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ABSTRACT As the demand for embedded-vision grows, solving large optimization problems in real-time
with energy and cost budget is a challenge. We present BAX, a hardware accelerator of bundle adjust-
ment (BA), which solves the least-squares problem of state estimation in visual odometry (VO). BAX
consists of a frontend and a backend for control and computation, respectively. The frontend generates
instructions on-the-fly executed at the backend to perform the BA algorithm. The backend adopts decoupled
access/execute (DAE) architecture, which separates the memory access unit (MAU) from the pipeline.
The MAU can prefetch vectors and matrices ahead of computations. To further reduce the latency of data
reorganization, three transpose-free dataflows are proposed for matrixmultiplication operations on the vector
processing unit (VPU). Besides, a unified architecture for both forward and backward substitution is designed
for matrix decomposition in the linear solver. All the data are stored in 442kB on-chip memory, and the local
map is maintained efficiently by the hierarchical graph memory. Compared with the baseline architecture,
the processing time is reduced by 53.9% through the above techniques. BAX is implemented in 32-bit
floating-point precision with data normalization on FPGA. It completes a full BA in about 63.44ms at
200MHz, consuming 1.12W power. BAX is 1.73× and 22.38× faster than the desktop and embedded CPUs,
respectively, and achieves 90% performance of the GPU at much less power consumption.

INDEX TERMS Hardware accelerator, decoupled architecture, FPGA, embedded system, bundle adjust-
ment, visual odometry.

I. INTRODUCTION
Bundle adjustment (BA) is the problem of refining a visual
reconstruction or navigation to produce jointly optimal 3D
structure and viewing parameter (camera pose and cali-
bration) estimates [1]. It refers to bundling up the light
from each 3D point to the optical center and adjusting
to minimize the projection errors of all points concerning
both structure and viewing parameters. Compared to the
filter-based optimization approach [2], BA trades more com-
putational cost for higher accuracy [3]. It has become the
last step of almost every feature-based visual tracking sys-
tem and 3D reconstruction algorithm. Image features are the
primitives such as points, lines, and regions with distinc-
tive geometric and structural information. A general frame-
work of visual navigation is visual odometry (VO) [4] or
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visual simultaneous localization and mapping (V-SLAM).
VO is the pose estimation process of an agent by match-
ing the features extracted at a stream of images. The poses
over multiple frames describe the agent’s long-term trajec-
tory, and the points denoted by the features constructs a
local map of the surrounding. The trajectory and local map
can be further refined by BA [5]. V-SLAM usually takes
VO as the frontend and performs a large global BA for
loop-closure at the backend. This framework is widely used
in applications such as unmanned aerial vehicles (UAVs),
automatic driving, and argument reality (AR). A typi-
cal method for 3D reconstruction is Structure-from-Motion
(SfM) [6]. SfM has a similar pipeline to V-SLAM, but
the purpose is to restore the 3D structure of observations
rather than estimate the agent’s poses. Compared to SfM
and V-SLAM, VO performs local BA with fewer frames
and a smaller map but has the requirement of real-time
processing.
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TABLE 1. Processing time breakdown of VO.

TABLE 2. Processing time breakdown of BA.

Large scale BA in offline visual reconstruction like SfM
usually requires high-performance CPUs, GPUs, and even
distributed computing [7]–[11]. These solutions are inappro-
priate for embedded systems because of the high power and
hardware cost. For online visual navigation in embedded
systems, BA is still a critical issue due to its high com-
putational intensity and numerical precision. We profile a
VO program with ORB feature [12] and local BA on an
ARM CPU. As shown in Table 1, it achieves only less
than three fps, and BA consumes over 25% of the total
time. Many researchers have studied hardware acceleration
of image feature extraction, which is beyond the scope of
this work. This work focuses on the performance bottleneck
of BA. Unlike many image processing algorithms, VO is not
a streaming processing application. For a full-pipelined VO,
the additional data memory is required as ping-pong buffers
between pipeline stages. It will cost much on-chip memory
and off-chip bandwidth, which should be avoided for embed-
ded applications. Therefore, in a non-pipelined VO system,
the latency of BA still drags the processing speed so that the
optimized parameters may not be updated in real-time.

The profiling result of a BA program is also given
in Table 2. It indicates that matrix operations, including
multiplication, addition, inverse and decomposition, occupy
near 80% of the total run time. Previous matrix processors
can be classified into two categories. One uses 2D register
array to access matrix by row and by column [13]. This
architecture indexes each entry and each element in an entry.
It brings additional hardware and power cost due to the
complex addressing logics. Another one operates like SIMD
or vector machines [14]. When data is loaded to the register
file or feed to the processing unit, it has an initial latency
that rearranging the data to fit the SIMD lanes. BA has many
operations that a matrix is transposed and then multiplied to
another. Thus, previous solutions are less optimal in hardware

cost or performance for BA due to its particular computing
pattern.

