8)

x̂′k+1 = 8̄k ˆ̄xk + q0 +8kK′k (zk − H̄k ˆ̄xk ) (9)

Comparing (7) and (8) with the first two items in (5), it is
evident that Kk , Pk , K

′
k and P′k are increased by adjusting

γo and 1Q, respectively. To FHF method, it is enlarging
the utilization of the fresh measurement zk by increasing Kk
in (5). However, comparing the third item of (5) with (9), if the
process noise means is biased, the effects of the uncertain
vector q0 are not fully compensated by8kKk (zk−H̄k ˆ̄x), thus
leading to the biased or even divergent solution for FHF with
strong robustness.
b) Assume that the original measurement noise vk∼N

(0, R), if the system measurement noise statistics are
biased, i.e.

v′k∼N (r0, R0) (10)

where R0 = R+1R (1R is the positive definite matrix).
Letting γ 2

o →∞, substituting (10) into (5) yields

P′′k = 8k−1[(P′′k−1)
−1
+HT

k−1R
−1
0 Hk−1]−18T

k−1+Q

(11)

K′′k = [(P′′k−1)
−1
+HT

k R
−1
0 Hk ]−1HT

k R
−1
0 (12)

x̂′′k+1 = 8̄k ˆ̄xk +8kK′′k (zk − H̄k ˆ̄xk − r0) (13)

Similar to the analysis of process noise biased, Kk and Pk
are definitely increased by adding γo in FHF. Comparing
(11)-(13) with (5), it is obvious that the excessive use of
inaccurate residual term zk − H̄k ˆ̄xk is overused by increasing
Kk in FHFmethod, in which case,it makes the estimated state
x̂k+1 far from x̂′′k+1 (it is close to the real state xk+1) when
measurements involve uncertain errors, thus leading to the
biased or even divergent solution.
c) It is possible that an indefinite quadratic term (4) will

not be held, which leading to the filtering failure or poor
robustness under the system uncertainty disturbances.
As can be seen from the above analysis, the performance

of FHF is decreased since the system noise characteristics
or the attenuation value γ0 cannot be updated in real-time.
Therefore, it is necessary to construct a novel robust nonlinear
adaptive filter, namely the adaptive fitting H-infinity filter
(AFHF), which adaptively adjusts the attenuation level γ0 and
the statistics of system noises in a practical system.

III. ADAPTIVE FITTING H-INFINITY FILTER
In this section, AFHF as a robust estimation approach is pre-
sented for nonlinear discrete-time systems with disturbance

uncertainties. A novel noise estimator is primarily derived
from the moving-window technique. The estimated results in
each window epoch obtained from the above noise estimator
are taken as the statistical characteristics of the process or
measurement noises in FHF. Then, the suboptimal attenuation
level is designed to adaptively calculate local attenuation level
at each step time.

A. THE NOVEL NOISE ESTIMATOR BASED
MOVING-WINDOW
According to the nonlinear system (1), the fitting function at
time k is as follows:{

xk+1 = 8̄k x̄k + ex,k−1 + wk = 8̄k x̄k + wk,o
zk = H̄k x̄k + ez,k−1 + vk = H̄k x̄k + vk,o

(14)

Assumed that the process noise wk,o∼N (q̄k , Q̄k ) and mea-
surement noise vk,o∼N (r̄k , R̄k ), and their bounded proof
is shown in [31], where q̄k and r̄k are the mean vectors,
Q̄k and R̄k are the covariance matrices. It is impossible to
obtain wk,o and vk,o by wk,o = xk+1− 8̄k x̄k and vk,o = zk −
H̄k x̄k due to unknown the true state vector xk+1 and x̄k . How-
ever, the approximate estimation of nonlinear system noise
can be obtained based on the moving-window technique.
Theorem 1: Consider a window of N epochs. Assume that

the noise statistics are constant or have minor changes in
the window. In order to reduce the uncertainty of nonlinear
system noise, the suboptimal unbiased noise estimator can be
described as

ˆ̄rk =
∑N

j=1
rk−j/N

ˆ̄qk =
∑N

j=1
qk−j/N

ˆ̄Rk =
∑N

j=1
[(rk−j − ˆ̄r)(∗)T −Hk−jPk−jHT

k−j]/N

ˆ̄Qk =
∑N

j=1
[Pk−j+1 +8k−jPk−j8T

k−j

− (qk−j − ˆ̄qk )(∗)
T ]/N

(15)

where rk = zk−H̄k ˆ̄xk and qk = x̂k+1−8̄k ˆ̄xk are the residual
vectors of measurement and process.WewriteXXT

= X(∗)T

and XAXT
= XA(∗)T to save space.

