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ABSTRACT Increased technological methods have enabled the investigation of biology at nanoscale levels.
Such systems require the use of computational methods to comprehend the complex interactions that occur.
The dynamics of metabolic systems have been traditionally described utilizing differential equations without
fully capturing the heterogeneity of biological systems. Stochastic modeling approaches have recently
emerged with the capacity to incorporate the statistical properties of such systems. However, the process-
ing of stochastic algorithms is a computationally intensive task with intrinsic limitations. Alternatively,
the queueing theory approach, historically used in the evaluation of telecommunication networks, can
significantly reduce the computational power required to generate simulated results while simultaneously
reducing the expansion of errors. We present here the application of queueing theory to simulate stochastic
metabolic networks with high efficiency. With the use of glycolysis as a well understood biological model,
we demonstrate the power of the proposed modeling methods discussed herein. Furthermore, we describe
the simulation and pharmacological inhibition of glycolysis to provide an example of modeling capabilities.

INDEX TERMS Biological modeling, glycolysis, metabolic networks, metabolomics, ordinary differential
equations, queueing theory, stochastic simulation.

I. INTRODUCTION
Cellular metabolism is a complex network of enzymes,
metabolites, and biomolecules that are required to both
maintain homeostasis and appropriately react to stimuli.
Biochemists began examining cell metabolism in the mid-
19th century, and with the advancements in both experi-
mental techniques and computational capacities, increasing
comprehension of metabolic intricacies has been realized.
Metabolomic studies, as a relatively new field, are con-
cerned with the detection and quantification of metabolites.
The analytical side of metabolomics and metabolism can
quickly become daunting when considering the complexity
of the metabolome. The KEGG Compound database cur-
rently contains more than 18,000 metabolites and other small
molecules, presenting scientists with a nearly impossible
task to understand the complexities of metabolite dynamics
[1]. Thus, the computational modeling and simulation of
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metabolic systems have become essential for their investiga-
tion.

Within the last decade, the pursuit of mathematical models
for biological systems that can accurately predict cellular- and
systems-level behaviors, in addition to providing quantitative
data, is an essential area in metabolomics requiring further
investigation. Furthermore, a quantitative model with the
ability to predict phenotypic changes reliably with pertur-
bation or challenges in silico could lead to scientific break-
throughs not available with traditional means of inquiry.
Models as a whole strive to provide a better representation of
reality, aiming to represent the system of inquiry accurately.
Inclusion of all cellular components directly or indirectly
involved are considered too complex to model with current
technology. Consequently, assumptions and simplifications
are frequently applied in place of ‘‘unknowns’’, where details
are perceived as non-pivotal and with elements such as
stochastics omitted for simplicity. Despite these adjustments,
the accuracy and competence of the model are still dependent
on these assumptions and simplifications.
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A variety of approaches are available to model the dynam-
ics of metabolic systems; importantly, these include deter-
ministic and stochastic modeling approaches. Frequently,
kinetic models of metabolism were formed using Ordi-
nary Differential Equations (ODE), providing a deterministic
modeling approach that provides quantitative information
on interactions, underlying dynamics, and system regulation
components [2]. ODE models operate with the assumption
that all reactions occur under evenly mixed homogenous
populations with plentiful molecules available in the environ-
ment. Previously, ODEs have been used to simulate biochem-
ical kinetics and biochemical networks. With historically
limited computational power, this approach was sufficient
to represent the interactions and dynamics occurring within
basic biochemical networks. Rapoport et al. described the
ability to determine metabolite concentrations of glycolytic
intermediates in erythrocytes using a desktop calculator [3].
As computational power has improved over time, metabolite
concentrations within a limited chain of reactions can now
be determined in a matter of seconds. While ODE modeling
reduces computational efforts, the assumptions and simpli-
fications come at the cost of omitting noise and stochas-
tic elements that are inherent in biological systems. Thus,
stochastic modeling approaches could be more appropriate
representations of in vitro and in vivo systems and provide
the capacity to incorporate their statistical properties [2].

While ODEmethods are well defined in the biological con-
text, more recently, systems biology has extended the limits of
what was previously computationally feasible: modeling the
complexities of biological variation that includes the stochas-
tic nature inherent in biology. There are different approaches
tomodeling stochastics in biological systems, with disparities
between those often used at molecular and system levels [4].
Notably, the model proposed here is flexible in its source of
stochasticity, which currently employs computed Gaussian
randomness; however, an alternative probability distribution
could be easily substituted if desired.

