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ABSTRACT This paper addresses contour detection by simulating the human visual system and its
application to visual object classification. Unlike previously designed bioinspired contour detection algo-
rithms, we consider contour to be the salience of an edge image, and we extract the salience by simulating the
endstopped cell and curvature cell in the visual cortex. Generally, we follow a local-to-global feed-forward
architecture, in which the size of the receptive field (RF) increases from the primary visual cortex to
the higher visual cortex. Edges are first detected by simple cells in small RFs, where textural details are
suppressed by non-classical receptive fields (NCRFs) and sparse coding. Second, edges are integrated
into local segments by complex cells. Afterwards, they are combined into the salience of edge images by
endstopped cells and curvature cells and are ultimately the core of the final contour. In addition, we also
apply the bioinspired contour detection algorithm to visual object classification tasks. Experiments on
contour extraction show that, compared with state-of-the-art bioinspired algorithms, our algorithm makes
a considerable improvement on contour detection. Experiments on visual object classification show that the
contours produced by our proposal are powerful representations of the original images, which implies that
our proposal is both biologically plausible and technologically useful.

INDEX TERMS Contour detection, curvature cell, image processing, machine vision, biologically inspired
computation, visual object classification.

I. INTRODUCTION
Contour plays an important part in visual perception, since
we can recognize an object just by its silhouette; and it is
widely used in plenty of visual tasks, such as visual object
detection [1], recognition [2], and tracking [3]. Therefore,
contour detection is not only concerned by the biological
vision community but also attracts considerable attentions
from the machine vision community.

In this paper, we set up a contour extraction system by
simulating the visual cortex, and apply it to visual object
classification tasks. The motivations of this paper are as
follows: (a) Scientifically, the purpose of the proposed work
is to provide a possible mechanism of contour perception in
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biological visual systems. (b) Technologically, one purpose
of the proposed work is to provide an unsupervised contour
detector, which should be useful in practical visual tasks.
(c) The other technological purpose of the paper is to verify
the applicability of the proposed contour detector in visual
object classification.

The main contributions of this paper are as follows.
First, in contrast to the other biologically inspired contour

extraction algorithms [4]–[6], we consider contour to be the
salience of an edge image. We extract the salience by simu-
lating the endstopped cell and curvature cell in the interme-
diate of primary visual cortex and higher visual cortex. Our
algorithm is in line with the hierarchical theory of the bio-
logical visual system, where contour perception is the bridge
linking primary visual perception and higher visual tasks.
Our algorithm provides a possible contour sensing method
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of the visual cortex, and is proved to be an improvement on
bioinspired contour extraction algorithms.

Second, we apply the bioinspired contour algorithm to
visual object classification tasks. Though contour extraction
by simulating the visual cortex has been studied [4]–[6],
it is rarely reported to what extent the contour is appli-
cable to practical visual tasks. There is the work of
Rodríguez-Sánchez and Tsotsos [7], but this work is not com-
prehensive enough. Only a handful of samples are used in [7]
to demonstrate the possibility of visual object classification
using contour cues. In this paper, we show the applicability of
bioinspired contours to visual object classification by exper-
iments on two public image datasets.

The remainder of this paper is organized as follows.
In Section II, we report the relevant work. In Section III,
we describe our contour detection algorithm by simulat-
ing the visual cortex. In Section IV, we briefly show our
visual object classification paradigm. In Section V, we con-
duct the contour detection experiments and object classifica-
tion experiments based on the bioinspired contour. Finally,
we draw the conclusion in Section VI.

II. RELATED WORK
Contour detection can be traced back to the early work in the
1980s [8]. In those days, the difference of contours and edges
was usually neglected, and contour detection was equivalent
to edge detection. One purpose of the study of edge/contour
detection was aim to reveal how people see the world. For
example, Marr and Hildreth proposed a theory of edge detec-
tion, and used the theory to explain basic psychophysical
findings [8]. Technologically, they proposed a filter for edge
detection. Scientifically, they proved that the filter is a phys-
iological model of simple cells in the visual cortex [9], [10].

On the contrary, there are many bioinspired contour detec-
tion algorithms based on physiological findings [11]. For
example, Wei proposed a contour detection model based on
non-classical receptive field [12]. In the model, an image
was filtered by retina cells, simple cells and complex cells,
then inhibited or disinhibited at different spatial locations on
different scales by non-classical receptive field [12]. Mean-
while, Spratling proposed a sparse coding algorithm for
boundary detection [5]. Sparse coding is an important prop-
erty of orientation-tuning cells in the primary visual cortex.
Their work was limited to intensity images at a single scale,
but outperformed several contour extraction algorithms [5].
On the other hand, Yang and his colleagues proposed an algo-
rithm by simulating the color-opponent mechanisms involved
in from the retina to the primary visual cortex for boundary
detection in complex natural scenes. Unlike the other pre-
vious work, they used the red-green and blue-yellow color
opponent channels in the human visual system for boundary
detection [4]. Yang and his colleagues then improved their
work by mimicking color-sensitive double-opponent cells in
the primary visual cortex of the human visual system. The
receptive fields used in the algorithm are orientation-sensitive
and both chromatically and spatially opponent, In the