Proof: The nonlinear measurement residual is defined
by (14) as follows

rk = zk − H̄k ˆ̄xk
= (H̄k x̄k + vk,o)− H̄k ˆ̄xk
= [Hk bm×1]([xTk 1]T − [x̂Tk 1]T )+ vk,o
= Hk (xk − x̂k )+ vk,o
= Hk x̃k + vk,o (16)

where the measurement matrix is H̄k = [Hk bm×1], and the
state estimation error is H̄k = [Hk bm×1].
Similarly, according to (14), the state residual can be

defined as

wk,o = xk+1 − 8̄k x̄k (17)

qk = x̂k+1 − 8̄k ˆ̄xk (18)

where the state matrix is 8̄k = [8k an×1].
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The window width is N , namely N measurements within
the time interval (tk−N , tk ). Suppose that system noises vk−j,o
and wk−j,o(j = 1, 2, · · · ,N ) are independent sequences, and
their means and covariances are both values as (r̄k , R̄k ) and
(q̄k , Q̄k ), respectively. The measurement residual rk and the
state residual qk can be used as the approximation of the
measurement noise vk,o and the state noise wk,o. Then, it can
be transformed into a simple parameter estimation problem.
Assume that rk−j∼N (r̄k , Cr ) and qk−j∼N (q̄k , Cq). The
residual rk−j and qk−j can be obtained by (16) and (18),
respectively. Based on statistical knowledge, the expectation
of unbiased estimates of r̄k and q̄k are

E
[
ˆ̄rk
]
= E

(∑
N
j=1rk−j/N

)
=

∑
N
j=1E

(
Hk−jx̃k−j + vk−j,o

)
/N

=

∑
N
j=1E

(
Hk−jx̃k−j + r̄k

)
/N

= r̄k (19)

E
[
ˆ̄qk
]
= E

(∑
N
j=1qk−j/N

)
=

∑
N
j=1E

(
x̂k+1−j − 8̄k−j ˆ̄xk−j

)
/N

=

∑
N
j=1E

(
8̄k−j ˆ̄xk−j+qk−j−8̄k−j ˆ̄xk−j

)
/N

= q̄k (20)

where denote that ˆ̄rk =
∑ N

j=1rk−j/N and ˆ̄qk =
∑ N

j=1qk−j/N
are the unbiased estimates of r̄k and q̄k , respectively.
The covariances Cr and Cq can be estimated as

Ĉr =
∑

N
j=1(rk−j − ˆ̄rk )(rk−j − ˆ̄rk )

T /N (21)

Ĉq =
∑

N
j=1(qk−j − ˆ̄qk )(qk−j − ˆ̄qk )

T /N (22)

Substituting (16) into (21) gives the estimation expecta-
tion of Cr . Primarily, getting the expectation of (rk−j −
ˆ̄rk )(rk−j − ˆ̄rk )T , that is

E[(rk−j − ˆ̄rk )(∗)T ]

= E[rk−jrTk−j − rk−j ˆ̄r
T
k −
ˆ̄rkrTk−j + ˆ̄rk ˆ̄r

T
k ]

= E[(Hk−jx̃k−j + vk−j,o)(∗)
T
− (Hk−jx̃k−j + vk−j,o) ˆ̄r

T
k

− ˆ̄rk (Hk−jx̃k−j + vk−j,o)
T
+ ˆ̄rk ˆ̄rTk ]

= E[(Hk−jx̃k−j)(∗)
T
+ (vvk−j,o − ˆ̄rk )(∗)T

+Hk−jx̃k−jv
T
k−j,o + vk−j,ox̃

T
k−jH

T
k−j

−Hk−jx̃k−j ˆ̄r
T
k −
ˆ̄rk x̃Tk−jH

T
k−j]

= E[Hk−jx̃k−jx̃
T
k−jH

T
k−j + (vk−j,o − ˆ̄rk )(∗)T ]

= Hk−jPk−jHT
k−j + R̄k−j (23)

where Pk−j = E[x̃k−jx̃
T
k−j] is the covariance at time k − j.

The estimation expectation of Cr is

E[Ĉr ] =
∑

N
j=1E[(rk−j − ˆ̄rk )(rk−j − ˆ̄rk )

T ]/N

=

∑
N
j=1(Hk−jPk−jHT

k−j + R̄k−j)/N

=

∑
N
j=1Hk−jPk−jHT

k−j/N + R̄k

6= R̄k (24)

The noise statistic estimation of Cr is biased in (24). How-
ever, it provides a way to find the unbiased estimation of
measurement noise. It can be rewritten as

E[Ĉr ] =
∑

N
j=1E[(rk−j − ˆ̄rk )(rk−j − ˆ̄rk )

T ]/N

=

∑
N
j=1Hk−jPk−jHT

k−j/N + R̄k (25)

From (25), the suboptimal unbiased estimation of the mea-
surement variance R̄k is

ˆ̄Rk =
∑

N
j=1[(rk−j − ˆ̄rk )(rk−j − ˆ̄rk )

T
−Hk−jPk−jHT

k−j]/N

(26)

Similarly, the estimation of the state covariance Q̄k can be
obtained. Subtracting (18) from (17) yields

wk−j,o − qk−j
= (xk−j+1 − x̂k−j+1)− 8̄k−j(x̄k−j − ˆ̄xk−j)

= x̃k−j+1 − ([8k−j an×1])
(
[xTk−j 1]

T
− [x̂xTk−j 1]

T
)

= x̃k−j+1 −8k−jx̃k−j (27)

Substitute (27) into the covariance of wk−j,o − qk−j, i.e.

E[(wk−j,o − qk−j)(∗)
T ]

= E[(x̃k−j+1 −8k−jx̃k−j)(x̃k−j+1 −8k−jx̃k−j)
T ]

= E[x̃k−j+1x̃Tk−j+1 − x̃k−j+1x̃
T
k−j8

T
k−j

−8k−jx̃k−jx̃
T
k−j+1 +8k−jx̃k−jx̃

T
k−j8

T
k−j]

= E[x̃k−j+1x̃Tk−j+1 +8k−jx̃k−jx̃
T
k−j8

T
k−j]

= Pk−j+1 +8k−jPk−j8T
k−j (28)

where the estimation errors x̃k−j and x̃k−j+1 are independent
of each other, namely E[x̃k−j+1x̃Tk−j] = E[x̃k−jx̃

T
k−j+1] = 0.