Stochastic models are typically formulated by the Chem-
ical Master Equation (CME), with the ability to capture
simple stochastic occurrences in biological systems [5], [6].
However, the drawback comes with the increased mathe-
matical and computational complexity, considerably limit-
ing the size of the network [7]. The Gillespie algorithm,
introduced in 1977, provides exact simulation methods to
simulate the CME and can be optimized with the addition
of Tau leaps [8]–[10]. Recent studies have also implemented
the Gillespie algorithm with additional functions (Hill) to
experiment with stochastic gene expressionmodeling in cases
where expression can operate with ‘‘switch-like’’ behav-
ior [11]. Still, attempts are being made to further improve
stochastic simulation and overcome the computational inten-
sity required [2], [5], [12]–[17]. In addition to the traditional
ODE approaches, some larger gene regulatory networks have
been assembled with the use of Bayesian model averaging
[18], [19]. A relatively recent approach to complex biologi-
cal modeling is the application of queueing theory and net-

works/models. Similar to the Gillespie algorithm, queueing
networks can be considered as a hidden Markov chain, and
are more convenient than directly implementing the Gillespie
algorithm [20].

Queueing networks have been used broadly to describe
data communication networks [21], patient triage at hospi-
tals [22], the HIV infection process [23], pharmacokinetic
modeling [24], and non-viral gene delivery [25]. Moreover,
the implementation as described by Martin et al. [25], has
incorporated other cell processes, such as mitosis or cell
necrosis, which are challenging to implement with an ODE
approach. Queuing networks have additionally been used to
develop a simple working model of metabolism [26] and
enzyme-substrate interactions [27]. Briefly, queueing theory
is a method of approaching stochastic simulations, doing so
in a computationally less intensive process by grouping simi-
lar types of molecules and reactions [28]. Queueing theory
possesses the ability to potentially describe more complex
networks that would not be practical by alternative stochastic
methods due to extended time to execute. Advantageously,
queueing networks are capable of 1:1 mapping of biochem-
ical pathways creating an intuitive structure that is simple
to understand [29]. Since the advent of queueing models,
some more specialized adaptations have been developed such
as atomic routing models which have sought to optimize
how objects (i.e. substrates) might flow through networks
demonstrating implementation versatility [30].

We have recently developed a tool to recapitulate observed
insulin responses in vitro and to measure the effects of
Wortmannin-like inhibition on glucose uptake [31]. This sys-
tem has provided insight into transient changes in molecule
concentrations within the insulin signaling pathway and laid
the groundwork to identify critical drug-targetable compo-
nents, including those associated with insulin resistance. The
application of queueing theory has provided the means to
incorporate natural variation of kinetic constants and initial
molecular concentrations, that are inherent in cells and tis-
sues [32]. Herein, we present our current queueing model to
simulate the stochastic effects of glucose metabolism as a
demonstration to model more complex metabolic networks.
We then provide qualitative comparisons of pharmacological
inhibition in both simulated conditions and metabolic data
from a cancer cell dataset to validate the model.

II. METHODS
Investigators frequently utilize glycolysis for model devel-
opment as this pathway is well characterized biochemically.
With known experimental endpoints, one can compare results
and validate the computational methods in development.
Consequently, we have used glycolysis here to present the
modeling of metabolic networks by queuing theory. A brief
overview of glycolysis and glucose metabolism can be found
in Berg et al. [33].

We made use of previously derived mechanistic equations
employing Michaelis-Menten kinetics to develop this model
initially. The mathematical analyses of the rate equations
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TABLE 1. Initial concentrations of glycolytic metabolites.

and parameters used are described in Mulukutla et al. [34].
We aimed to build upon a previously defined model to imple-
ment our proposed queueing approach. Thus, the parameters
and kinetic constants for the current model were chosen to
reflect the model investigated in Mulukutla et al. Notably,
the current model applies experimental and observed initial
metabolite molar concentrations reported by Berg et al. [33].
When considering metabolic flux, it is essential to evaluate
changes in molar concentrations instead of mass, to account
for chemical modifications to metabolic products. Further-
more, our model accounts for reactions that utilize and/or
produce more than one reactant or product. Concentration
and parameter values that were either absent or substantially
different between sources were obtained from previously
published literature. Energy nucleotides and metal ions were
fixed in our model for simplification and to centralize our
model around the intermediate metabolites of glycolysis.
Table 1 lists the initial concentrations of the metabolites
measured in the simulation output, and Table 2 provides con-
centrations of additional substrates required for calculations,
but not directly measured from the simulation.