extended work, they not only extracted boundaries by mim-
icking the double-opponent cells, but also used the spatial
sparseness constraint of neural responses to suppress the
textural edges [6]. Another work of Yang and his colleagues
is introducing multifeature-based surround inhibitions into
contour extraction [13]. They assigned weights to different
visual features, like orientation, luminance, and luminance
contrast; then they used the weights to modulate the final
surround inhibition of the neurons. They improved the perfor-
mance of contour detection by using the multifeature-based
surround inhibitions [13]. Similarly, Akbarinia and his col-
leagues proposed a biologically-inspired edge detection
model [14]. They introduced four receptive field surround
modulations into the boundary detection. These were the full,
far, iso-orientation and orthogonal-orientation modulations.
And they further introduced a feedback connection from
higher-level visual areas to the lower ones. By doing so, they
made a big improvement compared to the other bioinspired
algorithms [14].

Certainly, there are contour detection algorithms that do
not based on physiological findings. Plenty of contour detec-
tion algorithms originate from applied mathematics. The dif-
ference of edges and contours is usually neglected in such
kind of algorithm. For example, Wang and Shui proposed
a noise-robust color edge detector using gradient matrix
and an-isotropic Gaussian directional derivative matrix [15].
Zhang and his colleagues proposed a noise-robust image
edge detector using automatic an-isotropic Gaussian ker-
nels [16]. Wang and his colleagues proposed a multiscale
edge detector based on first-order derivative of an-isotropic
Gaussian kernels [17]. Undoubtedly, Canny operator [18]
is one of the most classical methods for edge detection in
such kind of algorithm. The other kind of contour detectors
come from machine learning technology. For example, Piotr
and Zitnick proposed an accurate and computationally effi-
cient edge detection model based on structured-forest [19].
Kivinen and Williams proposed an edge prediction model
based on deep neural networks [20]. Xie and Tu proposed
a holistically-nested edge detection model based on multi-
scale, multi-level feature learning [21]. Liu and Cheng
proposed an edge detection model based on richer convolu-
tional features learning [22]. Jiangzhong and his colleagues
proposed an edge detection model based on bi-directional
cascade network [23].

Apart from the contour detection algorithms, there are
practical applications of contour to visual tasks. Due to
the well-controlled illuminations and clean background in
indoor scenario, one can extract clean and complete con-
tours of objects. The application of contours to these visual
tasks, like surface defects detection and visual measure-
ment, is quite successful. For example, Besari introduced
surface defect characterization in polishing process based on
contour dispersion [24]. Jian used contour information in
automatic surface defect detection for mobile phone screen
glass. They used contour-based registration to generate an
template image, and the template image was used to align
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the mobile phone screen glass images [25]. On the other
hand, since there are textural details and background clutters,
one cannot extract clean and complete contours in com-
plex natural scenes. But the application of contour to such
visual tasks is also successful. For example, Shotton applied
contour-based learning to object detection [1], and proposed
a multi-scale categorical object recognition algorithm based
on contour fragments [2]. Yilmaz proposed a contour-based
object tracker, and applied the tracker to videos produced by
mobile cameras [3]. Whereas, there are rare reports on the
application of bioinspired contours to practical visual tasks,
except for the report of Rodríguez-Sánchez and Tsotsos [7].

III. CONTOUR EXTRACTION BY SIMULATING
THE HUMAN VISUAL SYSTEM
In this section, we introduce our contour extraction algorithm
by simulating the human visual system. FIGURE 1 shows the
flowchart of the proposed contour detection algorithm.

As shown in FIGURE 1, our detector begins by generating
a yellow (Y) color image and a grayscale image from the orig-
inal image. All the images are used to generate the color oppo-
nent images and spatial opponent images. These are R-G,
B-Y, and spatial opponent images. These opponent images
are then fed into the Gabor filter mimicking the simple cell in
the primary visual cortex (V1), which results in edge images.
The textural details in edge images are suppressed by non-
classical receptive fields (NCRFs) and sparse coding. Then,
nearby edges in the same direction are connected by complex
cells. Unlike previously proposed bioinspired approaches,
we send the edge image into an additional processing block
by mimicking the intermediate visual cortex. We model the
curvature cell in the visual cortex to extract curve segments
from edge images. These curve segments are the salience of
the edge images. However, they are usually incomplete in
representing the full contour. Hence, we superpose the edge
image with textural details suppressed onto the salience of
the edge image, which results in the final contour. Details are
given below.

A. PREPROCESSING BY RETINA CELLS
In the retina, there are cone cells and rod cells that are
sensitive to color stimuli and luminance stimuli respectively.
For the stimuli, we first produce a grayscale image to imitate
the luminance stimulus. Then, we produce a yellow image,
denoted as Y. According to the color opponency theory [26],
we need a yellow image to generate a color opponent image,
denoted as B-Y.

