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ABSTRACT Demand response (DR), one kind of flexible resources, can decrease the operating costs of
power systems and improve their reliability. However, DR is not absolutely reliable due to its inherent
uncertainty, so its function of improving system reliability is restricted. In order to estimate the risk of
generating systems during the period of DR events, the short-term reliability assessment of generating
systems considering DR reliability is studied in this paper. Firstly, a multi-state continuous-time Markov
chain (CTMC) model of DR response capacity is established and the state division of response capacity is
performed by themethod ofmean-standard deviation (MSD) classification. Secondly, the transitionmatrix of
DR response capacity is estimated according to the sequence of DR response capacity. Thirdly, the CTMCs
of demand response providers’ (DRP) response capacity and those of generating units’ (GU) output capacity
are converted into universal generating functions (UGF) by Lz-transform. Finally, the transient distribution of
DR response capacity and GU output capacity are derived, and the short-term reliability assessment method
for generating systems considering DR reliability is proposed. A case study on a revised IEEE-RTS79 system
shows the application of the presentedmethod. Themethod proposed in this paper can assist system operators
to evaluate the reliability of generating systems during the period of DR events.

INDEX TERMS Demand response reliability, Markov chain, mean-standard deviation classification,
short-term reliability assessment of generating systems, universal generating function.

I. INTRODUCTION
To improve energy utilization efficiency and defer costly
investments on power generation, a flexible and effective
measure known as demand side management (DSM) has
received considerable attention over the past four decades
and been applied to the power systems of many countries.
In recent years, to develop smart grids [1]–[3] accommo-
dating more renewable energy resources, researchers have
shown an increased interest in demand response (DR),
an important solution to DSM.

According to the definition from the U.S. Department
of Energy (DoE), DR is changes in electric usage by
end-use customers from their normal consumption patterns
in response to changes in the price of electricity over time,
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or to incentive payments designed to induce lower electric-
ity use at times of high wholesale market prices or when
system reliability is jeopardized [4]. By adjusting demand
instead of supply, DR can help curtail peak load and keep the
balance between generation and demand, decreasing system
operating costs and increasing the reliability of power sys-
tems [5]–[7]. However, compared with traditional resources
such as generators, transmission lines, and storage devices,
loads are highly uncertain [8], which will necessarily restrict
the role of DR.

Therefore, uncertainty of DR has attracted considerable
scholarly attention recently. Some research has been car-
ried out on DR uncertainty [9], [10], while other research
has mainly focused on the impact of DR uncertainty on
power systems: some academic literature addresses the opti-
mal scheduling and operation of power systems with uncer-
tain DR, such as unit commitment [11], [12], economic
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dispatch [13], and optimal reserve market clearing [14]; some
pays particular attention to the impact of DR uncertainty on
renewable energy accommodation [15]–[18]; some discusses
the market mechanism design for DR uncertainty [19]–[21];
and a little has been concerned with the planning of power
systems considering DR uncertainty [22].

Apart from the above, it is equally necessary to take the
uncertainty of DR into account when studying the role of
DR in improving the reliability of power systems. However,
most of previous studies [23]–[28] have generally ignored
the uncertainty of DR, i.e. assumed that DR will never fail
to respond during the period of DR events. Surely some
studies [29]–[32] have considered the uncertainty of DR: a
probabilistic framework for optimal DR scheduling in the
day-ahead planning of transmission networks is proposed
in [29], and the results show that the proposed DR schedul-
ing improves both reliability and economic indices; a new
framework for congestion management utilizing a reliability
model of DR resources is proposed in [30] and the multi-
state model of DR resources considering repairable advanced
metering infrastructures is also presented; a framework for
reliability assessment and risk implications of post-fault DR
in smart distribution networks is presented in [31]; a reliabil-
ity model of the demand resource is developed to represent
the customer behavior, and the reliability indices of power
systems are calculated in [32]. Nevertheless, the literature
above only addresses the steady reliability model of DR and
the long-term steady reliability assessment of power systems.
In fact, power system operators are more interested in the
short-term reliability of power systems during the period of
DR events, which relates to the transient distribution of DR
response capacity.

Short-term reliability assessment [33]–[38] plays an
important role in operating reserve planning, operating
reliability prediction and adaptive security control of
power systems. And multi-state Markov models, univer-
sal generating functions (UGF) and Lz-transforms are the
essential tools to perform short-term reliability assess-
ment. Firstly, multi-state Markov models apply to the
reliability modelling of equipment such as coal fired
power generators [34], [35], rapid start-up generators and
wind farms [36], and thermostatically-controlled-loads [37].
Furthermore, UGFs and Lz-transforms [35]–[38] are appro-
priate for dealing with complex multi-state systems: the
Lz-transform method is applied to short-term reliability eval-
uation of power stations in [35], decreasing drastically a com-
putation burden; UGFs are used to establish the time-varying
reliability models of wind farms, conventional generators and
rapid start-up generators in [36]; the multi-state reliability
model of operating reserve provided by thermostatically-
controlled-loads is represented by the Lz-transform approach
in [37]; and in [38], UGFs are used to represent the capacity
distribution of generators and the demand distribution of
nodes. Despite those recent findings about the mechanism of
short-term reliability, there is a lack of short-term reliability
modelling of DR, which includes the state division of DR

response capacity and the estimation of transient distribution,
making it difficult to evaluate the operating risk of generating
systems during the period of DR events.