To demonstrate the mechanics of applying queueing net-
works to the modeling of metabolic pathways, one can con-
sider a pathway of N interacting metabolites M1, . . . , MN
having initial concentrations at time instant t0 of C1(t0),
. . . , CN (t0). Within the considered metabolic pathway, each
metabolite M1, . . . , MN is involved in Ki reactions, i = 1,
. . . ,N . The corresponding reaction rates vi,j(C1(t), . . . ,CN (t),
t); i = 1, . . . , N ; j = 1, . . . , Ki, are dependent on the
instantaneous concentrations of the interacting metabolites at
time t , as well as othermetabolites and enzymes, and the asso-
ciated time variabilities of rates are denoted as additional time
dependency of t . The reaction rates can be positive or nega-
tive. A positive sign represents the production of metabolites,
while a negative sign represents the consumption of metabo-
lites. To find the concentration of a specific metabolite, Ci(t),

TABLE 2. Additional metabolites and energy nucleotides.

at given time instant t , one traditionally would solve set(s) of
ODEs in the form of:

d
dt
C1 (t) =

∑K1

j=1
v1,j(C1 (t) ,. . . ,CN (t) ,t)

d
dt
C2 (t) =

∑K2

j=1
v2,j(C1 (t) , . . . ,CN (t) , t)

. . . .
d
dt
CN (t) =

∑KN

j=1
vN ,j(C1 (t) , . . . ,CN (t) , t) (1)

with the initial condition C1(t0), . . . ,CN (t0).
Given the interdependency of concentrations

C1(t0), . . . ,CN (t0), which are frequently (and highly) non-
linear, and further dependency of other time-varying circum-
stances, random factors, or both, achieving the solution of
such sets of equations is not only computationally inten-
sive, but also not guaranteed to produce a numerically stable
result. The problem is further complicated by the fact that
concentrations C1(t), . . . , CN (t) are always non-negative,
and as reported by Webb and Infantex [38], and Erbe and
Wang [39], this is a non-trivial task and a solution may not
exist presently. Unfortunately, there is no guarantee that ODE
modeling a biological process is suited to satisfy conditions
for the existence of a non-negative solution. This is due in
part to the fact that biological processes will slow/halt once
the variables involved drop below a certain threshold. One
can force the numerical solver to produce a non-negative
solution, for example, by usingMATLAB R©’s ’NonNegative’
option in the ‘odeset’ solver [39]. However, this significantly
increases computation time, and the solution may not be
accurate or numerically stable. This can be more problematic
for those metabolites that are not expressed in high con-
centrations and/or very rapidly consumed in other reactions.
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For example, the metabolite glucose-6-phosphate (G6P) is
also an intermediate in the Pentose Phosphate Pathway (PPP)
and glycogen metabolism [40]. This presents an advantage
with queuing theory for simulating systems where sections of
metabolic pathways can be segmented and computationally
halted instead of producing negative values, which better
represents the nature of biological systems.

To find a method to simulate processes described by the set
of ODEs (1), one can notice that each of the ODEs in (1) is
of the form describing an average behavior of anM (t)/M (t)/c
non-depleting queue [20]. In general, the M (t)/M (t)/c queue
is such a system where arrivals form a single queue and
are governed by a time-varying Poisson process. There are
c servers and job service times are exponentially distributed
with time-varying rates. The M (t)/M (t)/c non-depleting
queues are exceptional cases of queues [22] where, for each
time interval, the difference between corresponding arrival
rate and service rate is non-negative. Massey [20] also ana-
lyzed a general case of M (t)/M (t)/c queues, for which there
is no simple method to describe them utilizing ODEs, but
which can be depleted to zero elements in the queue or in
other words for queues that can be emptied entirely.

Hence, the M (t)/M (t)/c queues can be used to model
metabolic pathways for simulation purposes, and instead of
solving sets of ODEs (1), one can simulate a network of
interconnected M (t)/M (t)/c queues, provided that the con-
centrations C1(t), . . . , CN (t) are digitized. The arrival rates
within this system are used as queues, and the service rates
are used as reaction rates vi,j(C1(t), . . . , CN (t), t) normalized
to the duration of a single simulation time step, 1ti1ti, and
the concentration increment,1(Ci(t)), which denotes a finite
change of Ci(t) in a finite time increment of 1ti. It should
be noted here that instead of using the infinitely small time
increment dt, as in formula (1), we use a finite time increment,
1ti, that leads to finite concentration increment, 1(Ci(t)).
Of course, the introduced discretization of concentrations
introduces some quantization error, which could be mini-
mized by choosing a smaller value of 1(Ci(t)). However,
by selecting a smaller value of 1(Ci(t)), it could potentially
lead to increased computation time because it may require a
reduction in the time step, 1ti, resulting in more simulation
steps to achieve the desired simulation time duration. There-
fore, a balance is required, and normalization of the reaction
rates to achieve arrival and service rates for the queues is
calculated according to the formula:

µi,j =
|vi, j(C1(t), . . . ,CN (t), t)|1ti

1(Ci (t))
(2)

If the reaction rate vi,j(C1(t), . . . , CN (t), t) is positive then
the corresponding normalized rate µi,j, is an arrival rate
while if vi,j(C1(t), . . . , CN (t), t) is negative the corresponding
normalized rate, µi,j, is a service rate. The instantaneous
length of each queue provides a possible realization of a
stochastic Markovian process representing variations in the
concentration for a given metabolite. Certainly, the average
changes in concentration can be achieved by averaging the

simulation results for several simulation runs. To ensure the
correctness of simulation, the simulation time step, 1ti, and
the concentration increment, 1(Ci(t)), have to be selected
where allµi,j are less than one, as the arrival and service rates
are representative of probabilities for arrival and service of
1(Ci(t)) in the given time interval. To ensure that a single
1(Ci(t)) is processed in each time interval, the necessary
condition is as follows:

µi,j � 1,

for j = 1, . . . ,Ki and i = 1, . . . ,N (3)

However, neither the simulation time step, 1ti, nor the con-
centration increment, 1(Ci(t)), need be the same for all
i = 1, . . . ,N , but can be chosen in a way that minimizes
simulation time while ensuring the condition (3) is satisfied.
Although the time increments can be calculated dynamically
within each step, for the current model, we have chosen
constant time increments for every reaction. As some reaction
rates are orders of magnitude different, there would be a mis-
use of simulation time if we use the shortest time increment
where condition (3) is satisfied for every reaction. The cumu-
lative reaction time is equal for all reactions, thus ensuring the
conservation of molar masses. Given the stochastic nature of
chemical reactions, where reaction rates can vary depending
on environmental conditions, the reaction rates can be ran-
domized by adding Gaussian (or other) noise to the kinetic
constants used to calculate values of vi,j(C1(t), . . . ,CN (t), t).
The same can be performed at time instant, t0, for the initial
concentrations, C1(t0), . . . , CN (t0).
A queue representing the concentration of a single metabo-

lite is shown in Fig. 1. The inputs to the queue represent reac-
tions leading to the production of the metabolite, and outputs
represent reactions that consume the metabolite. The cloud,
connected to the queue via a bidirectional arrow, represents
processes not considered (or currently unknown) that result
in an imbalance between both aggregated inputs and outputs,
to and from the queue, respectively. The arrivals to the queue,
representing discrete increments in the concentration of the
metabolite, are modeled by Poisson processes, while an expo-
nential distribution models the service time (time intervals
between two consecutive output events). These assumptions
are consistent with classical queueing theory approaches [22].
Therefore, the number of arrivals in any given time interval
(t , t+τ ] follows a Poisson distribution with a parameter (µτ ),
such that :

P [(N (t + τ)− N (t)) = k] =
e−µτ (µτ )k

k!
(4)

where N (t + τ ) − N (t) = k is the number of arrivals in the
interval (t , t + τ ]. The time required for the server to process
the packet is described by the exponential distribution using
the probability distribution of a random variable X in terms
of the rate parameter µ as follows:

f (x;µ)=

{
µe−µx x ≥ 0,
0 x < 0.

(5)
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FIGURE 1. Example Queue. Queue representing concentration Ci (t) of the
metabolite Mi ; µi,j , j = 1, . . . , Li , are arrival rates as corresponding to
processes resulting in production of metabolite Mi ; µi,j , j = Li + 1,
Li + 2, . . . ,K∗i , are service rates corresponding to processes using
metabolite Mi . K∗i = number of reactions that involve metabolite Mi
within the model. Additional input/output pathways are included as
dashed lines to account for unknown or missing reactions. Queue
adapted from Wysocki et al. 2017, Simulation of Central Glucose
Metabolism Using Queueing Network, IEEE International Conference on
Electro Information Technology (EIT), Lincoln, NE, 2017, pp. 217-222.

Therefore, the resulting arrival process at the input of a sub-
sequent queue to which that output of the considered server
is connected, again, follows a Poisson distribution. Assuming
that in total, there are c-outputs from the queue, the queue can
be considered as a standardM (t)/M (t)/c queue, as previously
described.

For the description to be valid, both the sums of all arrival
rates, µi,j, j = 1, . . . , Li, and the sum of all service rates
µi,j, j = Li + 1, Li + 2, . . . , K∗i must be less than one. This
condition can be satisfied by either reducing the duration of
time increment or increasing the concentration. Of course,
reducing the time increment increases the simulation time,
as more simulation steps must be considered for the duration
of an experiment, while increasing the concentration unit
may reduce the accuracy of the simulation results. There-
fore, a balance is ideal while choosing parameters. From the
perspective of implementing a simulation of the metabolic
process, it is convenient to ensure that in a given simulation
step, only one concentration unit of a givenmetaboliteMi will
be processed. Assuming that there are Ji = K∗i − Li possible
reactions that can utilize metabolite Mi, the probability Pi1
that this occurs is given by the formula:

Pi1 =
∑Ji

j=1
µi,j

∏Ji
k = 1
k 6= j

(
1− µi,k

)
(6)

Assuming condition (3) is satisfied, (6) can be simplified to:

Pi1 =
∑Ji

j=1
µi,j (7)

The conditional probability, Pi{j|1}, states if one concentra-
tion unit is processed in a simulation step, it is processed in
the reaction associated with the reaction rate µi,j, which is
given from the definition as:

Pi{j|1} =
Pi{j ∩ 1}
Pi1

=

µi,j
∏Ji

k=1
k 6=j

(
1− µi,k

)
∑Ji

l=1 µi,l
∏Ji

k=1
k 6=l

(
1− µi,k

)
=

µi,j∑Ji
l=1 µi,l

∏Ji
k=1k 6=l(1−µi,k)∏Ji
k=1k 6=l(1−µi,k)

=
µi,j∑Ji

l=1 µi,l

(
1−µi,j
(1−µi,l)

)
=

µi,j(
1− µi,j

)∑Ji
l=1

µi,l

(1−µi,l)

(8)

where Pi{j∩ 1} denotes the probability where in this specific
simulation step only one concentration unit is processed and
only in the reaction associated with the reaction rate µi,j.

Again, if (3) is satisfied, (6) simplifies to:

Pi {j|1} =
µi,j∑Ji
l=1 µi,l

(9)

Notably, current metabolomics datasets are often incom-
plete or semiquantitative data, and some connections
between metabolites remain undefined. To account for
unknown or missing reactions, an additional input/output
pathway is included in ourmodel for everymetabolite consid-
ered, as illustrated in Fig. 1 as a dashed line connection which
can be bidirectional. The rate µi∗ is determined as the rate
which balances the steady-state value of the concentration
Ci(t). If in steady-state, there is an outflow of metabolite
Mi, with a resulting metabolite concentration unequal to the
steady-state value that will require scaling by a factor equal to
the ratio of the actual concentration and the steady-state con-
centration. Conversely, during inflow the scaling is inversely
proportional. As previously mentioned, we have used queues
to describe additional biological pathways and have provided
detailed explanations of the proposed queueing theory meth-
ods [41], [42]. Additionally, the pseudocode of the queueing
theory application is provided as a supplementary file.

Simulations were performed on an Intel R©CoreTMi7-
2600 CPU @ 3.40 GHz, RAM 32 GB running
MATLAB R©R2017b.

III. RESULTS
For the current study, our interest was in exploring the
feasibility of modeling enzymatic reactions to simulate the
dynamics of glycolysis utilizing queues with the addition
of stochastics. Briefly, queueing theory is a mathematical
tool used to describe, model, and analyze waiting lines
(i.e. queues) [43]. At the molecular level, metabolites are
produced and consumed through enzymatic reactions form-
ing queues of metabolites. Production or absorption of the
metabolite adds to the appropriate queue length, whereas
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consumption reduces metabolites and the queue length. Dis-
crete random processes describe both production and con-
sumption of a given metabolite, referred to as ‘‘arrival’’ and
‘‘service’’ processes, respectively, [44]. Queues can be easily
interconnected, have been successfully used tomodel internet
function, and arewell suited tometabolic networks as they are
quite similar [21]. Our previous work demonstrates the ability
to accurately simulate conditions seen in vivo using a fraction
of the computing power of classical quantitative approaches
[31]. We have adjusted our approach with queues to model
metabolic pathways given mechanistic rate equations of all
glycolytic reactions and validated experimental metabolite
data.

As a core metabolic pathway common to all lifeforms,
glycolysis is the enzymatic breakdown of glucose into a
usable form of energy, additionally supplying intermediate
metabolites as ‘‘building blocks’’ for connecting pathways
that further support life. Naturally, glycolysis provides a scaf-
fold to begin extending our model to incorporate additional
sections of the metabolome.

For the initial development of our model, we made
use of previously derived mechanistic equations employing
Michaelis-Menten kinetics. For model simulations, all inter-
mediate metabolites were represented by different queues,
as described in the methods section. The queues representing
metabolites are connected if there is a reaction converting
one metabolite into another. Fig. 2 illustrates the assembled
queueing network representing glycolysis from glucose to
pyruvate.

For the stochastic simulations presented, the rate equations
and model parameters were used as they are indicated in
the literature (Table 1 and Table 2). Notably, the illustrated
simulation pathways mimic a diagrammatic representation
of metabolic flow similar to traditional biochemical illus-
trations. Thus, it can be more readily comprehended than
sets of complex ODE equations which can quickly become
daunting. Highlighting the significance of the approach, the
current methods enabled rapid alteration of parameters and
additional simulations under a variety of selected in silico
conditions. For example, due to the rapid catalytic conversion
of 3-PG and 2-PG in combination with the low metabolic
concentrations as separate queues, the metabolites 3-PG and
2-PG were readily depleted given the 1 microsecond time
scale used for the metabolite calculations. As the conversion
from 3-PG to 2-PG is not a rate-limiting reaction, 3-PG and
2-PG were grouped into a single queue, avoiding the need to
decrease simulation time step and unnecessary increases to
simulation time.