Besides, previous hardware acceleration of BA [15]–[19]
still have shortcomings for feature-based embedded VO.
In [15], a part of BA is accelerated by FPGA, and the interme-
diate data are stored in off-chip memory. The data movement
results in more latency and power cost. The pose estimation
engines in [16], [17] are lack of optimization process. The
works in [18], [19] optimize only camera poses, and the
errors caused by points are not reduced. For all these moti-
vations, we propose BAX, a hardware accelerator running
local BA in real-time for embedded VO. It addresses the
issue of matrix operations, works without external memory
access, and refines both camera poses and map points. The
high performance of BAX is gained as a result of fourfold
contribution:
• Decouple access/execute architecture. Matrix opera-
tions, which dominate the BA algorithm, can be per-
formed by a vector processing unit (VPU). We adopt
a decouple access/execute architecture [20] for the
VPU pipeline. The initial latency of traditional sin-
gle instruction multiple data (SIMD) execution is hid-
den by accessing memory and executing computations
asynchronously.

• Transpose-free matrix multiplication. In the BA algo-
rithm, a matrix is often transposed before multiplied
with another one. We regulate three dataflows to per-
form transpose-free matrix multiplication on the VPU.
Thus, the intial latency of matrix transpose is avoided.
This computing paradigm can be applied to other matrix
processors without much effort.

• Unified linear system solver. The BA algorithm con-
structs a linear system with a positive definite matrix.
Exploiting the parallelism in the variant Choleskymatrix
decomposition, we design a unified architecture for
both the forward and backward substitutions. Compared
with instruction-based processing, the dedicated datap-
ath removes time-consuming data reorganization.

• Hierarchical graph memory. The BA algorithm uses a
graph to represent the local map, including the camera
poses, the 3D map points, and the 2D projections at dif-
ferent poses. We propose a hierarchical graph memory
to maintain the local map. The memory access can be
pipelined to save the timing cost when computing the
projections and updating the parameters.

BAX is implemented on FPGA and operates at 200MHz. The
evaluation results show that BAX improves processing speed
by 1.73× and 22.38× compared with that of desktop and
embedded CPUs.

The rest of this article is organized as follows. Section II
reviews the related works of BA and pose estimation acceler-
ation. Section III briefly introduces the matrix manipulations
in BA. In Section IV, the architecture of BAX and its novelty
is described in detail. Section V shows the experiment result
about implementation, performance and accuracy. Finally,
the conclusion is drawn in Section VI.
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II. RELATED WORKS
A. BA ON GENERAL PURPOSE PROCESSORS
To improve computational efficiency, several researchers
have comprehensively studied the optimization and imple-
mentation of BA on general-purpose processors (GPPs).
Due to the lack of interaction among some subgroups
of parameters, the sparsity in corresponding Jacobian
matrices can be used to achieve considerable compu-
tation and memory savings. Based on this observation,
Lourakis and Argyros et al. [7] implemented a software
package to realize LM-based sparse BA with high efficiency
and flexibility regarding parameterization on CPUs. To solve
large-scale BA problems, Agarwal et al. [8] designed a
truncated Newton style LM algorithm coupled with a simple
preconditioner using the conjugate gradients (PCG). This
method delivers high performance on advanced multicore
CPUs at a fraction of the time and memory cost of methods
based on factoring the Schur complement.

Given the constraints of the GPU programming model,
it is not trivial to get bundle adjustment algorithms to run on
the GPUs. Choudhary et al. [9] took a hybrid approach to
run overlapping computations on GPU and CPU, where the
Hessian matrices and Schur complements are constructed on
GPU. Wu et al. [10] improved the BA performance on both
CPU and GPU by inexact LM without storing block matrices
in memory. Besides, single-precision arithmetic with suitable
data normalization further saves memory access and timing
cost yet still maintains high accuracy. Zheng et al. [11] also
combined the PCG algorithm, the Schur complement, and
GPU parallel computing technology to develop a fast and
effective BA method for large-scale datasets.

B. BA HARDWARE ACCELERATORS
Although GPU solutions achieve significant performance
improvement when executing the BA algorithm, they are
not suitable for embedded platforms like micro UAVs with
limited power budgets. This motivates researchers to design
customized architecture for BA. Qin et al. [15] presented a
hardware-software co-designed BA engine on an embedded
FPGA-SoC with a novel co-observation optimization tech-
nique. The engine offloads Schur elimination to the FPGA
side while runs the other steps on the CPU.

Besides, there have been several works on building hard-
ware accelerators with the function of BA or pose estimation
for complete visual tracking applications. Yoon et al. [16]
designed a graphics and vision unified processor for AR
with a pose estimation engine (PEE). The PEE calculates the
device pose using an orthogonal iteration algorithm, which
can be regarded as the simplicity of BA. Instead of the
previous marker-based approach, Hong et al. [17] proposed
a marker-less PEE for AR. The techniques of speculative
execution and reconfigurable data-arrangement layer are used
to reduce computing time and logarithmic computing to save
power consumption. Li et al. [18] applied a convolution
neural network (CNN) to extract features in SLAM and
designed a CNN-SLAM processor, which executes pose-only

FIGURE 1. Problem formuation of BA.

BA in ASIC. Similarly, Suleiman et al. [19] presented a
visual-inertial odometry (VIO) accelerator, which performs
a factor graph optimization instead of BA. To the best of our
knowledge, BAX is the first full hardware acceleration of BA
for embedded VO that refines both camera poses and 3Dmap
points simultaneously.