Therefore, in order to evaluate the short-term reliability
of generating systems during the period of DR events, the
time-varying transient reliability model should be established
firstly, including the state division of DR response capac-
ity and the transient distribution of DR response capac-
ity. The main contributions of the paper exit in: (i) DR
response capacity is classified into several states by the
method of mean-standard deviation (MSD) classification and
it is modelled as a continuous-time Markov chain (CTMC);
(ii) The time-varying transient distribution of DR response
capacity and generating unit (GU) output capacity, which is
suitable for short-term reliability assessment through com-
puters, is deduced; (iii) The algorithm based on UGFs
for the short-term reliability assessment of generating sys-
tems considering DR reliability is proposed to calculate the
time-varying and the average reliability indices, which can be
used to analyze the risk of generating systems during periods
of DR events.

The framework of research work in this paper is illustrated
in Fig. 1. Note that the CTMC modelling of GU output
capacity is not discussed in detail in the paper because it
can be found in existing references. And the remainder of
this paper is organized as follows. The short-term reliability
model of DR response capacity, represented by a multi-state
CTMC, is established in Section II. The state division of DR
response capacity and the estimation of its transition matrix
are discussed in Section III. Then in Section IV, the CTMCs of
both DR response capacity and GU output capacity are con-
verted into UGFs by Lz-transform; and then the total response
capacity of all demand response providers (DRP) and the
total output capacity of all GUs are represented by UGFs.
In Section V, the transient distribution of DR response capac-
ity and GU output capacity are derived, and the algorithm for
the short-term reliability assessment of generating systems
considering DR reliability model is presented. A case study
on a revised IEEE-RTS79 system illustrates the application of
the approach in Section VI. Finally, the conclusion and future
work are summarized in Section VII.

II. SHORT-TERM RELIABILITY MODELS FOR DR AND GUs
A. CONTINUOUS-TIME MARKOV CHAIN
Consider a CTMC, X (t) ∈ {x1, x2, · · · , xN } ,shown in Fig. 2,
and it hasN states. The performance level associated with any
state i is denoted as xi (i = 1, 2, · · · ,N ). λij is the transition
rate from state i to state j, where i and j belong to the set
{1, 2, . . . ,N }.

Transition matrix denoted by Q is represented in

Q =


λ11 λ12 · · · λ1N
λ21 λ22 · · · λ2N
...

...
. . .

...

λN1 λN2 · · · λNN

 (1)
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FIGURE 1. Framework of research work in this paper. Note that ND and NG are the numbers of DRPs
and GUs, respectively, and ⊗+ is the combination operator of addition.

FIGURE 2. N-state CTMC model. N is the number of states. xi is the
performance level in state i and λij is the transition rate from state i to
state j , where i and j belong to

{
1,2, . . . ,N

}
.

where the diagonal elements λii satisfy

λii = −

N∑
j=1
j6=i

λij (i ∈ {1, 2, · · ·N }) (2)

Designate pi (t) (i = 1, 2, · · · ,N ) as the probability of
X (t) staying in state i at moment t (t ≥ 0); and denote
the transient distribution of X (t) as p(t), which is the row
vector consisting of pi (t) (i = 1, 2, · · · ,N ).Then the state
equations can be expressed in:

d
dt
p(t) = p(t) ·Q (3)

In addition, the stationary distribution of X (t), denoted by
p∞ =

(
p∞1 , p

∞

2 , . . . , p
∞
N

)
, can be obtained through

p∞ ·Q = 0
N∑
i=1

p∞i = 1
(4)

In short-term reliability assessments, we should use p(t)
rather than p∞ which is only suitable for long-term (or
steady-state) reliability assessments.

B. SHORT-TERM RELIABILITY MODEL OF DR RESPONSE
CAPACITY AND GU OUTPUT CAPACITY
DR is influenced by some stochastic factors such as the unex-
pected behavior of customers and the changeable weather,
so the response capacity of DR is full of uncertainties, affect-
ing the reliability of power systems. In order to analyze the
uncertainty of DR, the above-mentioned CTMC well-known
in the field of reliability analysis is applied to establish the
short-term reliability model of DR response capacity. The
process to establish the short-term reliability model of DR
response capacity consists of the following steps: dividing
the response capacity of DR into several states, estimating
the transition matrix and establishing the state equations of
DR response capacity, which will be discussed in Section III.