Biological systems and reactions are inherently stochastic
processes. Consequently, stochastic elements such as ran-
domness and variation were incorporated into the model sim-
ulations. Reaction rates were randomized during simulation
by adding an arbitrarily defined 10% Gaussian noise to the
kinetic constants used to calculate values of vi,j(·). The same
adjustment was included for the initial concentrations at time
instant t0 for all glycolytic intermediates. During simulations,

FIGURE 2. Simulated metabolic pathway from glucose to pyruvate.
Arrows denote the modeled reactions. Vi, i = 0, . . . , 10, and V3A, V3B, are
the reaction rates; for bidirectional arrows, the direction is determined by
the sign of the corresponding reaction rate with the positive direction
being from the top down. GLC, glucose; G6P, glucose 6-phosphate; F6P,
fructose 6-phosphate; F16BP, fructose 1,6-bisphosphate; F26BP, fructose
2,6-bisphosphate; GAP glyceraldehyde 3-phosphate; DHAP,
dihydroxyacetone phosphate; 13BPG, 1,3-bisphosphoglycerate; 3PG,
3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP,
phosphoenolpyruvate; PYR, pyruvate.

each cell is calculated independently; that is, concentrations
of each molecule in the metabolic network are stochastic and
bound by error values listed in the literature. The queueing
theory approach causes the actual concentrations of given
molecule types to be simulated as separate queues within
each cell. The probability of a movement happening at any
time slice from one queue to the next is determined by
the relevant normalized reaction speed. Movements between
storages occur at a particular time instant if a randomly drawn
number from the interval [0,1] at that time instant is smaller
than the normalized reaction speed governing the movement.

After simulations have been performed for every consid-
ered cell, the results are averaged over the cell population.
In the current model, variations of 10% glucose levels are
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FIGURE 3. Effect of random variability of initial concentrations of all
glycolytic intermediates and kinetic constants on the simulated
concentration of pyruvate. A) Means and standard deviations calculated
over populations of 100 independent cells with variability applied to the
concentrations of the metabolites of interest and the enzymes involved in
all of the glycolysis reactions. The percent variability is derived from a
zero mean Gaussian with a standard deviation of x/3 and is multiplied by
the nominal concentration value. The initial concentrations of the
metabolites of interest are chosen that way, and for the concentration of
other enzymes involved, the operation is repeated every second, while
the simulation step is 0.1 millisecond. Computation time for simulating
100 cells for 300 seconds with 0.1 millisecond time step was
36,767.18 seconds. B) Two individual cells, 10% variability of initial
concentrations and 10% Gaussian noise. C) Two individual cells, 20%
variability of initial concentrations and 20% Gaussian noise. D) Two
individual cells, 50% variability of initial concentrations and 50%
Gaussian noise.

randomly computed for every simulated second. The simula-
tions were run using a 1 microsecond time step, and random
variations in the values of kinetic constants used in calculat-
ing reaction rates were introduced every second to simulate
intrinsic biochemical noise. Initial concentrations were ran-
domized by including an arbitrarily defined 10% Gaussian
noise to reflect variability among cells in the population.
The effect of such randomization on the simulated level of
pyruvate is shown in Fig. 3. In Fig. 3A, it is evident that
increased variability leads to greater dynamic range of pyru-
vate among cells. Additionally, increased variability resulted
in an increased simulated average for pyruvate: a result of
metabolite amounts bound at or above 0 with no set upper
limits.

IV. GLYCOLYTIC FLUX
Previously, Mulukutla et al. aimed to assess the regulation of
different isoforms of three rate-limiting glycolytic enzymes
on overall pathway flux and behavior. The rate-limiting
enzymes of glycolysis, hexokinase (HK), phosphofructoki-
nase (PFK), the bifunctional enzyme phosphofructokinase-2/
fructose 2,6-bisphosphatase (PFKFB), and pyruvate kinase
(PK), each have multiple isoforms and may be expressed
in combination within a single cell in a cell-type depen-
dent manner. We considered regulatory mechanisms of PFK,

FIGURE 4. Steady-state glycolytic flux. Metabolite concentrations were
simulated with an input of 5 mM glucose over a span of 1200 seconds to
model an unperturbed and constant state.