III. MATRIX OPERATIONS IN BA
The basic idea of BA is shown by Fig.1. Assume the cam-
era moves relative to the world reference by a rotation R
and a translation t (i.e., camera extrinsic T ) estimated using
EPnP [21], then the 3D coordinates of a point P in the world
reference can be transformed to the 2D coordinates of a
point p′ on the image plane. In addition, the same 3D point
is directly captured and printed as a pixel p of the image.
Due to the inaccurate measurement of T and P, p′ and p
have some error e in their 2D coordinates, which should
have been identical in theory. Essentially, BA is a non-linear
least squares problem to minimize the sum of the reprojec-
tion errors concerning all of the 3D points Pi and camera
extrinsic Tj. The error is defined as the squared L2 norm of
the difference between the observed feature location and the
projection of the corresponding 3D map points. The most
popular method to solve BA is the Levenberg-Marquart (LM)
algorithm. It expresses the non-linear optimization problem
as an approximate linear system of equations and finds the
optimal solution as a combination of steepest descent and the
Gauss-Newton method. Using the Schur complement trick,
the scale of the linear system can be reduced greatly. Since
the reduced coefficient matrix is positive-define, Cholesky
decomposition is suitable for solving the equations. The more
details of BA and related numerical optimizationmethods can
be found in [1]. The computing patterns andmatrix operations
dominated in BA is introduced as follows.

A. NORMAL EQUATION
Approximated by the LMmethod, the BA problem is actually
to solve the normalization equations as follow:

H1x = (JT J+ λDTD)1x = −JT e = g (1)
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where J is the Jacobian, D is a diagonal matrix extracted
from JT J, λ is a non-negtavie coefficient that controls the
damping strength, vector 1x is the corrections of optimized
variables, and vector e is a collection of reprojection errors.
Assume that the number of optimized camera poses and 3D
points is a and b, respectively. Then the size of Hessianmatrix
H = JT J+ λDTD is (6a+ 3b)× (6a+ 3b), and the vectors
1x, e and g have the same length of (6a + 3b). It is also
observed that all the components in Eq.1 can be partitioned
into two parts: Jacobian matrix J = [Jc Jp], dampling matrix
D = [Dc Dp], and corretion vector1x = [1xc 1xp]T , where
the index c and p denote the camera pose part and the point
part respectively. Thus, Eq.1 can be expressed as follow:[

B E
ET C

] [
1xc
1xp

]
=

[
v
w

]
(2)

where B = JTc Jc + λD
T
c Dc and C = JTp Jp + λD

T
pDp are

a 6a × 6a and a 3b × 3b diagonal block matrix, E = JTc Jp
is a 6a × 3b sparse block matrix, and vector v = −JTc e and
w = −JTp e has a length of 6a and 3b respectively.

B. SCHUR COMPLEMENT
Directly solving Eq.1 has a complexity of O((6a + 3b)3),
which is computational intensive for large-scale BA problem.
With block-wise Gaussian elimination, Eq.2 can be reduced
as follow:[

B− EC−1ET 0
ET C

] [
1xc
1xp

]
=

[
v− EC−1w

w

]
(3)

where B − EC−1ET is a positive definite matrix, called the
Schur complement. Therefore, solving Eq.1 is converted to
solve the correction of camera pose part 1xc first:[

B− EC−1ET
]
1xc = v− EC−1w (4)

and then substitute 1xc to figure out the point part 1xp:

1xp = C−1
[
w− ET1xc

]
(5)

Since the number of camera poses is much less than that of
points, it is efficient to solve Eq.4 using Cholesky decompo-
sition instead of Eq.1. Besides, it is simple to calculate C−1

because the diagonal of C is composed of 3× 3 matrices.

C. CHOLESKY DECOMPOSITION
A variant Cholesky decomposition, called LDL decompo-
sition, is given by A = LDLT , where A is a n × n
positive-definite matrix, L is a unit lower triangular matrix
with unit elements on the diagonal, and D is a diagonal
matrix. Thus, solving Ax = LDLT x = b is equivalent to
solving three equations Lz = b,Dr = z and LT x = r in
sequence: 

z1 = b1
...

zj = bj −
∑j−1

i=1
Lj,izi j = 2 ∼ n

(6a)

rj = zj/dj j = 1 ∼ n (6b)
xn = rn
...

xj = rj −
∑j+1

i=2
Li,jxi j = n ∼ 1

(6c)

where the first two steps are forward substitution, and
the third is backward substitution. Different from the stan-
dard Cholesky decomposition, the above computation avoids
square root operation and division dependency at the cost
of more iterations, which can be compensated by parallel
processing.

IV. HARDWARE ARCHITECTURE OF BAX
Application-specific hardware accelerators usually adopt par-
allel processing, stream processing, and pipeline technique to
boost the run-time performance. From a macroscopic view,
the tasks of BA (see Table 2) have to be executed in serial
due to the significant data dependency. Besides, the complex
dataflow of conditional execution prevents stream process-
ing. Although pipeline can improve throughput, it brings
additional data memory between stages for non-stream pro-
cessing, which is less appropriate for BA, since it has mas-
sive intermediate data. Therefore, we consider executing
BA by the algorithm flow under the control of finite state
machines (FSM).