Afterwards, we employ the Gaussian filter to smooth textu-
ral details in the R, G, B, Y and grayscale images separately;
As a side effect, the edge details are also slightly blurred.
As a compensation, we apply the differential of two smoothed
images to sharpen the edges, which ultimately produces color
opponent images and spatial opponent images. These oppo-
nent images are the material for edge extraction.

The opponency mechanism employed by retina cells
enhances the edges in images. It facilitates edge extraction for

FIGURE 1. The flowchart of the proposed contour detector.

simple cells. Hence, it helps to produce real contours, since
contours are parts of edges.

B. EDGE DETECTION BY SIMPLE AND COMPLEX CELLS
Simple cells in the primary visual cortex can be seen as fea-
ture detectors with orientation-tuning properties. According
to the theory of Hubel andWiesel [27], simple cells are gener-
ated by connecting ganglion cells along the edge orientation.
We simplify the architecture of visual cortex by removing
the ganglion cells, and replace them with retina cells. Simple
cells are usually modeled as 2D Gabor filters [28]. Usually,
a maximum pooling step follows the Gabor filter, so that the
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responses of simple cells are as follows:

Rstep = max
θ

(Rretina ∗ godd,θ ), (1)

Rbar = max
θ

(Rretina ∗ geven,θ ), (2)

where * is the convolution operation, Rretina is the response
of retina cell, godd,θ is an odd Gabor filter, geven,θ is an even
Gabor filter, Rstep is the response of a step-like edge in the
direction θ , Rbar is the response of a bar-like edge in the
direction θ .

Contour is the salience of an edge image, while the textural
details in the image are noise that should be removed from
the contour image. Therefore, we employ the surround sup-
pression mechanism found in biological vision to suppress
the textural details. Physiological evidence shows that the
responses of visual neurons are strongly influenced by stimuli
presented in the region outside the classical receptive field
(CRF) [29]. This region, with a size 2-5 times larger than
that of the CRF, is called the nonclassical receptive field
(NCRF) [30]. It is defined as:

NCRF(θ ) = ge(σx1 , θ
⊥)− std · ge(σx2 , θ

⊥), (3)

where θ⊥ is the direction of suppression, which is orthogonal
to θ , the selective direction of simple cell. ge is an elliptic
Gaussian function along the direction θ⊥, ge(σx , σy, θ⊥) =
e−(Ax

2
−2Bxy+Cy2), A = cos2θ⊥

2σ 2x
+

sin2θ⊥

2σ 2y
, B = cos2θ⊥

4σ 2x
+

sin2θ⊥

4σ 2y
,

C = sinθ⊥
2

2σ 2x
·
cosθ⊥

2

2σ 2y
. We set σx1 = 3.65, σy1 =

1
8σx1 , σx2 =

3σx1 and σy2 =
1
8σx2 , according to the electrophysiological

measurements in [31]. std is the local standard deviation of
an image patch. The response of the NCRF, RNCRF , is the
convolution of Rstep/Rbar and NCRF(θ ).
Furthermore, we apply sparse coding toRNCRF . Sparseness

is defined as [32]

sparseness(x, y;
−→
h ) =

(
√
n− ‖

−→
h (x,y)‖1
‖
−→
h (x,y)‖2

)
√
n− 1

, (4)

where
−→
h (x, y) is the magnitude histogram of the gradient of

a local region centered at (x, y) and n is the dimension of
−→
h (x, y), which is set to 100 in our experiments to achieve
a balance of computational complexity and performance.

The response of sparsity is the dot product of sparseness
and RNCRF :

Rsparse = sparseness(x, y;
−→
h ) · RNCRF . (5)

According to the hierarchical theory of Hubel and
Wiesel [33], the responses of simple cells are processed by
complex cells. A complex cell is generated by connecting
simple cells along θ⊥, orthogonal to the selective direction
of the simple cells θ . It is sensitive to orientation tuning
as a simple cell is, but it has a larger receptive field. This
implies that, similar to a simple cell, a complex cell is an
edge detector, but with better robustness. It may play the role
of connecting edge segments along a specific direction while

allowing small displacements. The definition of a complex
cell is

RCC =
n∑
i=1

ci(RSCi ), (6)

where RSCi is the response of the i-th simple cell, ci is the
i-th weight. These weights are inversely proportional to the
distances of the cells to the center of the RF, and follow a
Gaussian distribution. According to the hierarchical theory
of Hubel and Wiesel [33], we connect 5 simple cells to a
complex cell, and the weights are set to 0.1350, 0.6049,
0.9974, 0.6049 and 0.1350.

Simple and complex cells extract edges from opponent
images, which provide material for the next phase of contour
detection. The NCRF and sparse coding suppress the textural
details in the edge images. Ideally, there should be no textural
details in the final contour image, and the precision of contour
detection should be largely improved.