The relationship between Q̄k and Cq needs to be con-
structed. Assuming that wk−j,o and qk−j are independent of
each other, then E(wk−j,o) and E(qk−j) are equal. Add or
subtract ˆ̄qk from (27) to get the covariance of wk−j,o − qk−j,
that is

E[(wk−j,o − qk−j)(∗)
T ]

= E[(wk−j,o − ˆ̄qk )− (qk−j − ˆ̄qk )][∗]
T

= E[(wk−j,o − q̄k )(∗)
T
+ (qk−j − q̄k )(∗)

T

− (wk−j,o − ˆ̄qk )(qk−j − ˆ̄qk )
T

− (qk−j − ˆ̄qk )(wk−j,o − ˆ̄qk )
T ]

= Q̄k−j + Cq − Sk (29)

where E[qk−j] = q̄k and E
[
ˆ̄qk
]
= q̄k . Meanwhile, Sk can

be written as

Sk = E [(wk−j,o − ˆ̄qk )(qk−j − ˆ̄qk )
T

+ (qk−j − ˆ̄qk )(wk−j,o − ˆ̄qk )
T ]
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= (E[wk−j,oqTk−j]− E[wk−j,o]q̄
T
k − q̄kE[q

T
k−j]+ q̄k q̄

T
k )

+ (E[qk−jw
T
k−j,o]−q̄kE[w

T
k−j,o]− E[qk−j]q̄

T
k +q̄k q̄

T
k )

= 0 (30)

From (28) to (30), it is known that

Cq = Pk−j+1 +8k−jPk−j8T
k−j − Q̄k−j (31)

According to (22) and (31), the estimation expectation
of Cq is

E[Ĉq] =
∑

N
j=1E[(qk−j − ˆ̄qk )(qk−j − ˆ̄qk )

T ]/N

=

∑
N
j=1(Pk−j+1 +8k−jPk−j8T

k−j − Q̄k−j)/N

=

∑
N
j=1(Pk−j+1 +8k−jPk−j8T

k−j)/N − Q̄k

6= Q̄k (32)

The noise statistic estimation of Cq is biased in (32). How-
ever, it provides a way to find the unbiased estimation of state
noise. It can be rewritten as

E[Ĉq] =
∑

N
j=1E[(qk−j − ˆ̄qk )(qk−j − ˆ̄qk )

T ]/N

=

∑
N
j=1(Pk−j+1 +8k−jPk−j8T

k−j)/N − Q̄k (33)

Finally, according to (33), the suboptimal unbiased estima-
tion of the covariance Q̄k can be obtained as

ˆ̄Qk =
∑N

j=1
[(Pk−j+1 +8k−jPk−j8T

k−j

− (qk−j − ˆ̄qk )(∗)
T ]/N (34)

The suboptimal unbiased statistical estimation of noise can
be obtained from (16) to (33), and the proof of Theorem 1 is
completed. It is used to reduce the uncertainty of nonlinear
system noise. Meanwhile, the window width N is an impor-
tant parameter for the moving-window estimation. The larger
N is selected, the higher precision of nonlinear estimation but
with increasing of its computational complexity. In this paper,
the selection of N will be achieved through computational
tests.
Remark 3: In this novel noise estimator, the process and

measurement noise statistics are
(
ˆ̄qk ,
ˆ̄Qk

)
and

(
ˆ̄rk , ˆ̄Rk

)
,

respectively. The estimated process and measurement noise
are the unbiased mean estimation since the equals E

[
ˆ̄rk
]
=

r̄k and E
[
ˆ̄qk
]
= q̄k are satisfied in (19)-(20). The estimation

in (24) and (32) is biased for noise covariance, so the unbiased
estimation of noise covariance is designed by (26) and (34).
Further, this estimator can be used to provide the noise means
and covariances for state estimation with uncertain system
disturbances.

B. THE DESIGN OF THE ADAPTIVE FITTING
H-INFINITY FILTER
The AFHF algorithm is designed as follows.

Step1. Given the state estimation x̂k and the covariance Pk
at step time k .

Step2. Update the state and measurement parameters by
Algorithm 1. 

ˆ̄xk = [x̂Tk 11×n]T

8̄k ← FT(f (·), ˆ̄xk ,Pk )
H̄k ← FT(h(·), ˆ̄xk ,Pk )

(35)

where 8̄k and H̄k are numerical fitting matrices of f (·) and
h(·) obtained by fitting transformation as shown in Table 1.

Step3. According to (57) in Appendix B, the local attenu-
ation level γ̂k is set as

γ̂k = ηk

√
λ((Pk−1 +HT

k R̂
−1
k Hk )

−1
) (36)

where γ̂k as a positive real number is the local minimum
of the attenuation level γo, and λ(A) denotes the maximum
eigenvalue of A. As it is related to the innovation errors ek ,
its correction coefficient ηk is shown as

ηk = 1+ ηk−1 ∗
√
tr(eTk ek ) (37)

where ek = zk − H̄k ˆ̄xk − r̂k and ηk−1 > 0.
Step4. Update the gain matrix Kk .