The overall architecture of BAX is partitioned into the
frontend and the backend (see Fig.2). At the frontend, a set of
FSMs are switched by the central controller following the BA
algorithm. The FSMs include 1) Constructor that builds the
normalization equation by computing the Jacobian and Hes-
sian matrices; 2) Marginalizer that reduces the scale of nor-
malization equation through the Schur elimination method;
3) Solver that figures out the increment of camera states and
3D points coordinates by variant Cholesky decomposition
and 4) Updater that calculates the value of optimized cam-
era states and 3D points coordinates. The above steps are
repeated until the termination conditions are satisfied. Due
to the serial nature, all the FSMs at the frontend can share the
computational resources of the backend without conflict.

Unlike the work in [19], which calls the shared computa-
tional units by the FSMs directly, BAX bridges the frontend
and backend through an instruction queue (IQ). Specifically,
the FSMs at the frontend generate 32-bit RISC instructions
and write them into the IQ. Then the backend act as a GPP to
execute these instructions on a scalar processing unit (SPU)
and a vector processing unit (VPU), with no idea of the cur-
rent step at the frontend. This loosely coupled architecture has
two advantages. First, more advanced operations can be inte-
grated to BAX conveniently by the simple modification of the
frontend if necessary. Second, the instruction-based calling of
the backend avoids the duplicated control logics in each FSM
at the frontend. The SPU and VPU can access the data mem-
ory (DM) through separate register files. The DM includes
a graph memory for the local map, an equation memory for
the Jacobian and Hessian matrices, and a shared memory for
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FIGURE 2. Overall architecture of BAX. (IGU: instruction generation unit; MD: matrix decomposition; IQ: instruction
queue; FDU: fetch and decode unit; VIQ/MIQ/SIQ: vector/memory/scalar instruction queue; SPU: scalar processing
unit; MAU: memory access unit; VPU: vector processing unit; DRU: data reorganization unit; AGU: address
generation unit; VRF/ARF/SRF: vector/address/scalar register file; DM: data memory).

the other data. The DM capacity is compressed by making
use of the sparsity and symmetry of the Hessian matrix.
Besides, BAX implements a single-precision float-point data
path with the data normalization method in [10], which saves
much hardware and power cost at minimum accuracy loss
compared to the double-precision.

A. DECOUPLED ACCESS/EXECUTE ARCHITECTURE
High-performance GPPs are usually enhanced by the SIMD
technique to exploit the data-level parallelism (DLP). How-
ever, the SIMD execution units still suffer from the latency
of data preparation (cache missing, permutation, packed and
unpacked, etc.). To address this issue, modern GPUs further
extend SIMD to single instruction multiple threads (SIMT).
The SIMT technique can feed the pipeline with the other
threads when one thread is data-hungry. Instead of the com-
plex SIMT implementation, we expect a simple and efficient
method to reduce the data preparation latency in SIMD.
Decoupled access/execute (DAE) architecture was proposed
in [20]. A typical decoupled processor has two independent
processors [22]. They can execute memory reference and
computation instructions asynchronously. Therefore, mem-
ory latency can be hidden by fetching data ahead of demand.
The purpose of DAE architecture was to address the issue of
memory access latency [23] at first. The DAE architecture
fails in the market of GPP because it is inefficient for irregular
data structures and control flows. However, computations on
structured data like the massive matrix operations in BA is
conformable to the concept of DAE. Although BAX has no
external memory access, the data preparation in SIMD execu-
tion can be considered as internal memory latency. Therefore,
BAX can benefit from in-order execution DAE architecture
by prefetching vectors or matrices.

The instruction set architecture (ISA) of BAX derives
from the RISC-V ISA [24], where only the load/store and
arithmetic instructions (float-point scalar and vector) are
retained for simplicity. Besides, a few customed instructions
for matrix manipulations and data reorganizations are defined
based on the features of BA (see Section III). As shown

in Fig.2, the backend of BAX is decoupled into four com-
ponents: the fetch and decode unit (FDU), the memory
access unit (MAU), the scalar processing unit (SPU), and
the vector processing unit (VPU). The FDU fetches and
decodes instructions from the IQ. Then it issues them to
the memory instruction queue (MIQ), the scalar instruction
queue (SIQ), and the vector instruction queue (VIQ) accord-
ing to the type of instructions. The instructions, classified
into memory access (load, store, and permute), scalar arith-
metics, and vector arithmetics, are handled by the MAU,
SPU, and VPU, respectively. The MAU calculates the ref-
erence address through the address generation unit (AGU)
with the address register file (ARF) and moves data between
the data memory (DM), the scalar register file (SRF), and the
vector register file (VRF). It can also execute data permuta-
tion instructions by the data reorganization unit (DRU). Both
VPU and SPU have a 4-stage pipeline (no memory access)
with various latencies in the execution stage for different
float-point operations. Inside VRF and SRF, a state table for
each entry is used to resolve data hazards between the MAU,
SPU and VPU.