Similarly, the output capacity of a GU is stochastic, varying
from zero to its nominal generating capacity. The process
to establish the short-term reliability model of GU output
capacity is the same as DR response capacity except the
estimation of transition rates which can be found in other
references such as [34]. And this paper makes the stress on
DR reliability and its effect on the short-term reliability of
generating systems. Therefore, the estimation of transition
rates of GU output capacity is not discussed in the paper and
in case study the transition rates of GU output capacity use
the values in the IEEE test system.

III. PARAMETER ESTIMATION IN CTMC MODEL OF DR
RESPONSE CAPACITY
A. SEQUENCE OF DR RESPONSE CAPACITY
The customer’s load curve without implementing DR, rep-
resented by L1 (t), can be obtained through load forecasts;
and the load curve when implementing DR, represented by
L2 (t), can be available through measurements. Suppose that
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FIGURE 3. DR events and load curves. The solid lines represent the load
curve without DR’s participation; and the dotted lines represent the
measured load curve when DR is executed.

FIGURE 4. Sequence of DR response capacity during the period of DR
events.

the sampling intervals of these two load curves are the same,
which maybe 10, 15, 20, or 60 minutes. Fig. 3 displays the
load curves of a customer, where the rising edge and the
falling edge represent the start and the end of a DR event,
respectively. The solid lines represent the load curve without
DR’s participation; and the dotted lines represent the mea-
sured load curve when DR is executed. Reduced loads during
periods of DR events are defined as the response capacity; and
increased loads during periods of no DR events are caused by
the shifted loads from periods of DR events, or DR rebounds.
In the paper, we are mainly concerned with the reliability of
generating systems during the period of DR events so the DR
response capacity during DR events, denoted byD (t), can be
obtained according to

D(t)=L1(t)−L2(t), t belongs to periods of DR events (5)

All the DR events are put together to get the sequence of
DR response capacity during DR events, shown in Fig. 4. The
parameters of the multi-state CTMC model of DR response
capacity can thus be estimated through the statistical analysis
of this sequence.

B. STATE DIVISION OF DR RESPONSE CAPACITY
To apply the multi-state CTMC model mentioned above,
it is essential to classify DR response capacity into sev-
eral states firstly. The commonly-used methods of state
division include the mean-standard deviation (MSD) clas-
sification, the clustering classification, and the optimal
segmentation. In this paper, the MSD classification is
adopted.

TABLE 1. State division of DR response capacity when ND is an odd
number.

TABLE 2. State division of DR response capacity when ND is an even
number.

According to the sequence of DR response capacity, its
mean and standard deviation can be obtained through

D̄ =
1
K

K∑
k=1

D(k) (6)

S =

√√√√ 1
K − 1

K∑
k=1

(
D(k)− D̄

)2 (7)

where D̄ and S are the mean value and the standard deviation
of the sequence of DR response capacity, respectively; K is
the size of this sequence. According to the central limit theo-
rem, DR response capacity can be divided into ND groups.
If ND is an odd number, the state space of DR response
capacity can be partitioned according to Table 1; otherwise
it can be partitioned according to Table 2. In both tables, Ei
is the interval of DR response capacity in the ith state; Dmin
and Dmax are the minimum and the maximum values of the
sequence of DR response, respectively.

Then the performance level of DR response capacity in

each state, denoted by D̄i

i = 1, 2, · · · ,ND

, is calculated
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out by

D̄i=mean(D(k)), D(k) ∈ Ei (8)

where the function ‘mean’ represents the operation of arith-
metic mean.

C. ESTIMATION OF TRANSITION MATRIX OF DR
RESPONSE CAPACITY
The transition rate of DR response capacity from statei to j
can be calculated out by

λDij =
fij
Ti
(i, j ∈ {1, 2, · · ·ND} , i 6= j) (9)

where λDij is the transition rate from stateito j, and the super-
script D indicates DR; Ti is the total residence time when DR
response capacity is in state i; fij is the number of transitions
from statei to j during the period of time Ti.

Then the transition matrix of DR response capacity,
denoted by QD, can be obtained by

QD =


λD11 λD12 · · · λD1ND

λD21 λD22 · · · λD2ND
...

...
. . .

...

λDND1
λDND2

· · · λDNDND

 (10)

where the diagonal elements λDii can be obtained by

λDii = −

ND∑
j=1
j6=i

λDij (i ∈ {1, 2, · · ·ND}) (11)

Furthermore, state equations of DR response capacity can
be expressed in terms of the following differential equations

d
dt
pD(t) = pD(t) ·QD (12)

where pD(t) is the transient distribution of DR response
capacity at moment t . Given the initial distribution pD(t0) at
moment t0, the transient distribution pD(t) will be obtained
by solving the above differential equations.

IV. LZ-TRANSFORM OF DRPs’ RESPONSE CAPACITY AND
GUs’ OUTPUT CAPACITY
The Lz-transform of a CTMC can transform the CTMC into
the form of UGFs which have been proved to effectively rep-
resent multi-state systems. Hence, in the paper, the response
capacity of DRPs and the output capacity of GUs are repre-
sented by UGFs through Lz-transform.