Kk = (Pk−1 − γ−2k S̄k +HT
k R̂
−1
k Hk )−1HT

k R̂
−1
k (38)

Step5. Update the state estimation x̂k+1 and the
covariance Pk+1.{

x̂k+1 = 8̄k ˆ̄xk +8kKkek + q̂k
Pk+1=8k (Pk−1 − γ̂−2k In+HT

k R̂
−1
k Hk )−18T

k +Q̂k
(39)

where 8k and Hk denote the matrices obtained by removing
the last column of 8̄k and H̄k , respectively.
Step6. Estimate the mean and covariance matrix of noise.{
rk−j = zk−j − H̄k−j ˆ̄xk−j
qk−j = x̂k−j+1 − 8̄k−j ˆ̄xk−j, j = 0, 2, · · · ,N − 1

(40)

Then, r̂k+1, q̂k+1, R̂k+1, and ˆQk+1 can be obtained by substi-
tuting (40) into (15) based on Theorem 1. These estimations
are based on the residual sequence r̂k−j and q̂k−j, which
are obtained through FHF and assumed to be statistically
independent and identically distributed.
Remark 4: For the performance analysis of AFHF, there

are several explanations as follows:
a) The statistical characteristics of the process and mea-

surement noise are estimated by the novel noise estimator,
respectively. Specifically speaking, the mean vectors in (40)
are regarded as the input vectors of the noise estimator in
Theorem 1 to obtain the noise estimated results, i.e. the
process noise statistics

(
q̂k+1, Q̂k+1

)
and the measurement

noise statistics
(
r̂k+1, R̂k+1

)
. The noise statistics can be

taken as the input noise property in (36), (38) and (39).
That is, by making full use of the above noise information,
AFHF is dynamically applied to improve the precision of
FHF algorithm.
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b) Instead of conventional H-infinity filter design, which
has a constant attenuation level, the structure of AFHF is
changed according to the time-varying attenuation level. The
square of attenuation level represents the upper bound of
H-infinity norm for estimation error in (2), and its local min-
imum at time k is γ̂k . In the conventional design, the smaller
fixed-γo causes unavailability of filtering, i.e., Pk−1 −
γ̂−2o In + HT

k R̂
−1
k Hk in (38)-(39) is not positive definite.

In contrast, the larger fixed γo could cause poor robust-
ness, which takes large estimation errors. It indicates that
the fixed mode is very inflexible for filtering design. Thus,
the adaptive adjustment in AFHF is aimed at estimate the
suboptimal upper at each instant time. However, there is no
absolute optimal upper bound in (36). To ensure the selection
of suboptimal value γ̂k , we design an adaptive correction
coefficient ηk , which changes over time with the innovation
errors ek . Moreover, sometimes the proposed noise estimator
does not ensure the truth of the estimated noise statistics.
To deal with this case, AFHF is adaptive to select the subop-
timal upper bound of estimation errors by local attenuation
level described in (36)-(37), which is eventually to improve
the filtering flexibility and robustness.

IV. NUMERICAL SIMULATIONS AND EXPERIMENTS
In this section, the superior of the proposed AFHF is assessed
utilizing the univariate nonstationary growth model (UNGM)
simulation, the Reentry vehicle tracking system(RVTS) sim-
ulation and INS/GPS integrated navigation experiment. The
UNGM and RVTS are mainly applied to evaluate high preci-
sion and strong robustness of AFHF with noise statistics esti-
mator for the nonlinear system with uncertain disturbances.
Finally, the navigation experiment is shown to evaluate its
performance in the practical system.

A. SIMULATION IN THE UNGM
The dynamic model for UNGM [5] can be denoted as


xk+1 = 0.5xk + 25xk/(1+ x2k )

+ 8cos[1.2(k − 1)]+ wk
zk = x2k /20+ vk

(41)

Initial state estimation and error covariance are x0 = x̂0 = 0.1
and P̂0 = 1, respectively. AFHF in this section is used to com-
pare with FHF, UHKF [25] and adaptive robust unscented
Kalman filter (AUKF) [34] for 150 Monte-Carlo runs, and
the window width is set to N = 15. The attenuation level γ
is set as γ fhf = γ uhkf = γ afhf0 = 10. Its performance metrics
is the root mean squared errors (RMSEs).
Case 1 (Process Noise Estimation): In order to evaluate

the performance of AFHF with the estimation process noise,
assume that the statistics of the measurement noise is exactly
known. It is selected as

rk = 0, r̂k = 0, Rk = 1, R̂k = 1

The true value and initial estimates of mean and covariance
for process noise are set as

qk = 10, q̂0 = 0, Qk = 20, Q̂0 = 4

Case 2 (Measurement Noise Estimation): In order to eval-
uate the performance of AFHF in the estimation of measure-
ment noise, assume that the statistics of the process noise is
exactly known. It is selected as

qk = 0, q̂k = 0, Qk = 5, Q̂k = 5

The initial estimates of the measurement noise are r̂0 = 0 and
R̂0 = 1. The true mean of the measurement noise is rk = 10.
Its covariance can be set as

Rk =


5 k 6 100
30 100 < k 6 200
15 200 < k 6 300

FIGURE 1. Estimation of the process noise statistics by AFHF in case 1.