The pipeline timing of a code snippet executed on the
DAE architecture is compared with traditional in-order RISC
architecture in Fig.3. Assume that loading (storing) a vec-
tor from (to) memory costs three cycles, multiplying two
vectors by elements requires four cycles, and both archi-
tecture support data forwarding before the write-back stage.
In the beginning, the DAE architecture has more latency to
complete the store instruction due to the additional FDU
pipeline. However, the DAE architecture makes an effect as
the loops proceed. The SPU can run the address increment
instructions ahead of the completion of the previous store
instruction conducted by the MAU since they are decoupled
and have no data dependency. Therefore, the DAE architec-
ture will improve the performance significantly, especially
for programs with large loop counts and high latency of
both memory access and computation. Different from out-
of-order superscalar processors, the proposed DAE archi-
tecture exploits prefetching rather than dynamic scheduling.
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FIGURE 3. Pipeline timing of traditional RISC architecture and DAE architecture. (pipeline stages of FDU are in lower-case).

FIGURE 4. Architecture of two-stage VPU.

Thus, it still maintains in-order execution and a simple assem-
bly programming model at a little hardware cost.

B. TRANSPOSE-FREE MATRIX MULTIPLICATION
To save the execution time of completing a matrix operation,
we define a set of matrix arithmetic instructions and execute
them on a canonical vector processing unit (VPU) with an
adder tree. As shown in Fig.4, the VPU architecture is similar
to previous matrix processors [18], [19]. The first stage can
multiply or add the elements from two vectors as a naive
vector processor. In each lane, the multiplier is chained to the
adder to perform multiplication and accumulation. Together
with the adder tree at the second stage, the VPU can also dot
product two vectors and multiply two matrices. As described
in Section III, when solving the linear system, the coefficients
matrix (Hessian matrix) of the equation is manipulated by
a series of block matrices. Since the largest size of a block
is 6 × 6, the VPU of BAX is implemented with six lanes
as a trade-off between performance and utilization. With the

data normalization method in [10], a 32-bit single-precision
float-point datapath guarantees the BA accuracy.

It frequently occurs that a matrix is transposed and then
multiplied to another when constructing the Hessian matrix
in BA. Although previous works like [13], [14] also per-
form matrix multiplication using multipliers and adder trees,
they are less optimal for matrix transpose in hardware cost
and performance. Except for fetching data, the memory
access unit (MAU) at the backend of BAX also runs the
data permutation instructions using the data reorganization
unit (DRU). Therefore, the load and transpose operations can
be packed into a single instruction. Using the DAE architec-
ture, the latency of matrix transpose is likely to be hidden.

Another case is that the matrix to be transposed is already
in the register file. To address this issue, we regulate three
computing patterns for transpose-free matrix multiplication
on the VPU, as shown in Fig.5. Assume two 3×3 matricesA
andB are stored in vector registers with two read ports in row-
wise. Therefore, a row vector or a single element from two
matrices can be accessed at one cycle. To calculate C = AB,
A1,x (x = 1, 2, 3) is multiplied with three rows of B respec-
tively to produce the partial sum of the first row of C. The
partial sums are stored in the temp registers and accumulated
to the first row of C (Fig.5a). Repeat this step for all the
rows of A until the calculation of C completes. Similarly,
C = ATB can be calculated by accessing the element of
A in column-wise (Fig.5b). Since a row of A and a column
of BT (i.e., a row of B) can be accessed at the same cycle,
each element of C can be calculated directly by the VPU
(Fig.5c). Swapping the order to access A and B in Fig.5b,
C = ATBT can be calculated by column. The result of C
must be transposed before being written to the memory to
unify the storage format. The above computing patterns have
a time complexity ofO(n2) with n being the matrix size. If the
matrix size is larger than the number of VPU lanes, the VPU
can compute the partial sums of several partitioned blocks,
and then accumulate them to the final result.

VOLUME 8, 2020 75535



R. Sun et al.: BAX: BA Accelerator With DAE Architecture for VO

FIGURE 5. Transpose-free matrix multiplication. (VR: vector register; TR:
temp register).

C. UNIFIED ARCHITECTURE OF LINEAR SOLVER
Although there is a VPU in BAX, instruction-based vec-
tor (matrix) operations are less efficient for the above calcu-
lations because the size of the coefficient matrix in Eq.4 is
far beyond the number of the SIMD lanes in the VPU and the
VRF capacity. If the matrix decomposition is conducted by
the 6-width VPU, massive partial sums have to be moved in
and out of the registers repeatedly. Despite the DAE archi-
tecture, a large amount of pipeline stall is still inevitable.
Therefore, the Solver FSM at the frontend is allowed to use
the functional units of the VPU and SPU, and access the data
memory directly without instructions.

To solve the reduced normalization equation (Eq.4),
we learn from [25] and apply the LDL decomposition on the
coefficient matrix iteratively. The LDL decomposition of a
symmetric matrixA = LDLT can be divided into four blocks
as follow:[
An−1 t
tT g

]
=

[
Ln−1 0
wT 1

] [
Dn−1 0

0 dn

] [
LTn−1 w
0 1

]
(7)

where g = ann and dn are scalars, t and w are vectors.
By matching the block matrices of the two sides in Eq.7, it is
easy to find:

An−1 = Ln−1Dn−1LTn−1 (8a)

t = Ln−1Dn−1w (8b)

g = wTDn−1w+ dn (8c)

which indicates that given the LDL decomposition of its
top-left n − 1 order cofactor An−1 as Eq.8a, A can be
decomposed by solving w and dn according to Eq.8b and
Eq.8c. Therefore, the full decomposition can be iterated from
A1 = D1 = a11 and L1 = 1.
Fortunately, solving Eq.8b exactly follows the forward sub-

stitution of LDL composition as Eq.6a and Eq.6b. It indicates
that the iterative LDL decomposition can be performed on a
common datapath using similar dataflow, saving the hardware
overhead. Therefore, we design a unified architecture for
both LDL decomposition (forward substitution) and equation
solving (backward substitution). Fig.6a and Fig.6b shows
the dataflow of the forward and backward substitution to
calculate Eq.6 on the unified linear solver, respectively. In the
forward substitution, bj is first assigned to zj one-to-one
(j = 1 ∼ n). Then the multiple product terms zj_p = Lj,izi
(partial sums) associated with the same zi are calculated in
parallel and negatively accumulated to zj until zj is figured
out (j = 2 ∼ n, i = 2 ∼ n − 1). Once zj is ready,
rj = zj/dj is calculated immediately on the divider. After
that, the backward substitution starts in the reverse order to
calculate the final results xj. Besides, the dataflow to solve
Eq.8c is similar to the matrix multiplication on the VPU.
All the intermediate data are stored in the on-chip data mem-
ory. One triangular iteration above has a timing complexity
of about O(n2/(2p)), where p is the parallelism degree. Thus,
the total time cost for a complete decomposition after n
iterations is aboutO((n3)/(6p)). The linear solver borrows six
adders and one divider from the VPU and SPU, respectively.
With the elaborate pipeline timing, it can solve a 96 × 96
linear system of equation in about 80 thousand cycles. This
unified architecture is flexible to support large scale matrix
decomposition by more iterations or adding more computing
resources.

D. LOCAL MAP AND GRAPH MEMORY HIERARCHY
The camera pose of each frame, the map points observed
per frame, and the keypoints (features) extracted in each
frame are associated with each other to form a local map
as a graph. When a new frame (pose) with map points and
keypoints is inserted to the map, the earliest frame has to be
deleted if beyond the memory capacity. In [19], a two-stage
graph memory is proposed without the storage of 2D key-
points coordinates, which is not suitable for BAX. In [18],
a hierarchical graph memory with a free-list FIFO is used
to store a similar map, but the method to update the map
is not explained in detail. In this work, we implement a
graph memory including three buffers for frames, keypoints
and map points, respectively. Each entry of the three buffers
is partitioned into multiple fields with different attributes.
The frame buffer has three fields for the frame index (FID),
the camera pose ([R|t]), and the number of keypoints in this
frame (nKP). The LSB of FID indicates whether the entry
is used or not. The keypoint buffer is divided into multi-
ple groups, and a group stores the 2D coordinates (2D) of
keypoints in a frame. Each keypoint has a pointer (PTR) to
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FIGURE 6. Architecture and dataflow of linear solver. (red arrows are active datapath).

FIGURE 7. Map update in graph memory.

its corresponding 3D map point. The map buffer stores the
indexes of map points (PID), their 3D coordinates (3D), and
the index of frames (FIDi) that observe the map point.
We will explain how the graph memory handles the local

map with an example in Fig.7. Assume that the frame buffer

has only two entries, the map buffer has six entries, and
the keypoint buffer has eight entries partitioned into two
groups. KFi denotes the i-th keyframe, and its camera pose is
expressed by [R|t]i. The 2D coordinates of the j-th keypoint
in KFi are denoted by [u,v]ij. The m-th landmark (3D point)
is denoted by Pm, where the index is numbered indepen-
dently from any frame, and its 3D coordinates are given by
[x,y,z]m. In the beginning, KF0 with three keypoints arrives.
The first entry of the frame buffer is filled, and the three
keypoints are stored in the first group of the keypoint buffer
in order. These keypoints correspond to three landmarks P2,
P0, and P1, respectively. The landmarks are stored in the
map buffer in sequence. The write address is given by m
mod d , where d = 8 is the map buffer depth, and this
address is also the pointer PTR of the associated keypoint.
Then KF1 is inserted after KF0, and the 2D keypoints are
stored in the second group of the keypoint buffer. Since
P0 and P2 are co-observed in both KF0 and KF1, they
share the same entries in the map buffer so long as the
related FID fields are set. The next frame KF2 will replace
KF0, but P2 has to be retained because it is still observed
in KF1.
When running BA, the accelerator first reads a camera pose

and its nKP from the frame buffer. Then the 2D coordinates of
all the keypoints in this frame are fetched from the keypoint
buffer according to nKP. Meanwhile, the corresponding 3D
coordinates and the observed FIDs are indexed by PTR.
After that, the normalization equation to solve BA can be
constructed with the above information. In our implemen-
tation, the 128KB graph memory can maintain a local map
with 16 frames, 256 keypoints per frame, and 4096 land-
marks with eight co-observations at most. Any fine-coarse
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TABLE 3. FPGA resource utilization of BAX.

FIGURE 8. Resource and power comparison of different implementations.

operation to an entry of the buffers is completed in one or
two cycles.