A. LZ-TRANSFORM AND UGFs
Taking the CTMC, X (t) ∈ {x1, x2, · · · , xN }, mentioned in
section II, as an example, the Lz-transform of X (t) is defined
as follows

Lz{X (t)} = uX (z, t) =
N∑
i=1

pi(t)zxi (13)

where z in general is a complex variable; uX (z, t) is the
result of the Lz-transform, known as the UGF of the CTMC
X (t). The mathematical expectation of X (t) at moment t ,
i.e.E (X (t)), can be obtained through

E(X (t)) = u′X (z = 1, t) (14)

where u′X represents the first-order derivative of the UGF
uX (z, t) with respect to z.

Assume that there are mutually independent H CTMCs,
denoted byX1 (t) ,X2 (t) , · · · ,XH (t), and that the pro-
cess Xi (t) (i = 1, 2, · · · ,H) has Ni possible states where
the performance level associated with any state j is
xij (j = 1, 2, · · · ,Ni). If another stochastic process Y (t)
is the function of Xi (t), i.e. Y (t) = f

(
X1 (t) ,X2 (t) ,

· · · ,XH (t)
)
, the Lz-transform of Y (t) can be represented by

Lz{Y (t)} = uY (z, t)

= ⊗f (uX1 (z), uX2 (z), · · · , uXH (z))

=

N1∑
j1=1

N2∑
j2=1

· · ·

NH∑
jH=1

(
H∏
i=1

piji (t)z
f (xij1 ,··· ,xijH ) ) (15)

where ⊗f is the combination operator of the function f and
possesses both commutative and associative properties [39].

B. UGFs OF RESPONSE CAPACITY OF DRPs
DRPs include such DR providers as business customers,
industrial customers, load aggregators and so on, who are
willing to participate in DR programs. The response capacity
of each DRP during the period of DR events is modelled
as a CTMC which can be transformed into a UGF through
Lz-transform. Then total response capacity of all DRPs is the
sum of response capacity of each DRP. Each DRP generally
owns the DR resources not shared with others, so the state
of one DRP’s response capacity does not influence and is not
influenced by the state of response capacity of the other(s).
Therefore, we assume that the response capacity of each
DRP is mutually independent and the total response capacity
of DRPs can also be represented by a UGF through the
combination operator of addition.

Suppose there are ND DRPs in a generating system, and
the response capacity of DRP i (i = 1, 2, · · · ,ND), denoted
as Di (t), is represented by a UGF shown in

uDi (z, t) =

NDi∑
j=1

pDij(t)z
dij (16)

where NDi is the state number of the response capacity of
DRP i; dij (j = 1, 2, · · · ,NDi) is the performance level of the
response capacity of DRP i; pDij (t) is the probability that the
response capacity of DRP i at moment t is right in the state
j (j = 1, 2, · · · ,NDi).

Total response capacity of DRPs, Ds (t), is the sum of
response capacity of each DRP, shown as

Ds(t) =
ND∑
i=1

Di(t) (17)
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Then the UGF of Ds (t) can be obtained by

uDs (z, t)=⊗+(uD1 (z, t), uD2 (z, t), · · · , uDND (z, t))

=

ND1∑
j1=1

ND2∑
j2=1

· · ·

NDND∑
jND=1

(
ND∏
i=1

pDiji (t)z
dij1+dij2+···+dijND ) (18)

where ⊗+ is the combination operator of addition.

C. UGFs OF OUTPUT CAPACITY OF GUs
The output capacity of a GU can also be represented by a
multi-state CTMC model. State transition rates of GU output
capacity can be obtained through statistical inference, which
can be found in existing literature. For example, based on
field observation, a technique for the estimation of transition
rates between the various generating capacity levels of a
power generating unit is proposed in [34]. Therefore, we will
not repeat it here.

The transition matrix of GU output capacity is denoted by
QG and its elements are shown in

QG =


λG11 λG12 · · · λG1NG

λG21 λG22 · · · λG2NG
...

...
. . .

...

λGNG1
λGNG2

· · · λGNGNG

 (19)

whereNG is the state number of GU output capacity; λGij is the
transition rate from statei to j, and the superscript G indicates
GU.

The output capacity of each GU during the period of DR
events is also modelled as a CTMCwhich can be transformed
into a UGF through Lz-transform. And total output capacity
of all GUs is the sum of output capacity of each GU. The
state of one GU’s response capacity does not influence and is
not influenced by the state of output capacity of the other(s).
Therefore, the output capacity of each GU is mutually inde-
pendent and the total output capacity of all GUs can also be
represented by a UGF through the combination operator of
addition.

Suppose that there are NG GUs in a generating system,
and the output capacity of GU i (i = 1, 2, · · · ,NG), Gi (t),
is represented by a UGF shown in

uGi (z, t) =
NGi∑
j=1

pGij(t)z
gij (20)

where NGi is the state number of the output capacity of
GU i; gij (j = 1, 2, · · · ,NGi) is the performance level of the
output capacity of GU i; pGij (t) is the probability that the
output capacity of the GU i at moment t is in the state
j (j = 1, 2, · · · ,NGi).