C. SALIENCE DETECTION BY ENDSTOPPED CELLS
AND CURVATURE CELLS
As shown in the previous section, complex cells detect larger
line segments than simple cells do. Similarly, for the detection
of line segments beyond the scope of complex cells, end-
stopped cells [34] are needed. An endstopped cell is gener-
ated by connecting a simple cell and two displaced complex
cells [35], whose orientations are identical:

REC = φ(cctrφ(Rctr )− (cdp1φ(Rdp1)+ cdp2φ(Rdp2))), (7)

where cctr , cdp1 and cdp2 are the gains of the center cell
and the two displaced cells, respectively. According to our
experiments, we can achieve good performance simply by
setting the gains to 1; that is, cctr = cdp1 = cdp2 = 1.
Rctr , Rdp1 and Rdp2 are the responses of the center cell and the
two displaced cells, respectively. φ is a rectification function
that zeros negative values. Therefore, the response of the
endstopped cell REC is the linear combination of the response
of the simple cell Rctr and the responese of the two complex
cells Rdp1 and Rdp2, but with rectification both before and
after combination.

As mentioned, contour extraction is performed in a larger
region beyond the RF of a complex cell. In this case, image
edgesmay present in the form of curves. It is not reasonable to
extract them by using endstopped cells. Therefore, filters that
are suitable for curves, such as curvature cells, are needed.
Dobbins proposed a curve detector composed of a central cell
and two displaced cells with different orientations [36]. For
example, the orientations 0◦, 45◦ and 135◦ could be used for
the central simple cell and the two displaced complex cells,
respectively. The responses of a curve detector are:

Ru = φ(cctrφ(Rctr )

− (cdp45φ(Rdp45 )+ cdp135φ(Rdp135))), (8)

Rl = φ(cctrφ(Rctr )

− (cdp135φ(Rdp135 )+ cdp45φ(Rdp45 ))), (9)
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where cctr , cdp45 and cdp135 are the gains of the center cell
and the two displaced cells, respectively. According to our
experiments, we can achieve good performance simply by
setting the gains to 1; that is, cctr = cdp45 = cdp135 = 1.
Rctr , Rdp45 and Rdp135 are the responses of the central cell and
the two displaced cells, respectively. Ru is the curve of the top
half of a circle andRl is the curve of the bottom half of a circle.
Similar to the response of endstopped cell REC , the response
of the curve detector Ru/Rl is the linear combination of the
responses of the simple cell Rctr and the two complex cells
Rdp45 and Rdp135 , but with rectification both before and after
combination. φ is a rectification function that zeros negative
values. The difference between the endstopped cell and the
curve detector is whether the three cells are in the same
direction; see eq (7) and eqs (8-9) for examples.

The response of the curvature cell is a combination of the
response of a endstopped cell and the response of a curve
detector:

Rθ,r,sp = REC ∩ (Ru > Rl), (10)

Rθ,r,sn = REC ∩ (Ru < Rl), (11)

where Rθ,r,s is the response of the neuron in the direction θ ,
with curvature r and sign s (p is positive and n is negative).
The expressionRu > Rl produces amask image. IfRu(x, y) >
Rl(x, y), the pixel at (x, y) is set to 1; otherwise, it is set to 0.
The response of the curvature cell is the intersection of REC
and the mask image. Eq (11) works in the same manner as
eq (10) does.

A maximum pooling step follows each curvature cell:

Rcurve,k = max
θ,r,s

(θ, r, s, k), (12)

which selects the maximum response from the set of all possi-
ble directions, curvatures and signs as the curve at location k .
We call the responses of curvature cells the salience of an
edge image. The endstopped cells and curvature cells extract
the salience of an edge image, which is ultimately the core of
the contour of the image. There are no textural details in the
core of the contour. And the core of the contour is enhanced
by the method presented here, so that the performance of
contour detection is improved.

D. COMPENSATING THE SALIENCE OF THE EDGE IMAGE
It is insufficient to represent the contour of an image only
by using the salience of the edge image, since some edges
belonging to the contour are absent from the salience.
As compensation, we superpose the edge image with textural
details suppressed on the salience of the edge image. Con-
sequently, contour is the superposition of the salience of an
edge image and the response of sparse coding:

Rcontour = α1Rcurve + α2Rsparse, (13)

where Rcontour is the final contour response; α1 and α2 are
the weights. According to our experiments, we can achieve
good performance simply by setting the weights to 1; that is,
α1 = α2 = 1.

IV. OBJECT CLASSIFICATION VIA CONTOUR IMAGES
In this paper, we follow the scheme of traditional visual
object recognition. Therefore, a feature detector and a clas-
sifier are needed. We extract the histogram of gradient
orientations (HoGs) from the contour images for classifica-
tion. The HoG is a powerful descriptor of image features
proposed by Dalal and Triggs [37], which is widely used
in visual object detection, recognition and tracking. Mean-
while, we employ the popular support vectormachine (SVM),
also called the support vector classifier (SVC) [38], as the
classifier.

V. EXPERIMENTS AND DISCUSSION
In this section, we report experiments that evaluate the perfor-
mance of our contour detector. Our experiments are carried
out on a PC, with an intel i5-8500 CPU at 3.00 GHz and
8 GB memory, in MATLAB 2017. The parameter values
used in the experiments were given along with the corre-
sponding equations in section III. And the code of our con-
tour detector is available at https://github.com/zekunchen/
Contour-Detection.