V. EXPERIMENT RESULTS
A. IMPLEMENTATION
The proposed accelerator is implemented on the FPGA
side (XCZU9EG) of a Xilinx Zynq Ultrascale+ MPSoC
(ZCU102) at 200MHz. Except for a 32-bit integer adder
in the address generation unit (AGU) of the MAU, all the
computational units in the SPU and VPU are 32-bit float-
point. These float-point units work in non-block mode with
the pipeline depth from four to twelve cycles. Table 3 reports
the resource utilization of LUTs, REGs, DSPs, and BRAMs
by different modules. Since the divider is generated with-
out DSP by Vivado, it contributes to the most LUTs and
REGs in the SPU. In addition, a BRAM in the FPGA is
at least 18Kb, which exceeds the actual requirement of the
small instruction queues. Nevertheless, the accelerator still
consumes very few FPGA resources. To evaluate the effect
of DAE architecture with single-precision datapath (DS) on
hardware cost, we also implement two other versions of BAX,
including non-decouple single-precision (NDS) and decou-
ple double-precision (DD). As shown in Fig.8, the single-
precision datapath saves about half of hardware resources
and power. Compared with the non-decouple architecture,

FIGURE 9. On-chip memory utilization breakdown. (GM: graph memory;
EM: equation memory; SM: shared memory; IQ: instruction queues; RF:
register files).

the proposed DAE architecture has only a few more hard-
ware cost. It is mainly used for the FDU and MAU, and the
multi-ported VRF and SRF.

We also analyze the size of necessary on-chip memory
by a quantitative approach. Different from the work in [10],
BAX constructs the Hessian matrix using the 2 × 9 Jaco-
bian associated with each error term without the storage of
the global Jacobian in Eq.1. In our implementation, BAX
supports a local map with at most 16 frames (camera poses)
and 4096 landmarks (3D points) in total. According to Eq.2,
we can infer that B and C consists of 16 6×6 and 4096 3×3
symmetric block matrices on the diagonal with the rest being
all zeros, and g has a length of 12384. Since a landmark has
max eight co-observations at different poses and a frame has
most 256 keypoints, the sub-matrix E contains 2048 6 × 3
non-zero blocks, which can be encoded using the compressed
sparse row (CSR) format by block. By exploiting the sparsity
and symmetry above, the Hessian matrix H with the vector
g can be stored in the 295KB equation memory of the data
memory (DM), including a 4.75KB space to index the CSR
formant. Besides, the DM also contains 128KB graph mem-
ory (see Section IV.D) for the local map and 16KB shared
memory for intermediate data. In addition, BAX has four
128×32-bit instruction queues (IQ/VIQ/MIQ/SIQ), 16×384-
bit VRF, 16 × 64-bit SRF and 8 × 32-bit ARF. As a result,
the total on-chip memory required is about 442KB, and the
breakdown of on-chip memory usage is shown in Fig.9.

B. PERFORMANCE
To evaluate the performance gain from the four techniques
described in Section IV, we run RTL simulation of BA on
different architectures. The baseline architecture is a canon-
ical 5-stage RISC pipeline. It performs all the computations
on an SPU and VPU with the same specs as BAX, and the
local map is stored in a single-bank memory. Then one or
more techniques are added to the baseline architecture, and
BAX is the one with all techniques. Before the simulation,
the test datasets from the BAL project [8] are pre-processed.
One group from each of the five datasets is selected and
trimmed to 16 frames, less than 256 keypoints per frame,
and less than eight co-observations per landmark. All the data
are normalized to single-precision, and the termination con-
ditions are set. The time breakdown of different architecture
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FIGURE 10. Processing time breakdown of different architectures. (DAE:
decoupled access/execute; TFMM: transpose-free matrix multiplication;
ULS: unified linear solver; HGM: hierarchical graph memory).

TABLE 4. Performance comparison of BAX and GPPs.

is shown in Fig.10. It is observed that: 1) The performance
of all steps in BA is improved by the DAE architecture,
which hides thememory access latency; 2) The transpose-free
matrix multiplication method further saves the processing
time of matrix multiplication in all steps; 3) The unified linear
solver accelerates the matrix decomposition when solving
the equation; 4) The hierarchical graph memory reduces the
processing time slightly due to the overlapped accessing of
multiple parameters. With the combination of above features,
the performance of BAX is improved by 53.9% than that of
the baseline architecture.

The performance of BAX is also compared with that of
different GPPs. The BA algorithm is programmed using the
g2o [26] and OpenOF [27] library for CPU and GPU, respec-
tively, with the same specifications as BAX. The BA program
runs on an Intel i7-8700 CPU at 3.2GHz with 16GB DRAM,
an ARM A53 CPU at 1.2GHz with 4GB DRAM, and an
NVIDIA GTX960 GPU at 1.1GHz with 3GB graph DRAM.
The experiment results are listed in Table 4. The execution
time of the above platforms is 110.48ms, 1.42s and 57.13ms,
respectively, and the power consumption is 65W, 1.67W and
130W. Although the GPU implementation achieves the best
performance, it is not suitable for embedded VO due to its
high power. On the contrary, BAX can complete a full BA
in 63.44ms on average while consumes only 1.12W power,
which is much less than that of the GPU and the Intel CPU.
It achieves a 1.73× and 22.38× speedup compared with the

FIGURE 11. Processing time comparison of BAX and GPPs with DRAM
traffic.