Total output capacity of GUs, Gs (t), is the sum of output
capacity of each GU, shown as

Gs(t) =
NG∑
i=1

Gi(t) (21)

Then the UGF of Gs (t) can be obtained by

uGs (z, t)=⊗+(uG1 (z, t), uG2 (z, t), · · · , uGNG (z, t))

=

NG1∑
j1=1

NG2∑
j2=1

· · ·

NGNG∑
jNG=1

(
NG∏
i=1

pGiji (t)z
gij1+gij2+···+gijNG ) (22)

V. SHORT-TERM RELIABILITY ASSESSMENT OF
GENERATING SYSTEMS CONSIDERING DR RELIABILITY
The CTMCs of both DR response capacity and GU output
capacity are time-continuous, which cannot be processed
directly by computer. Therefore, firstly they should be dis-
cretized in the time domain to get the transient distribution of
both DR response capacity and GU output capacity at each
time interval.

A. TRANSIENT DISTRIBUTION OF DR RESPONSE
CAPACITY
Although the transient distribution of DR response capacity,
pD(t), can be obtained by using numerical methods to solve
the differential equations shown as (12), it is difficult to
calculate the transient distribution quickly when the state
number of DR response capacity increases. To avoid solving
directly the differential equations, we convert the transition
matrix of DR response capability into a transition probability
matrix, and then calculate the transient distribution of DR
response by the transition probability matrix and the initial
distribution.

According to [40], the transition probability matrix of DR
response capacity during a sampling interval can be obtained
by

PD(1t) = Exp(QD ·1t) (23)

where PD (1t) is the transition probability matrix of DR
response capacity;1t is the sampling interval, which is equal
to the sampling interval of the load curvementioned in section
III; Exp is the matrix exponential function.

Then the transient distribution of DR response capacity can
be obtained through

pD(tk ) = pD(t0) · PkD(1t) (24)

where pD (t0) is the initial probability distribution of DR
response capacity; pD (tk) is the probability distribution
of DR response capacity at moment tk (tk = t0 + k •1t);
PkD (1t)is the k power of PD (1t).

B. TRANSIENT DISTRIBUTION OF GU OUTPUT CAPACITY
Similarly, the transition probability matrix of GU output
capacity during a sampling interval can be obtained by

PG(1t) = Exp(QG ·1t) (25)

where PG (1t) is the transition probability matrix of GU
output capacity.

Then the transient distribution of GU output capacity can
be obtained through

pG(tk ) = pG(t0) · PkG(1t) (26)
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FIGURE 5. Generating system involving DRPs. (a) Generating system
represented by stochastic processes, (b) Generating system represented
by UGFs.

where pG (t0) is the initial probability distribution of GU
output capacity; pG (tk) is the probability distribution of GU
output capacity at moment tk (tk = t0 + k •1t); PkG (1t) is
the k power of PG (1t).

C. SURPLUS CAPCITY AND RELIABILITY INDICES
A generating system involving DRPs is shown in Fig. 5.
Equivalent generating capacity is defined as the sum of GUs’
output capacity and DRPs’ response capacity, and it should
be greater than or equal to the load. Otherwise some loads
will be curtailed to ensure the safe operation of the generating
system.

Surplus capacity is the difference between the equivalent
generating capacity and the system load, and it can be calcu-
lated by

S(tk ) = Gs(tk )+ Ds(tk )− Ls(tk ) (27)

where S (tk) and Ls (tk) are the surplus capacity and the load
level of the system at moment tk , respectively.

Note that both Gs (tk) and Ds (tk) are random variables,
while Ls (tk) is a deterministic value whose UGF, uLS (z, tk),
can be represented by

uLS (z, tk ) = 1 · zLs(tk ) (28)

Thus, the UGF of surplus capacity can be calculated by

uS (z, tk ) = uGs (z, tk )⊗+ uDs (z, tk )⊗− uLS (z, tk ) (29)

where ⊗− is the combination operator of subtraction.
The state and the curtailed load of a generating system can

be determined by a loss of load index function (LLIF) and

an unsupplied load function (ULF), respectively, which are
collectively called as reliability test functions.
The LLIF is defined as

fl (S(tk )) =

{
1 S(tk ) < 0
0 S(tk ) ≥ 0

(30)

where fl is the LLIFwith binary values. If the surplus capacity
is negative, the value of fl is one, indicating the generating
system is in failure states; otherwise, the value of fl is zero,
indicating it is in normal states.
And the ULF is defined as

fu (S(tk )) = max (−S(tk ), 0) (31)

where fu is the ULF. If the generating system is in failure
states, the value of the ULF is −S (tk); otherwise, it is zero.
The UGFs of the LLIF and the ULF at moment tk can be

obtained according to the following equations.

ufl (z, tk ) = ⊗fluS (z, tk ) (32)

ufu (z, tk ) = ⊗fuuS (z, tk ) (33)

where ufl (z, tk) and ufu (z, tk) are the UGFs of the LLIF
and the ULF at moment tk , respectively; ⊗fl and ⊗fu are the
combination operators of fl and fu, respectively.