For case 1, the estimation of process noise statistics by AFHF
in the last Monte-Carlo run is shown in Fig. 1. It is obvious
that the values of qk and Qk are equal to the initial values q̂0
and Q̂0 at the time k 6 15, respectively. The estimation of
noise statistics starts running as k > 15. This design can be
helpful to observe the function of the process noise estimator.
As can be seen from Fig. 1, the mean and covariance of
process noise gotten by AFHF are closed to the true values
after 25s, despite the initial value of process noise is biased.
The maximal errors between estimated noise statistics and
true statistics ( qk and Qk ) are 0.428 and 1.20, respectively.
The RMSE of xk by AUKF, UHKF, FHF, and AFHF is
shown in Fig. 2, which means that the estimation precision
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FIGURE 2. RMSE of xk by different filters in case 1.

FIGURE 3. Time-varying results of γ in case 1.

of different filters varies with each other. In the stable phase
(after 40s), the median values of RMSE for the above filters
are 10.25, 21.46, 22.62 and 7.96, respectively. Obviously,
the precision of AFHF is higher than other compared algo-
rithms. Further, the time-varying result of γk in the last
Monte-Carlo run is shown in Fig. 3. It shows that the value of
attenuation level in AFHF is adjusted between 0.712 to 5.749,
which is different from the fixed solution, i.e., UHKF or FHF
based on the highly nonlinear and bimodal in UNGM. Hence,
the attenuation level adaptation is to enhance the robustness
and flexibility of the fixed factor solutions as other filters in
this work.

For case 2, the estimated result of the measurement noise
statistics by AFHF in the last Monte-Carlo run is shown
in Fig. 4. The estimator of rk and Rk does not start run-
ning until at time k > 15, so they are equal to the initial
values r̂0 and R̂0 as k 6 15, respectively. By observing
Fig. 4, despite the initial estimation of measurement noise
is biased, the mean and covariance of measurement noise
obtained by AFHF are closed to the true values after 25s.
The maximal error between estimated noise mean r̂k and true
mean rk is 0.34 after 25s. The error for covariance Rk is large
when the covariance changes greatly, which indicates that
the estimation effect is not good at the mutation moments,
i.e., 100s and 200s. The estimated errors at 100s and 200s

FIGURE 4. Estimation of the measurement noise statistics by AFHF in
case 2.

FIGURE 5. RMSEs of xk by different filters in case 2.

are 13.97 and 10.71, respectively. However, the estimation
of measurement statistics could availably track changes in
real statistics. Then, The RMSE of xk by AUKF, UHKF,
FHF, and AFHF is shown in Fig. 5 for case 2. In the sta-
ble phase (after 25s), the median values of their RMSE are
21.61, 17.05, 16.1 and 12.91, respectively. It demonstrates
that the precision of AFHF is obviously superior to other
filters. AUKF may not apply where uncertain disturbance is
a gradual change over time like case 2. As seen in Fig. 5,
the robustness and stability of AFHF are better than other
algorithms, and then its strong robustness is due to the adap-
tive attenuation level γk . Moreover,the time-varying result
of attenuation level in the last Monte-Carlo run is shown
in Fig.6. The adjustment of γk in Fig. 6 is divided into three
stages, namely i) its value is within (2.82, 18.89) at (0s, 100s);
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FIGURE 6. Time-varying results of γ in case2.

ii) its value is within (2.68, 3.51) at (100s, 200s); iii)its value
is within (2.76, 4.85) at (200s, 300s). Comparing i) and ii),
the factor range in (100s, 200s)is narrowed by increasing Rk .
Similarly, compared with ii), the range of γ in (200s, 300s) is
enlarged by decreasing Rk . Meanwhile, throughout the whole
filtering shown in Fig. 3, the selection of this factor is more
flexibility than the fixed mode. Hence, by seeing Fig. 5-6,
the attenuation level adaptation is to improve the robustness
and flexibility of the fixed factor solutions in this work.

In summary, noise statistics estimator in AFHF can be
effective statistics noise information, which improves the
estimation precision of the dynamic system. By making full
use of the information obtained from the noise estimator,
AFHF can be used to improve the filtering precision of
nonlinear systems with uncertainty disturbances. Further-
more, adaption of attenuation level in AFHF is applied to
enhance the robustness in the estimation process, and then as
a time-varying factor is more flexible than the conventional
constant mode.

B. SIMULATION IN THE REENTRY VEHICLE
TRACKING SYSTEM
A general description of this system is that an aircraft enters
the atmosphere at a high altitude and velocity [32]. The
position of the vehicle is tracked by radar to measure the
distance and bearing angle of the vehicle. The system model
is the same as (1). The state vector is defined as

xk = [x1k , x
2
k , x

3
k , x

4
k , x

5
k ]
T (42)

where (x1k , x
2
k ) and (x

3
k , x

4
k ) denote the position and velocity of

the vehicle, and x5k denotes the aerodynamic parameter (aero-
param). In order to implement the filters, the continuous
process function in [33] should be discretized firstly. In this
paper, the nonlinear process function discretized by Euler
integration scheme is defined as

xk+1= f (xk )+wk=


x1k + x

3
k dt

x2k + x
4
k dt

x3k+Dkx
3
k dt+Gkx

1
k dt

x4k + Dkx
4
k dt + Gkx

2
k dt

x5k

+wk (43)

where the step size between time steps was dt , Dk =
βkexp

[
(R0 − Rk )/H0

]
Vk is drag-related force item, Gk =

GM0/R3k is gravity-related force item, and βk = β0 exp
(
x5k
)
,

where Rk =
√
(x1k )

2
+ (x2k )

2
is the distance from earth’s

core to aircraft and Vk =
√
(x3k )

2
+ (x4k )

2
is the total speed.