Intel and ARM CPU, respectively. Besides, BAX has no
external memory access during the entire processing. To eval-
uate the effect of DRAM traffic on performance, we add a
DDR controller and a DMA (IP cores in Vivado) to BAX.
The DRAM interface is set to 16bit and 1200MHz by default.
Then we run simulations on BAX and the GPPs with larger
datasets, respectively. As shown in Fig.11, the processing
time of BAX and the GPPs grows nonlinearly as the number
of poses or points per frame increases (Y-axis is in log).
The curve slope of BAX is larger than that of GPPs for the
limited on-chip memory and lower DDR bandwidth. Besides,
the timing cost of GPU grows relatively slowly because of
the massive streaming cores and high-parallel computing
patterns. Therefore, one advantage of BAX is to solve a small
BA problem for embedded VO efficiently.

Previous BA-related hardware accelerators [15], [18], [19]
target to different applications and have various design
spaces. The specifications and features of these works and
BAX are listed in Table 5. The works [18] and [19] are
visual (inertial) odometry accelerators implemented in ASIC
while [15] and BAX are FPGA-based BA accelerators. The
work [19] completes one iteration in 30.8ms using the factor
graph method. It adopts double-precision float-point data to
maintain high accuracy and achieves extremely low power
through the adaptation technique. The work [18] adopts
32-bit fixed-point numerical precision with data normaliza-
tion. It solves a pose-only BA with 20 frames and requires
much fewer operations compared with the others. According
to the architecture and the breakdown of chip die, we estimate
that it competes one iteration in less than 17us, and the BA
part costs less than 30mW. However, both works in [18], [19]
optimize only the camera poses, and the errors caused by
the map points are not reduced. In [15], only the Schur
elimination step is implemented on FPGA, while the others
still run on CPU. The data movement between the off-chip
and on-chip memory results in additional latency and power
cost. It completes one iteration on larger datasets in 110ms at
the expense of more hardware resources. To the best of our
knowledge, BAX is the first full-BA accelerator for embed-
ded VO applications. It completes one iteration in about

VOLUME 8, 2020 75539



R. Sun et al.: BAX: BA Accelerator With DAE Architecture for VO

TABLE 5. Specification of BAX and related works.

TABLE 6. MSE of poses/points optimized by BAX.

10.57ms at 200MHz and overcomes the shortcoming, i.e., the
lack of refinement on points in [18], [19] to achieve high accu-
racy. The support for full-BA and the FPGA-based implemen-
tation brings BAX more power cost than that of [18], [19].
However, at the configuration of pose-only mode, the power
cost and processing speed of BAX can also be reduced.
Compared to [15], BAX solves small BA problems more
efficiently with full hardware implementation. As a result,
it avoids the latency of external memory access and costs less
hardware and power than that of [15].

C. ACCURACY
In this work, a 32-bit floating-point datapath with data nor-
malization is used to save hardware resources. To evalu-
ate its effect on the accuracy, we use the same datasets
above to simulate on three configurations of BAX, includ-
ing double-precision, single-precision with data normaliza-
tion (DN), and single-precision without DN. The BA results
calculated by the double-precision datapath are taken as the
ground truth. Then BAX with different numerical precision
performs BA using the same datasets applied by Gaussian
noise. The results include camera poses and coordinates
of 3D map points, among which the camera poses are con-
verted to 6-element vectors using the Rodriguez formula [28].
After that, the accuracy is measured by the mean square
errors (MSE) of all the three sets of results relative to the
ground truth, as shown in Table 6. For single-precision with-
out DN, the MSE of camera poses and map points are 1010×
and 106× higher than that of double-precision, respectively.

Although it seems that theMSE is quite small for one BA, this
error is still unacceptable because it will accumulate as the
movement proceeds. However, the MSE of single-precision
with DN is only increased by 100× for both poses and
points compared to the double-precision. Besides, the result
of pose-only BA is a little worse than that of single-precision
without DN, indicating the effectiveness of full BA. From the
accuracy gain, it is observed that the DNmethod improves the
accuracy of poses and points in single-precision BA by 107×
and 104×.

VI. CONCLUSION
We propose BAX, an FPGA accelerator for feature-based BA
that refines both camera poses and map points. It consists of
a frontend and a backend, which are loosely coupled by an
instruction queue. Instructions are generated by the FSMs at
the frontend. Then BA is performed at the backend under the
control of the instructions. The backend exploits a DAE archi-
tecture to reduce the latency of data preparation in continuous
matrix operations. A 6-width VPUwith transpose-free matrix
multiplication is used to reduce this latency further. In the
linear solver, a unified architecture for both forward and
backward substitution is proposed. BAX maintains a local
map, including 16 camera poses, 256 keypoints per frame,
and eight co-observations per landmark, in a hierarchical
graph memory.

The accelerator completes a full BA in about 63.44ms at
200MHz while consuming 1.12W power without external
memory access. It achieves a 1.73× and 22.38× speedup
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compared with the desktop CPU and the embedded CPU,
respectively, and 90% performance of the GPU. Since the
backend works as a standalone processing unit, the function
of BAX can be easily modified by configuring the FSMs
at the frontend. Although this work targets embedded VO,
the architecture of BAX also supports large scale BA or
global BA if more computational resources and external
memory are used. The concepts, such as the DAE archi-
tecture and transpose-free matrix multiplication, are suitable
for other applications that contain massive vector and matrix
operations.
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