Two important reliability indices are used here: loss of load
probability (LOLP) and expected un-supplied load (EUL).
The LOLP which is the probability of the generating system
inability to supply all the load is the expectation of the LLIF

LOLP(tk ) = u′fl (z = 1, tk ) (34)

where LOLP (tk) is the LOLP of the generating system at
moment tk .

The EUL indicating the average load curtailment is the
expectation of the ULF

EUL(tk ) = u′fu (z = 1, tk ) (35)

where EUL (tk) is the EUL of the generating system at
moment tk .

D. ALGORITHM OF SHORT-TERM RELIABILITY
ASSESSMENT OF GENERATING SYSTEMS CONSIDERING
DR RELIABILITY
The period of short-term reliability assessment and the sam-
pling interval are denoted by T and 1t , respectively. The
flow chart of short-term reliability assessment of generating
systems considering DR reliability is shown in Fig. 6 and the
detail procedure is listed as follows.
Step 1: Initialize the distribution of DRPs’ response capac-

ity and GUs’ output capacity at moment t0, and let k = 0 and
tass= 0, where k and tass refer to the order of time intervals
and the current time, respectively.
Step 2: If tass ≥ T is true, assign the value of k toN which

is the total number of time intervals during the assessment
period, and then jump to Step8; otherwise continue.
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FIGURE 6. Flow chart of short-term reliability assessment of generating
systems considering DR reliability.

Step 3: Calculate the transient distribution of DRPs’
response capacity and GUs’ output capacity at moment tk ,
according to (24) and (26), respectively.
Step 4: Calculate the UGFs of the total response capacity

of DRPs, the total output capacity of GUs, and the surplus
capacity at moment tk , according to (18), (22) and (29),
respectively.
Step 5: Calculate the UGFs of the LLIF and the ULF at

moment tk , according to (32) and (33), respectively.
Step 6: Calculate the reliability indices of generating sys-

tems at moment tk , LOLP (tk) and EUL (tk), according to (34)
and (35), respectively.
Step 7: Increase tass by1t and increase k by one, and then

jump to Step2.
Step 8: Calculate the average reliability indices of gener-

ating systems during the period of the DR event according to
the following equations

LAOLP =
N∑
k=1

LOLP(tk )

/
N (36)

EA
UL =

N∑
k=1

EUL(tk )

/
N (37)

where LAOLP and EA
UL are the average values of LOLP and

EUL during the period of the DR event, respectively.
Step 9: Output all the reliability indices of the generating

system, including the time-varying and the average reliability
indices.

FIGURE 7. Sequences of DR response capacity of DRP1 and DRP2.

VI. CASE STUDY
The generating system of IEEE-RTS79 reliability test sys-
tem [41] consists of 32 GUs with capacity ranging from 12 to
400MW and its loads are expressed in hourly chronological
fashion, the peak value of which is 2850MW. In [41], each
GU is represented by a two-state model consisting of normal
and failure states. And the transition rates of GU output
capacity, i.e. the failure rate and the repair rate of each GU,
are shown in Table 3.

Suppose that two DRPs, which are represented by
DRP1 and DRP2, respectively, are added into this system.
Fig. 7 shows parts of response capacity sequences from those
two DRPs, partially revealing the state transition characteris-
tics of DR response capacity. The minimum and maximum
values of DRP1’s response capacity are 0 and 20.6MW,
respectively, and those of DRP2’s response capacity are 0 and
30.2MW, respectively.

A. APPROPRIATE STATE NUMBER OF DRP’s RESPONSE
CAPACITY
The sum of squared distances (SSD) [42] from data points
to their corresponding clusters’ centers is the most intuitive
and frequently used criterion function to find the optimal
cluster number. And hence we use it to choose the appropriate
state number of response capacity. The SSDs for different
partitions obtained by the method of the MSD classification
are shown in Fig. 8.

The location of an elbow in the plot is generally con-
sidered as an indicator of the appropriate number of states.
As shown in Fig. 8(a), the value of SSD decreases as state
number increases, but it can be seen an elbow at the state
number of three. This elbow indicates that additional clus-
ters beyond the third have little value. In the same way,
as illustrated in Fig. 8(b), an elbow appears at the state
number of three. Therefore, the appropriate state numbers
of the response capacity of DRP1 and DRP2 are both
three.

B. MODELLING OF DR RELIABILITY
TakeDRP1 as an example to explain the state division process
of DR response capacity. As shown in Fig. 8(a), the appropri-
ate state number of DRP1 is three, so we perform the state
division according to Table 1 and obtain the results of state
division shown in Table 4, where D̄ and S are 8.616 and
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TABLE 3. Transition rates of GU output capacity.

FIGURE 8. SSDs for different partitions. The location of an elbow in the
plot is generally considered as an indicator of the appropriate state
number. (a)SSD of DRP1, (b) SSD of DRP2.