R0, H0, β0 and GM0 are constant and they are set as

R0 = 6374, H0 = 13.406, β0 = −0.59783,

GM0 = 3.986× 105

The reference covariances of wk is

Q = diag([10−6,10−6,10−5,10−5,10−6])

The measurement vector is

zk = [dk ,θk ] (44)

where dk is the distance between the vehicle and radar, and
θk is the bearing angle of the vehicle. The nonlinear measure-
ment function is

zk=h(xk )+vk=

[ √
(x1k − xs)

2
+ (x2k − ys)

2

tan−1[(x2k − ys)/(x
1
k − xs)]

]
+vk (45)

where (xs, ys) denotes the location of the radar.
The reference covariances of vk is

R = diag([(10−3)2; (0.17× 10−3)2])

For comparison analysis, simulation trials were conducted by
AUKF [34], UHKF [25], FHF and AFHF under the same
conditions, i.e.

The attenuation level γ is set as γ fhf = γ uhkf = γ afhf0 = 5.
Initial state estimate and covariance are

x̂0 = [6500.4, 349.14, −1.80, 6.79, 0.69]

P̂0 = diag([10, 10, 10, 10, 0.1])

The window size of AFHF is N = 20. Then, RMSEs
and Averaged RMSEs (ARMSEs) of position, speed and
aero-param are selected as the performance standard in this
work.
Case 1 (Process With Uncertain Terms): Assume that the

unknown term1xk is presented in a practical process system
after 60s, where 1x = [−0.1;− 0.1;− 0.02;− 0.02;0]. The
actual noises of process and measurement are wk ∼ N (0,Q)
and vk ∼ N (0,R) respectively.
Case 2 (Measurement With Uncertain Terms):We assume

that there is the unknown random term v0 in the practical
measurement system after 30s, where v0 ∼ N (1z, 4R) and
1z = [0.02;0.002]. The other settings are the same as the
above situation.

For case 1, the uncertain process term with process noise
is considered as a new process noise wo,k . The true uncer-
tain noise wo,k obeys wo,k ∼ N (0,Q) without uncer-
tainty at first 60s, otherwise, it obeys wo,k ∼ N (1x,Q)
after 60s. The noise statistics estimator in AFHF is to esti-
mate the mean and covariance of the new process noise.
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TABLE 1. The mean results of estimated process noise statistics during the time period 60s to 180s.

Table 1 shows the mean results of estimated noise mean
and covariance by AFHF during the time periods 60s∼180s.
The estimated mean of noise mean statistics is q̂′, and it
is close to the true noise mean 1x. The estimated mean
of noise covariance is Q̂′, and its diagonalization matrix is
diag

(
[1.04, 1.01, 10.1,10.1, 0.886]× 10−6

)
, which is close

to the true noise covarianceQ. Hence, comparing Table 1with
the above real noise statistics, it is obvious that the statistical
results by AFHF are close to the true statistics. Overall,
AFHF with the noise statistics estimator provides the statis-
tics of process uncertain term for state estimation systemwith
case 1. The RMSEs of filters with process uncertain term by
100 Monte Carlo runs are presented in Fig 7.

The median values of RMSEs for AUKF, UHKF, FHF
and AFHF after 60s are (11.4m, 115.5m/s, 1.348), (36.4m,
63.6m/s, 0.32), (37.6m, 56.9m/s, 0.258) and (8.2m, 40.9m/s,
0.192), respectively. It is obvious that the precision of the
first three filters is affected due to the uncertain process term
after 60s, resulting in poor estimation precision. By observing
Fig. 7, the precision of AFHF is clearly better than AUKF,
UHKF and FHF since AFHF can obtain statistical informa-
tion of uncertain disturbances with H-infinity based filter.

Moreover, the attenuation level γ in AFHF can be adap-
tively adjusted according to (36), and then its time-varying
results during the last Monte-Carlo run are shown in Fig. 8.
Its value is adjusted between 0.007 to 3.293, whichmeans that
the robustness of conventional filtering, i.e., FHF or UHKF,
is affected by a fixed factor that greater than 3.293 and its
availability is affected by a fixed factor that less than 3.293.
From Fig. 7-8, the unknown process term is added to the
state system at 60s. The robustness of AFHF is stronger than
other compared filters since the RMSEs at 61s are smaller
than other filters. In Fig. 8, the selection of this factor is more
flexibility than the fixed mode. It is evident that the adaption
of attenuation level for AFHF is to improve the robustness
and flexibility of the fixed attenuation level solutions.

For case 2, the uncertain random term with measurement
noise is considered as new measurement noise vo,k . The
true uncertain noise vo,k obeys vo,k ∼ N (0,R) without
uncertainty at first 30s, otherwise, as a mixed Gaussian noise
obeys vo,k ∼ N (1y, 5R) after 30s. The noise statistics
estimator in AFHF is to estimate the mean and variance of
the new measurement noise. Table2 shows the mean value
of estimated unknown measurement statistics obtained by
AFHF during the time periods 30s∼180s. The estimated
mean of measurement noise mean statistics is r̂′, and it is

FIGURE 7. Estimated RMSEs of different filters in case 1.

close to the true noise mean 1y. The estimated mean of
noise covariance is R̂′, and its diagonalization matrix is
diag

(
[1.04× 10−6, 1.7445× 10−7]

)
, which is close to the

true noise covariance 5R. Its results are similar to case 1,
that is, the statistical results by AFHF is close to the true
measurement noise statistics. AFHF with the noise statistics
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FIGURE 8. Time-varying results of γ in case 1.