This section consists of contour extraction experiments,
image classification experiments based on the contours and
discussion based on the experiments. We first compare
the performance of our contour detection algorithm with
the state-of-the-art contour detectors in section A. Then
we show the performance difference of visual object clas-
sification between our proposals and the state-of-the-art
algorithms in sections B and C. We also compare the clas-
sification performance by using contour images and those
by using the original images in sections B and C. Compre-
hensive discussion based on the experiments is presented in
section D.

A. EXPERIMENTS ON CONTOUR EXTRACTION
BY SIMULATING THE VISUAL CORTEX
1) EXPERIMENT DATASETS
In these experiments, we compare our contour detector with
eight state-of-the-art contour detectors by testing them on the
Berkeley SegmentationDataset andBenchmark (BSDS) [39].
The BSDS dataset is widely used for the research on
image segmentation and boundary detection. Aside from
the original images, the dataset also provides hand-labeled
segmentations of dataset images from 30 human subjects.
The dataset includes a color image version of BSDS300,
a grayscale image version of BSDS300, a color image
version of BSDS500, and a grayscale image version of
BSDS500.

Since there are no training phases in the bioinspired algo-
rithms, all of the images are used for testing. Whereas, for
the machine-learning based algorithms, the images in the
BSDS300 are divided into a training set of 200 images and a
test set of 100 images; while the images in the BSDS500 are
divided into a training set of 300 images, and a test set
of 200 images.
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2) COMPARISON ALGORITHMS
To examine the performance of our contour detection algo-
rithm, we compare our contour detection algorithmwith eight
state-of-the-art algorithms. These algorithms are CO [4],
MCI [13], SCO [6], gPb [40], DeepNets [20], HED [21],
RCF [22] andBDCN [23]. The CO [4],MCI [13] and SCO [6]
contour detectors are biologically motivated; The gPb con-
tour detector [40] is a traditional machine learning algorithm.
The DeepNets [20], HED [21], RCF [22] and BDCN [23]
detectors are based on deep neural networks (DNNs). For
the bioinspired contour detectors and the gPb detector [40],
we used the publicly available source code in the experiments,
we ran the programs with the default values of the parameters
provided by the authors. For the DNN-based contour detec-
tors, we used the results as they are reported for comparison.

3) EVALUATION METRICS
For a quantitative performance comparison, we report three
evaluation criteria in the experiments. These are the best
F-measure on the dataset for a fixed scale (ODS), the aggre-
gate F-measure on the dataset for the best scale in each
image (OIS), and the average precision (AP) on the full
recall range [40]. AP is equal to taking the area under
the precision-recall (PR) curve. While, the F-measure is
defined as

F =
(α2 + 1)Precision · Recall
α(Precision+ Recall)

, (14)

where precision = TP
TP+FP , recall =

TP
TP+FN , TP is the number

of true positives, FP is the number of false positives, and
FN is the number of false negatives. We set α = 1, so that
F = F1 = 2·Precision·Recall

Precision+Recall .
Apart from the three criteria ODS, OIS and AP, F-measure

and PR curve are also used for the evaluations in the
experiments.

TABLE 1. Results of several contour detectors on BSDS300 and BSDS500
(Color Image Version).

4) EXPERIMENT RESULTS
TABLE 1 reports the quantities of ODS, OIS and AP of
different contour detectors for comparison.

It is obvious from TABLE 1 that our detector makes a con-
siderable improvement compared with the other bioinspired
methods. For example, compared with SCO [6], the improve-
ment of ODS for our detector is more than 4% on the
BSDS500 and 3% on the BSDS300. However, our detector
underperforms DNN-based detectors such as DeepNets [20],
HED [21], RCF [22] and BDCN [23]. None of the bioinspired
detectors performs as good as the DNN-based detectors.

In addition, we also compare our contour detector with
the other contour detectors on the grayscale image version
of BSDS, as shown in TABLE 2.

TABLE 2. Results of several contour detectors on BSDS300 and BSDS500
(Grayscale Image Version).

For the ODS criterion, our detector has an improvement
of 3% both on BSDS500 and on BSDS300 over SCO [6].
Note that the performance of themachine-learning-based gPb
detector [40] on grayscale images is significantly degraded,
whereas our detector outperforms gPb by 4% and 3% on
BSDS300 and BSDS500, respectively. To the best of our
knowledge, there are no reports of DNN-based contour
detection on the grayscale image version of BSDS300 and
grayscale image version of BSDS500.

According to the results, we conclude that bioinspired
methods are more robust than learning-based detectors such
as gPb [40], DeepNets [20], HED [21], RCF [22], and
BDCN [23], since bioinspired methods are independent of
the dataset, while learning-based methods are dependent on
the dataset. If applied to other datasets, the performance
of learning-based detectors may degrade greatly, while the
bioinspired methods may perform similarly.

Considering the fact that DNN-based detectors use
ground-truth images for training, but bioinspired detectors
work in an unsupervised manner. It is more reasonable to
compare our detector with the other bioinspired detectors.
So we focus on the comparison of our detector with the
other bioinspired methods. The PR curves for color image
version of BSDS300 and BSDS500 are shown in FIGURE 2.
It is obvious from FIGURE 2 that the proposed contour
detector outperforms the other bioinspired detectors on both
BSDS300 and BSDS500.