PFKFB, and PK by including parameters and terms in the rate
equations to consider the feedback inhibition and activation,
keeping both upper and lower glycolytic regulatory loops
active in our simulations. The feedback considered consists
of F26BP (an important activator of glycolytic flux) and
F16BP activation of PFK, F16BP activation of PK, and PEP
inhibition of PFKFB activity. The parameters set to simulate
the feedback loops are as follows: K_PFKf16bp=0.65 mM
and K_PKf16bp=0.04 mM. The PFKFB kinase/phosphatase
(K/P) ratio, the ratio between the kinase and phosphatase
activity, was set to 0.1 by adjusting the value of the PFKF-
BPase Vmax leaving the kinase Vmax at its original value.
Different K/P ratios are given in the literature based on spe-
cific tissue and cell type. The range varies from less than
1 to 710 depending on the isoform of PFKFB expressed
and the tissue type in which it is found. Notably, PFKFB
is highly dependent on signaling and hormonal regulation,
which can transiently change the K/P ratio given the stim-
ulus. Signaling regulation was not considered in this model,
though this component is of interest for further study. Thus,
we aimed to keep F26BP relatively constant throughout the
initial steady-state testing to keep the flux toward a stable
level. We found that the K/P ratio of 0.1 kept F26BP and
all other metabolites constant over time with the given the
parameters used. Therefore, the 0.1 K/P ratio was used to
further test the ability of the model to simulate metabolite
changes. Simulations were repeated for 30 cells, and once
completed, the average concentrations of each metabolite per
cell were graphed as a function of time (Fig. 4).

V. GAPDH INHIBITION
In vitro experiments and model simulations were per-
formed to assess the performance of the proposed queueing
approach. The rationale being that biologically known end-
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FIGURE 5. Effects of FK866 on metabolite concentrations in vitro.
A) Experimental metabolomics data measuring G6P and F6P
concentrations with the inhibitor FK866 in (solid blue and dashed green
lines) A2780 and (red) HCT116 cancer cells, B) effects of FK866 on FBP
concentrations in vitro, C) effects of FK866 on G6P and F6P
concentrations in vitro, D) effects of FK866 on PEP concentrations in vitro.

points documented in literature can be used as benchmarks
to demonstrate the model efficacy. FK866 is a non-
competitive inhibitor of nicotinamide phosphoribosyltrans-
ferase (NAMPT), the enzyme that supplies the majority
of the intracellular pool of NAD+, a required substrate
for the GAPDH reaction. Extensive research has character-
ized the effects of FK866 on high glycolytic flux in can-
cer cells [45]–[48]. Under limited NAD+ concentrations,
the GAPDH reaction represents a bottleneck in glycoly-
sis, producing a block in the glycolytic flux. Experimental
results show the upper-level glycolytic metabolites, including
G6P, F6P, F16BP, GAP, and DHAP accumulate while the
lower-level glycolytic metabolites, 13BPG, 3PG/2PG, PEP,
and PYR, decrease as substrates become unavailable. Thus,
we hypothesized that with the reduction of GAPDH activity
and, consequently, simulation of enzyme inhibition in silico,
the model should be able to mimic the qualitative metabolic
trends seen in vitro. Notably, kinetics and enzyme concen-
trations for the specific cancer cell lines were unknown; to
account for the differences between the cancerous and non-
cancerous simulations, the reaction rates were scaled. The
effects of FK866 are presented in the experimental data pro-
vided by [47] in Fig. 5, and by the present model outcomes
of GAPDH activity inhibition in Fig. 6.

GAPDH activity was reduced by adjusting the Vmax of the
reaction catalyzed by GAPDH. Inhibition was simulated by
varying GAPDH activity between 0% and 90%, with each
inhibitory level run as a separate simulation for a popula-
tion of 30 cells. The simulated results of GAPDH inhibition
of G6P+F6P, F16BP, GAP+DHAP, and PEP, are plotted
as dose-response curves in Fig. 6 to reproduce the effect
of metabolite changes from experimental pharmacological
inhibition of two cancerous cell lines (Fig. 5). The FK866

FIGURE 6. Effects of GAPDH Inhibition on metabolite concentrations
in silico. A) G6P and F6P, B) FBP, C) GAP and DHAP, D) PEP. In all cases,
the Vmax of GAPDH was varied between 0 and 100 percent of its initial
value to simulate varying levels of enzyme inhibition.

inhibitor concentrations, used in both A2780 ovarian and
HCT116 colorectal cancer cell lines in vitro, were compared
to in silico reduction of the percent GAPDH activity. Of note,
we assume that at the lowest FK866 concentration (0.3 nM)
used in vitro does not inhibit GAPDH activity.

F16BP and PEP were reported as individual metabolites
in the two cancer cell lines, A2780 and HCT116. The com-
parison of the simulated and experimental data is presented
in Fig. 5 and 6. Due to difficulties in distinguishing isobaric
metabolites from one another, G6P+F6P and GAP+DHAP
were grouped in the experimental data, and the sum of these
metabolites are reported. The model was able to determine
the individual metabolite concentrations; however, following
each simulation, the two metabolites from the model data
(G6P+F6P and GAP+DHAP) were added for a closer com-
parison to the experimental data. Moreover, the data was nor-
malized so that each experiment (in vitro and in silico) began
with the same metabolite concentration, again for a clearer
comparison of the actual changes occurring as FK866 doses
increased (experimental) and as GAPDH inhibition increased
(model simulations).
In silico, we observed increases in all upper glycolytic