TABLE 2. The mean estimation value of uncertainty measurement
statistics during the time period 30s to 180s.

provides the statistics ofmeasurement uncertain term for FHF
in case 2.

The RMSEs of filters with measurement uncertain term
by 100 Monte Carlo runs are presented in Fig. 9. The
median RMSEs after 30s of AUKF, UHKF, FHF and AFHF
are (116.9m, 8.98m/s, 0.017), (112.7m, 9.33m/s, 0.017),
(113.2m, 10.22m/s, 0.017) and (53.5m, 8.4m/s, 0.013),
respectively. It is shown that the precision of the first three
methods is greatly affected due to the uncertain term in the
measurement system, resulting in poor estimation precision.
The precision of AFHF is higher than the other filters during
the time period 30s to 180s. Moreover, by observing Fig. 9,
the peak of mutated RMSEs for AFHF after 30s are (267.1m,
26.12m/s, 0.032), which means that its robustness is stronger
than other compared filters. Meanwhile, the estimated errors
of AFHF are large during the times (30s, 50s), and then
stabilizes at the relatively smaller values.

Further, the time-varying results of attenuation level during
the last Monte-Carlo run in case 2 are shown in Fig. 10.
Its value has a slow increase after 30s and remains stable at
γ = 0.081 after 60s. From Fig. 9-10, the unknown measure-
ment term is added to the measurement at 30s. The robustness
of AFHF is stronger than other compared filters since the
RMSEs after 30s are smaller than other filters. Meanwhile,
the tendency of RMSEs for AFHF is similar to that of the
attenuation level in AFHF. Throughout the filtering process
shown in Fig. 10, the selection of this factor is more flexibility
than the fixed mode. Hence, the adaption of the attenuation
level in AFHF is to modify the robustness and flexibility of
the fixed factor solutions, i.e., UHKF or FHF.

In summary, noise statistics estimator in AFHF is an effec-
tive noise estimator and can improve the estimation preci-
sion of the dynamic system. Meanwhile, the adaption of

FIGURE 9. Estimated RMSEs of filters in case2.

FIGURE 10. Time-varying results of γ in case 2.

the attenuation level in AFHF is employed to increase the
robustness in the estimation process. This time-varying factor
is more flexible than the conventional constant mode.
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C. EXPERIMENT AND ANALYSIS
For the performance evaluation of the proposed AFHF,
the practical experiment was also conducted to observe UAV
navigation in Xi′an, Shaanxi, China. The UAV applied an
INS/GPS integrated system for navigation and location, and
its model system can be reference literature [6]. The INS/GPS
integrated system consists of an MPU 9250 inertial measure-
ment unit (IMU) and a geo-m8 GPS. The position data (its
precision is less than 0.1m) obtained off-line calibration of the
camera (SONY ILCE-7R) with the ground control points was
taken as the reference values to evaluate the position errors
of UAV navigation. The sampling frequency of IMU, GPS
and camera were set as 10Hz, 1Hz and 1Hz, respectively. The
UAV trajectory is shown in Fig. 11. The window size was set
to 20. The other parameter settings of INS/GPS integrated
system were displayed in Table 3.

FIGURE 11. The UAV trajectory.

TABLE 3. Experiments parameters.

Fig.12 illustrates the position errors of the UAV by AUKF,
UHKF, FHF and AFHF with period time 900s. During the

FIGURE 12. The positions errors for the UAV navigation.

TABLE 4. MAE and STD of the position errors by four filters for the UAV
navigation.

testing process, the system noise statistics involve uncer-
tainties due to disturbances in the dynamic environment.
The position errors of AUKF is within (−7.54m, 7.88m)
and (−13.45m, 13.82m), and the obvious oscillations still
exist in the filtering curve of AUKF. The position errors of
UHKF are within (−7.87m, 4.96m) and (−8.85m, 8.96m).
Meanwhile, the position errors by FHF are within (−7.32m,
4.86m) and (−6.79m, 9.61m), which are close to UHKF.
They are still disturbed by the uncertainties of noise statis-
tics, resulting in the large magnitude of oscillations in the
filtering curve. In contrast, the position errors by the AFHF
are within (−6.19m, 4.41m) and (−5.79m, 5.65m). They
are smaller than those by the AUKF, UHKF and FHF. The
mean absolute errors (MAEs) and standard deviations (STDs)
of the position errors by the compared algorithms are
listed in Table 4. The MAE and STD of position errors
by the proposed AFHF are also much smaller than other
methods.
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V. CONCLUSION
This study devotes to solving the estimation problems in a
nonlinear system with uncertain disturbances. The proposed
AFHF is to improve FHF by combining a noise statistic
estimator. Firstly, the related theory of noise estimator is
presented based on the moving window technique. Secondly,
based on the results of the noise estimator in the previous N
epochs the AFHF handles the previous problems in the case
of uncertain systems. Therefore, by estimating the statistical
characteristics of uncertain noises adaptively, AFHF can be
employed for the state estimation of nonlinear systems with
uncertain disturbances. Then, compared with the conven-
tional constant mode, AFHF is adaptive to calculate the local
attenuation level at each time step thus to change the structure
of AFHF. Furthermore, it can also guarantee the precision,
robustness and flexibility of state estimation in the whole
filtering process. Therefore, the AFHF proposed in this paper
is a novel and robust adaptive nonlinear filter.
VI. APPENDIXES
APPENDIX A
In algorithm 1, `(·) denotes the analytic function (f (·) or h(·)).
If f (·) or h(·) is known, it can be taken as the input function of
FT algorithm, and then the fitting matrix 8̄k or H̄k of process
or measurement system can be gotten, respectively. If state
function f (·) is unknown, we can obtain its fitting matrix
through the following steps.