FIGURE 3 demonstrates a qualitative comparison of dif-
ferent contour detection algorithms. These are the origi-
nal image, the ground-truth contour image, and the contour
images produced by CO [4], SCO [6], HED [21] and our
detector.
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FIGURE 2. PR curves of color images from BSDS300 (left) and BSD500 (right).

Compared with CO [4], our contour detector enhances the
contour details while suppresses the textural details. Whereas
CO enhances both the contour segments and the textural
details. Hence, our detector obtains a higher score than CO.
Examples are presented in the third column and the last
column of FIGURE 3. See the image regions bounded by
blue rectangles in the images for details. Compared with
SCO [6], our detector enhances the contour segments wile
suppresses the texture details. Whereas the SCO suppresses
both the contour segments and the textural details. Therefore,
our detector has a higher score than SCO. Examples are given
in the fourth column and the last column of FIGURE 3. See
the image regions bounded by red ovals for comparison.

According to the experimental results, we conclude that
our detector can split an edge image into a contour part and a
textural-detail part to a certain extent. We achieve this goal by
the employment of the endstopped cells and curvature cells.
Most of the cells are found in area 4 of the visual cortex (V4),
where the shape of an object is encoded [11]. Image contour
is the intermediary between the low-level edge features and
high-level representation of an object (shape).We believe that
the employment of the endstopped cells and curvature cells
is the right way to obtain image contour. However, CO and
SCO cannot split an edge image into a contour part and a
textural-detail part because CO and SCO only employ the
simple and complex cells, which are only associated with
low-level edge encoding.

Regarding HED [21], a DNN-based contour detection
algorithm, our detector underperform HED in extracting con-
tours, and HED obtains a higher score than our detector. The
reason is that HED uses the ground-truth contour images for
training, but our detector does not employ any ground-truth
information. Subjectively, it is doubtful whether the con-
tour produced by HED is better than that of our detector.
Examples are given in the last two columns of FIGURE 3.

See the regions bounded by blue rectangles in the images for
details.

The F-Measure for an individual image is presented in the
bottom right corner of each contour image in FIGURE 3. It is
clear from FIGURE 3 that our detector outperforms the bioin-
spired CO detector and the SCO detector both qualitatively
and quantitatively.

5) RUNNING TIMES
As well as the results showed above, we also report the
running times of six algorithms on the color image version
of BSDS300 and BSDS500, as shown in TABLE 3.

TABLE 3. Average calculation time (in s) of several edge detectors on
BSDS300 and BSDS500 dataset.

In the experiments, the average running time of our con-
tour detector using MATLAB is about 11 s per image. Our
detector runs slower than the other algorithms. The reason
is that the ‘‘imfilter’’ function in MATLAB is very slow,
and it is widely employed in our program. A C++ imple-
mentation of our program with the ‘‘filter2D’’ function in
OpenCV will run much faster. Empirically, the program will
run approximately 10 times faster. The DNNs run faster than
the bioinspired methods due to the employment of computers
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FIGURE 3. Subjective comparison of our proposal with several contour detectors.

with high-performance GPUs. However, we ran the bioin-
spired detectors on an average computer without GPUs. Here,
we show the computation times of DNNs as they are reported
by the authors. Furthermore, considering the feed-forward
architecture of our detector, hardware implementation of
our detector is very easy. An FPGA (Field Programmable
Gate Array) version of our detector will run much faster,
since only hardware delays contribute to the computation
time.

B. CLASSIFICATION EXPERIMENTS ON FASHION MNIST
First, to verify the applicability of our contour detection
algorithm, we apply it to classification experiments, and com-
pare the classification performance with different algorithms.
Then, to evaluate the power of the contours produced by our
proposal as representations of visual objects, we compare the
classification performances by using the contour images vs

by those by using the original images. The Fashion MNIST
dataset [41] and the Swedish Leaves dataset [42] are used in
these experiments. This section discusses the experiment on
the Fashion MNIST dataset. The experiment on the Swedish
Leaves dataset is discussed in the next section.

1) EXPERIMENT DATASETS
The Fashion MNIST dataset is designed to replace the
MNIST dataset for bench-marking machine learning algo-
rithms. There are 60,000 images in the training set,
10,000 images in the test set. These images distribute
in 10 categories such as T-shirt, trousers, pullover, dress, coat,
sandal, shirt, sneaker, bag and ankle boot. The original image
are grayscale, each one of which has a size of 28 × 28.
We resize each one to be the size of 64 × 64. FIGURE 4
demonstrates ten examples of the images and their contour
counterparts produced by our proposal.
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FIGURE 4. Image samples and their contours in the Fashion MNIST dataset.

It is obvious that the contours are quite clean and com-
plete. We find that the textural details of different samples
in a category can be very different; therefore, they are not
suitable for classification. Additionally, there are no other
valid features, such as color, for classification. Hence, only
image contours are available for classification.We expect that
contours are powerful representations of the original images
for classification.