metabolites with inhibition of GAPDH, supporting the
metabolic data of NAMPT inhibition. The lower glycolytic
metabolite, PEP, showed reduction following increased inhi-
bition of GAPDH, in agreement with the results seen in
the experimental data. Using a K/P ratio of 0.1, F26BP
was the only metabolite that did not change mean val-
ues over time throughout the course of GAPDH inhibi-
tion at any level. Notably, the experimental data showed
a wide range of metabolite concentrations with similar
inhibitory doses, between and within both cell lines. For
example, the G6P+F6P concentration in the HCT116 cell
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line increased from 0.052 mM to 0.512 mM with the highest
FK866 treatment, and in the two separate experiments with
the A2780 cells, the metabolite concentrations increased to
only 0.18 mM and 0.13 mM (Fig. 5A).

The inhibition simulations aimed to observe the over-
all trend of metabolite changes, intended for a qualitative
comparison. There are slight variations present between the
experimental data and the model data. Still the results are
similar or within range of the experimental data; in the
model simulation, the F16BP concentration increased from
0.0022 mM to 0.0548 mM at the highest inhibition level,
while the F16BP concentration in the HCT116 cell line rose
from 0.0022 mM to 0.0496 mM at the highest FK866 treat-
ment (Fig. 5A-6A). Specific kinetics and prior knowledge
of experimental data may aid in reproducing results that are
more consistent in the future.

By comparing the simulation results with the experimental
one, it can be noticed that in both in vitro and in silico cases,
significant changes in observed metabolite concentrations
appear to occur at specific drug dosage in vitro and 90%
inhibition of GAPDH activity in silico. Therefore, one can
speculate that roughly 90% of GAPDH inhibition is achieved
with a dose of around 5 nM of FK866. Although a further
increase of GAPDH inhibition in silico simulations causes
further significant changes in the metabolite concentrations,
this is only partially observed in vitro with higher doses of
FK866.

VI. CONCLUSION
This paper presents a computational model of glycolysis
constructed as a queueing network; a modeling approach
widely used in modeling telecommunication packet net-
works. Dynamic modeling of biological systems, while
exceptionally useful, poses computational challenges and in
reproducing natural stochastic variation. The application of
queueing theory in dynamic modeling may provide a method
to overcome such challenges. The current applications of
this work hold promise for advancing computational biology
and biochemical research. The queueing theory represents
a mainstay modeling approach of telecommunication net-
works with application to simulate intracellular metabolism.
By viewing enzymes as ‘‘gates’’ and their substrates as
‘‘packets,’’ we have reduced the computational complexity
of the simulation to the advantage of much more rapid calcu-
lation. Previously, we have shown that we can model intra-
cellular mechanisms and do so while capturing the random
variation inherent with living cells [25], [29].

Research techniques inmetabolomics have evolved rapidly
since their introduction. Modeling strategies must be flexi-
ble to accommodate novel information and amend the data
as needed. The modularity of queues provides a suitable
approach for further model extension, whether that be addi-
tional metabolic reactions, parameter refinement, or multi-
scale modeling approaches. Moreover, this approach enables
the ability to simulate biochemical reactions stochastically
without the need to implement or solve stochastic algorithms.

As seen above, GAP and DHAP were represented experi-
mentally as a combination of metabolic intermediates, due to
their chemical similarities. Although mass spectrometry has
become increasingly sensitive for detecting small molecules,
isobaric metabolites are often difficult to distinguish from
one another. This is the case not only for several metabolic
intermediates of glycolysis but also for additional metabolic
pathways. An advantage to the in silicomechanistic modeling
of metabolic networks is the ability to represent such metabo-
lites as individual entities investigating distinct metabolic
reactions and the dynamics of each metabolite providing a
more in-depth observation of the intracellular interactions.

The need for models to be informed from and then simu-
late data using metabolomics sources represents a significant
advance in future possibilities with this approach. Due to the
ability to change variables and quickly analyze the resulting
metabolic effects, investigators can simulate the effects of
drugs or mutations on such processes. In all, the ability
to accurately and quickly simulate intracellular and intra-
tissue pathways represents a considerable leap forward in
the ability to understand the central biochemical underpin-
nings of cellular life. The advancement of technology in both
experimental biology and computational systems has allowed
scientific discovery and investigation on the chemical level.
Elucidation of intracellular metabolite and chemical dynam-
ics can provide valuable insight into how cells utilize cellular
components to grow, respond to environmental stimuli, and
ultimately support life. We believe queues have potential to
simulate metabolic reactions with greater efficacy by includ-
ing stochastic elements to modeled pathways as described
here. An additional advantage of the queueing approach is a
more natural and intuitive fit for biological pathways as they
are frequently represented in the field and depicted in models
of metabolism [29]. In summary, the current study presents
the application of queuing theory as a beneficial modeling
approach for simulating metabolic pathway dynamics and
predicting the effects of pharmacological inhibition.
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