TABLE 4. State division of DRP1’s response capacity when ND is three.

5.112 MW, respectively, obtained from (6) and (7); Dmin and
Dmax are 0 and 20.6 MW, respectively.

Then the performance level of DRP1’s response capacity in
each state is calculated out by (8) and shown in Table 5 which
also displays the total residence time in each state. And the
numbers of the transitions between different states during the
total residence time Ti(i= 1, 2, 3) are shown in Table 6.
Then the transition matrix of DRP1’s response capacity is

calculated out according to (9) and (10), and shown in Table 7.
Likewise, the transition matrix of DRP2’s response capacity
can also be obtained and shown in Table 7.

TABLE 5. Performance levels and total residence time of DRP1’s
response capacity in each state when ND is three.

TABLE 6. Numbers of transitions between different states of DRP1’s
response capacity when ND is three.

If pD (t0), the initial distribution of DRP1’s response
capacity, is (1,0,0) and the sampling interval 1t is one hour,
according to (23), the transition probability matrix PD (1t) is

PD(1t) =

 0.6846 0.2599 0.0555
0.3511 0.4526 0.1963
0.3812 0.1241 0.4947

 (38)

Let t0 be 8409, and then the time-varying transient dis-
tribution of DRP1’s response capacity can be obtained
through (24) and shown in Fig. 9.

Then the UGFs of DRP1’s response capacity can be
obtained according to (16). For example, the UGF at moment
8412 is

uD1 (z, 8412) = 0.5484z3.60 + 0.3024z10.00 + 0.1492z16.12

(39)

C. SHORT-TERM RELIABILITY ASSESSMENT OF
GENERATING SYSTEMS CONSIDERING DR RELIABILITY
Suppose that these DR resources will be committed during
the period from the 8409th to the 8421th time interval, when
the peak load of 2850MWwill appear; and that all the genera-
tor units are in normal states and the initial distributions of the
two DRPs’ response capacity are both (1, 0, 0) at the begin-
ning of the reliability assessment. The time-varying short-
term reliability of the generating system during the period
is accessed by the method in the paper and the results are
shown in Fig. 10. As can be seen from Fig. 10, the reliability
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TABLE 7. Transition matrices of DRP1’s and DRP2’s response capacity.

FIGURE 9. Time-varying transient distribution of DRP1’s response
capacity. The sum of the probabilities of the three states at any time
interval is one.

of the generating system is improved, i.e. LOLP and EUL are
reduced due to the participation of DR. And decrease per-
centages of reliability indices are shown in Fig. 11. It can be
observed that the largest decrease percentages of LOLP and
EUL occur at the moments of 8417 and 8416, respectively,
not coinciding with the time intervals when the peak-load
occurs.

Also, as shown in Fig. 10, the reliability indices do not
always increase with the growth of the system load. For
instance, (i) although the system load level at the 8412th
time interval is lesser than that at the 8411th time inter-
val, the reliability indices at the 8412th time interval are
greater than those at the 8411th time interval; (ii) although
the system load levels at the 8418th and the 8419th time
intervals are the same, i.e. 2850MW, the reliability indices
at the two time intervals are different. Take LOLP as an
example to explain these phenomena. The reliability indices
of generating systems depend on both the system load level
and the equivalent generating capacity which is the sum of
DRPs’ response capacity and GUs’ output capacity, not on
the load level alone. The difference between the equivalent
generating capacity and the load level is known as surplus

FIGURE 10. Time-varying reliability indices and loads during the DR
event. (a) LOLP and loads, (b) EUL and loads.

capacity and its cumulative distribution functions (CDF) at
the above-mentioned time intervals are shown in Fig. 12.

It can be seen that the CDF value of zero surplus capacity
at the 8412th time interval is larger than at the 8411th time
interval, so LOLP at the 8412th time interval is greater than
at the 8411th time interval. Similarly, the CDF value of zero
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FIGURE 11. Time-varying loads and decrease percentages of reliability
indices.

FIGURE 12. CDFs of surplus capacity. (a) CDFs at the 8411th and 8412th
time intervals, (b) CDFs at the 8418th and 8419th time intervals.

surplus capacity at the 8419th time interval is larger than at
the 8418th time interval, so LOLP at the 8419th time interval
is greater than at the 8418th time interval.

TABLE 8. Average reliability indices during the period of the DR event.

TABLE 9. Performance levels and transition matrices of DRP1’s and
DRP2’s response capacity.

The average reliability indices of the generating system
during the period of the DR event are shown in Table 8,
which also reveals that the participation of DR improves the
reliability of the generating system, i.e. decreases reliability
indices.

D. EFFECT OF STATE NUMBER OF RESPONSE CAPACITY
ON GENERATING SYSTEM RELIABILITY
Supposing one 4-state and one 5-state CTMC models are
applied to the reliability modelling of DRP1’s and DRP2’s
response capacity, respectively, the performance level of
response capacity in each state and the transition matrices are
shown in Table 9.