2) COMPARISON ALGORITHMS
We compare our proposals with nine different algorithms to
evaluate the performance of our proposal. One part of the
comparison algorithms are reported in the Benchmark [43],
including ‘‘ExtraTreeClassifier,’’ ‘‘DecisionTreeClassifier,’’
‘‘LogisticRegression’’ , ‘‘KNeighborsClassifier,’’ ‘‘Random-
ForestClassifier,’’ ‘‘GradientBoostingClassifier’’ and SVC.
The other part of the comparison algorithms are based on
deep neural networks. These are ‘‘2conv + pooling’’ and
ResNet18 [44].

Besides, we also compare the classification performance
by using the original images vs by using the contour
images produced by our contour detector to assess the
power of the contours as the representations of the original
images.

3) EVALUATION METRICS
First, we use confusion matrix to visually show where and
how the our proposal is wrong and where and how it is correct
in classification. Then, we use the accuracy of classification
to evaluate the performance of the algorithms. The accuracy
of classification is the ratio of the sum of true positives and
true negatives to total cases, it is defined as

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (15)

where TP the number of the true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives.

4) EVALUATION METRICS
To verify the performance of the produced contours in
representing the objects, we assess the classification per-
formance by using the HoG features extracted from the

contours vs those extracted from the original images. Both the
original images and the contour images are reshaped into
vectors by means of HoGs. The classification results by
using contour images are shown in the confusion matrix
in FIGURE 5.

FIGURE 5. Classification confusion matrix of the Fashion MNIST dataset
using contour images and HoGs.

The classification accuracy varies from class to class, rang-
ing from 65.5% to 97.8%. This implies that the contours of
objects along with HoG descriptors are sufficient for classifi-
cation for some categories but not sufficient for classification
for the other categories. The result by using the original
images is almost the same as that by using the contour images,
so we do not show it for conciseness.

We compare our proposals with nine different algo-
rithms according to the classification accuracy, as showed in
TABLE 4.

In TABLE 4, we select the best results from the
benchmark [43] for comparison. Most of the algorithms out-
perform human beings. In the traditional algorithms, the algo-
rithms based on SVC generate the best results. Hence,
we use the SVC (SVM) as the classifier in our experiments.
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TABLE 4. Classification results of the Fashion MNIST dataset.

The results are quite encouraging compared with the bench-
marks, although our algorithms underperform DNN-based
classifiers ‘‘2conv + pooling’’ and ResNet18 [44].
Importantly, the accuracy by using contour images is only

slightly lower than the accuracy by using the original images,
as shown in the last two rows of TABLE 4. It implies that
the contour images are satisfactory representations of the
original images, and the proposed contour extractor is useful
in practical visual tasks.

C. CLASSIFICATION EXPERIMENTS ON SWEDISH LEAVES
To evaluate the applicability of our contour detector and
the power of the bioinspired contours as the representations
of original images, we conduct another experiment on the
Swedish Leaves dataset [42].

1) EXPERIMENT DATASETS
The Swedish leaves dataset contains 1125 leaves. These
leaves are from 15 species, including Ulmus carpinifolia,
Acer, Salix aurita, Quercus, Alnus incana, Betula pubescens,
Salix alba Sericea, Populus tremula, Ulmus glabra, Sorbus
aucuparia, Salix sinerea, Populus, Tilia, Sorbus intermedia
and Fagus silvatica. There are 75 leaves per class. In this
experiment, 50 leaves per class are used for training, 25 leaves
per class are used for test. FIGURE 6 shows 15 leaves along
with their contour counterparts produced by our proposal.

The images in this dataset have high resolutions than those
in the Fashion-MNIST dataset. Therefore, Our proposal pro-
duces much more complete contours. In addition, there are
no strong textural details in the contour images. Therefore,
the contour images are much cleaner than those produced
from the Fashion-MNIST dataset.

2) COMPARISON ALGORITHMS
To evaluate the performance of our proposal in classi-
fication, we compare our proposal with eight different
paradigms. These are ‘‘color moments + gray level + Naive
Bayes classifier [45],’’ ‘‘Co-ccurrence + gray level + Ran-
dom forest classifier [45],’’ ‘‘Run Length + LBP-GWO +
J48 classifier [45],’’ ‘‘PSO-segmentation + LBP-GWO +
SVM [46],’’ ‘‘ZM + Hog + SVM [47],’’ ‘‘CNN [48]’’ and
‘‘CNN + SVM [48]’’.

Besides, to check the power of the contours as the rep-
resentations of the original images, we also compare the
classification performance by using the original images vs by
using the contour images produced by our contour detector.

3) EVALUATION METRICS
The evaluation metrics used in this section are exactly the
same as those used in section B. First, we use confusion
matrix to visually show where and how the our proposal is
actually wrong and where and how it is correct in classifi-
cation. Then, we use the classification accuracy defined by
Eq(15) to evaluate the performance of the algorithms, and
compare it with seven different paradigms.

4) EXPERIMENT RESULTS
Similar to the classification experiments on the Fashion
MNIST dataset, the original images and the contour images
are reshaped into vectors for classification bymeans of HoGs.
The confusion matrix in FIGURE 7 demonstrates the experi-
mental results by using the contour images.