Step 1. Assume that state vectors x0 and x1 at initial and
next time respectively are known with wk ∼ N (0, Q) in
advance. According to (1), it can be obtained as [29]

xT1 = f T (xT0 )+ w
T
0

= xT08
T
0 + u

T
x,0 +

(
eTx,0 + w

T
0

)
= x̄T0 8̄

T
0 +

(
eTx,0 + w

T
0

)
(46)

where x̄0 = [xT0 , 1]
T , 8̄0 =

[
80,ux,0

]
is the approximate

coefficient matrix, ux,0 is the constant terms, and ex,k ∼
N (0, �) is the approximate error of the state function.
Applying the least square method, one obtains

ˆ̄80 =

[(
x̄0x̄

T
0

)−1
x̄T0 x̄

T
1

]−1
(47)

The fitting matrix H̄0 of measurement function h(·) is gotten
by the fitting transformation (FT) algorithm, and the state
estimation x̂1 and its covariance P1 can be presented by
substituting the fitting matrices 8̄0 and H̄0 into (5).
Then, the coefficient matrix is rewritten as

8̄0 =

[(
x̄0x̄

T
0

)−1
x̄T0 x̄

T
1

]−1
(48)

Thus, the state function is f ( ˆ̄x1) = 8̄0
ˆ̄x1 + ex,1 by (1).

Step 2. At the next time, f (·), ˆ̄x1 and P1 are regarded as
inputs of FT algorithm, X̄1 and Z1 are given by

X̄1 =

[
ˆ̄x11 · · · , ˆ̄x

2n
1

]
=

[
x̂1 +
√
P1ξ

11×2n

]
(n+1)×2n

(49)

Z1 =

[
f
(
ˆ̄x11
)
· · · , f

(
ˆ̄x2n1
)]

=

[
8̄0X̄1 +

√
P1ξ + Ex,1

]
n×2n

(50)

where the unit points are ξ = [
√
nIn,−

√
nIn] and the linear

error matrixEx,1 = [ex,1, · · · , ex,1]n×2n. Therefore, based on
weighted least squares (WLS), the coefficient matrix of state
function is written as

8̄1 = [(X̄1WX̄
T
1 )
−1X̄1WZT1 ]

T (51)

whereW = 1
2n I2n represents the weight coefficients. Similar

to step 1, the state estimation x̂2 and its covariance P2 can be
given by substituting the fitting matrices 8̄1 and H̄1 into (5).
Step 3. By analogy with the above steps, the state function

is f ( ˆ̄xk ) = 8̄k−1
ˆ̄xk + ex,k at time k , and then f (·), ˆ̄xk and

Pk are regarded as inputs of FT algorithm, X̄k and Zk are
presented as

X̄k =

[
ˆ̄x1k · · · , ˆ̄x

2n
k

]
=

[
x̂k +
√
Pkξ

11×2n

]
(n+1)×2n

(52)

Zk =
[
f
(
ˆ̄x1k
)
· · · , f

(
ˆ̄x2nk
)]

=

[
8̄k−1X̄k +

√
Pkξ + Ex,k

]
n×2n

(53)

where the linear error matrix Ex,k = [ex,k , · · · , ex,k ]n×2n;
the mean of ex,k is the zero vector but its covariance �
is unknown in practical application, and then ex,k can be
ignored.

Therefore, based on weighted least squares (WLS),
the coefficient matrix of a state function is written as

8̄k = [(X̄kWX̄
T
k )
−1X̄kWZTk ]

T (54)

Next, the state estimation x̂k+1 and its covariance Pk+1 can
be gotten by substituting the fitting matrices 8̄k and H̄k into
(5) in revised manuscript, where H̄k can be given by the FT
algorithm.

To sum up, if the function `(·) at time k is unknown
function in (3) of the revised manuscript, it should be the
unknown state function f (·), i.e.,

`(·) = f (·) = 8̄k−1(·)+ ex,k (55)

where the input of f (·) is ˆ̄xk at time k; the mean of ex,k is
the zero vector but its covariance � is unknown in practical
application, and then ex,k can be ignored in this paper.

APPENDIX B
Based on the matrix inversion lemma, Mk in (4) can be
written as

Mk = P−1k +HT
k R
−1
k,oHk − γ

−2
o In > 0 (56)

where the attenuation level γo is to adjust the filtering robust-
ness. For the conventional H-infinity filter, it is a constant
value determined by the experience of engineering practices,
which is generally not an optimal solution. Meanwhile, there
is no closed solution to this optimal problem.
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To solve above problem, we design γo > γk , where γk
as a suboptimal local solution is presented with adaptive
adjustment to improving the filtering performance. Thus, (56)
can be obtained as

γ 2
k > (P−1k + ĤT

k R
−1
k,oĤk )−1

γk >

√
λ((P−1k + ĤT

k R
−1
k,oĤk )

−1
) (57)

where λ(A) denotes the maximum eigenvalue of A.
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