In order to reveal the effect of the state number of response
capacity on reliability indices, we consider two conditions:
one using two 3-state models to represent the response capac-
ity of DRP1 and DRP2, the other using one 4-state model
and one 5-state model to represent the response capacity of
DRP1 and DRP2, respectively. And the time-varying relia-
bility indices during the DR event in those two conditions
are shown in Fig. 13, from which it can be seen that the
differences of reliability indices in those two conditions are
minuscule. The results also verify the correctness of the
above-mentioned appropriate state numbers.

E. RELIABILITY INDICES UNDER DIFFERENT INITIAL
CONDITIONS
The proposed method in this paper can reflect the effect of
initial conditions on reliability indices. Firstly, we consider
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FIGURE 13. Comparation of time-varying reliability indices with different
state numbers. Two conditions are considered: one using two 3-state
models to represent the response capacity of DRP1 and DRP2, the other
using one 4-state model and one 5-state model to represent the response
capacity of DRP1 and DRP2, respectively. (a) Comparation of LOLP,
(b) Comparation of EUL.

different initial conditions of DRPs. Take the above-
mentioned 3-state models of DRP1’s and DRP2’s response
capacity as an example and suppose that all the generator
units are in the normal states. We consider two initial con-
ditions: one supposing that the initial states of DRP1 and
DRP2 are both the first state, i.e. their initial distribu-
tions are both (1,0,0); the other supposing that the ini-
tial states of DRP1 and DRP2 are both the third state,
i.e. their initial distributions are both (0,0,1). The percent-
age changes of the reliability indices from the first ini-
tial condition to the second initial condition are shown
in Fig. 14. Take the EUL at time interval 8412 as an
example to illustrate the calculation of percentage changes.
The values of EUL at time interval 8412 under the first
and the second conditions are 0.001162 and 0.001130 MW,
respectively, so the percentage change of EUL at time
interval 8412 is(
(0.001130− 0.001162)

/
0.001162

)
× 100% = −2.754%

(40)

FIGURE 14. Percentage changes of the reliability indices due to the
change of DRP’s initial condition from the first to the second initial
condition. The first initial condition supposes that the initial states of
DRP1 and DRP2 are both the first state, i.e. their initial distributions are
both (1,0,0); the second initial condition supposes that the initial states
of DRP1 and DRP2 are both the third states, i.e. their initial distributions
are both (0,0,1).

FIGURE 15. Percentage changes of the reliability indices due to the
change of GU’s initial condition from the first to the second initial
condition. The first initial condition supposes that all the generator units
are in the normal states; the second initial condition supposes that all the
generator units are in the normal states except an oil-fired GU with the
rated capacity of 20MW, which is in the failure state at the initial moment.

As shown in Fig. 14, the percentage changes of the relia-
bility indices are negative, indicating that reliability indices
reduce with the initial condition changing from the first to
the second condition.

Then consider different initial conditions of GUs and
suppose that the initial distributions of the two DRPs are
both (1,0,0). We consider two initial conditions of GUs: one
supposing all the generator units are in the normal states,
the other supposing that all the generator units are in the
normal states except an oil-fired GU with the rated capacity
of 20MW, which is in the failure state at the initial moment.
The percentage changes of the reliability indices from the
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first initial condition to the second initial condition are shown
in Fig. 15.

It can be seen that the percentage changes of the reliability
indices are positive, indicating that the reliability indices
increase with the initial condition changing from the first to
the second condition.

VII. CONCLUSION
This paper proposes a novel DR reliability model to assess
the reliability of generating systems during a DR event. The
short-term reliability model of DR response capacity is rep-
resented by a multi-state CTMC. On this basis, the sequence
of DR response capacity is classified into several states by
the method of MSD classification, and the transition matrix
and the transient distribution of DR response capacity are
estimated. The CTMCs of both DR response capacity and
GU output capacity are converted into UGFs by Lz-transform.
Then the algorithm to assess the short-term reliability of gen-
erating systems considering DR reliability during a DR event
is presented. Finally, the above process is verified by a study
case. Results obtained from this paper can be summarized in
the following aspects:

(i) The time-varying and the average reliability indices of
generating systems obtained through the proposed method
in the paper can evaluate the operating risk of generating
systems during the period of DR events.

(ii) The change trend of the operating risk of a generating
system does not coincide exactly with that of the load level,
because the risk represented by reliability indices depends on
the combination of load levels, GU output capacity and DR
response capacity, not on load levels alone.

(iii) The MSD classification is a feasible method for the
state division of DR response capacity and the appropriate
state number can be found by the SSD criterion.

(iv) The proposed algorithm of short-term reliability
assessment of generating systems considering DR reliability
can reflect the effect of initial conditions of DRPs and GUs
on reliability indices.

In further research, the presented approach will be
extended to composite generation-transmission systems tak-
ing network constraints into account, and include periods
after DR events to think of shifted loads and DR rebounds.
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