The results are much better than those of the Fashion
MNIST dataset. The classification accuracy varies from class
to class, ranging from 96% to 100%. This implies that the
contours of objects along with HoG descriptors are sufficient
for the classification. The experimental setting is identical to
that in the experiment on the Fashion MNIST dataset. But
high resolution images result in high quality contours, which
in turn result in high classification accuracy. The results by
using the original images are almost the same as those by
using the contour images, therefore we do not show them
again.

Beside, we compare our classifiers with seven available
algorithms according to the classification accuracy, as shown
in TABLE 5.

TABLE 5. Classification results of the Swedish Leaves dataset.

In TABLE 5, we use five traditional algorithms and two
DNN-based algorithms for the comparison. In the traditional
algorithms, the HoG feature outperforms the other image
features such as color moments, Zernik moments (ZM), and
local binary patterns (LBPs). Hence, we speculate that the
HoG feature is the most effective non-learning feature for
leaf species classification, and we involve HoGs into our clas-
sification paradigms. Compared with the other non-learning
algorithms, our algorithms produce better results. Our algo-
rithms also outperform CNN [48] in this experiment, while

VOLUME 8, 2020 74481



Z. Chen, R. Cai: Contour Detection by Simulating the Curvature Cell in the Visual Cortex

FIGURE 6. Image samples and their contours in the Swedish Leaves dataset.

FIGURE 7. The confusion matrix of the classification experiment on
Swedish Leaves dataset using contour images and HoGs.

underperform the paradigm of ‘‘CNN + SVM’’ [48], but the
difference is very small.

Importantly, the result by using the contour image is
exactly the same as the result by using the original image,
as showed in the last two rows in TABLE 5. This implies that
the contour produced by our proposal is the apt representation
of the original image for classification. Because the contour
image contains only contour pixels that are assigned with
nonzero values, they are the sparse coding of the original
images, and they seem to be the representations of objects
in the intermediate visual cortex. The results prove that the
proposed contour extractor is both biologically plausible and
technologically applicable.

D. DISCUSSION
Our contour detector is generated by simulating the visual
cortex of human beings. It is functionally similar to the

visual cortex in contour extraction. The visual cortex is the
product of millions of years of evolution. It is believed to be
more advanced than anymachine system in visual perception.
There are many benefits that contribute to its superiority.
Here, we only discuss those associated with the proposed
contour detector.

First, by simulating the retina cell, our detector enhances
the edges of an image by means of color opponency and
spatial opponency. As a consequence, the strengths of edges
in the image are amplified, which increases the differential
of simple and complex cells in the visual cortex. Some edges
with little strengths are protected by the opponency mecha-
nism. Note that these low-strength edges may be parts of the
contours. Hence, the opponencymechanism employed by our
proposal helps improve the performance of contour detection
by protecting the weak parts of the contours. No such mech-
anism is employed by DNN-based methods.

Second, NCRFs and sparse coding are employed by our
contour detector to suppress textural details. There is physio-
logical evidence that NCRFs and sparse coding are employed
in the visual cortex [11]. From the viewpoint of information
coding, only necessary data for a specific task are encoded for
the sake of energy minimization. Those edges not reflecting
object boundaries are textural details. They are similar to
noises in a signal,and should be excluded from encoding.
It is clear from FIGURE 3 that the contours produced by our
detector are better than the contours produced by CO and
HED in suppressing textural details. Our detector produces
ideal contours, with cleaner and meaningful segments.

Third, contour is believed to be the intermediary
between low-level edges and the high-level representation of
objects (shape) in the visual cortex. It is the material for shape
coding in the visual cortex. By employing the endstopped
cells and curvature cells in area 4 of the visual cortex (V4),
the main parts of contour are extracted from cluttered edges.
Hence, our contour detector enhances the core of the contour
while suppressing the textural details. However, neither the
bioinspired CO and SCO nor the DNNs work in this way.
We believe that the employment of endstopped cells and
curvature cells is the right way to obtain real contours. This is
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not the case for CO and SCO, since they only model simple
and complex cells, which are only associated with low-level
edge encoding.

In conclusion, contours are the parts of edges in an image
that are projected from object boundaries. Contour detection
is the act of extracting these parts from cluttered edges.
Thus, a good contour detector protects the projections of
object boundaries, and suppresses textural details as best as
it can. From this perspective, our proposal is a good contour
detector.

VI. CONCLUSION
In this paper, we proposed a bioinspired contour detector by
simulating the curvature cell in the visual cortex. The contour
detector extracts the salience from an edge image, which is
the core of the contour. It enables our detector to outperform
the other bioinspired contour detectors, such as SO and SCO.
Experiments on contour extraction and visual object classi-
fication showed that the proposal is both biologically sound
and technologically useful. This implies that contour play an
important part in the human visual perception system and is
very useful in computer vision. However, the mechanism of
the visual cortex is much more complex than the model we
use here. We believe that more detailed and comprehensive
investigations should be carried out in the future to improve
the performance of contour detection.
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