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ABSTRACT We present PTPG (Poisson triangular pattern generator), a method that generates and optimizes
triangular patterns for tokens on tangible surfaces. PTPG uses spatial information of markers to form
triangular patterns and processes a template-matching algorithm to identify patterns. We introduce Poisson
disk sampling to search patterns in the feature vector space and set sampling constraints to obtain patterns
that meet the requirements of size, shape, and pattern distance. The patterns optimized by a shape constraint
address the marker-loss problem caused by a common design of capacitive tokens, and therefore improve
the recognition rate. We manufacture ten sets of prototype tokens based on the patterns generated by Poisson
sampling and test these tokens on different devices. Experimental results show that ourmethod providesmore
unique patterns than other heuristic methods, and the patterns are applicable to different tangible surfaces
with high recognition rates.

INDEX TERMS Poisson disk sampling, pattern recognition, tangible user interfaces, tangible surface.

I. INTRODUCTION
Tangible User Interfaces (TUIs) enable users to interact
with digital content by manipulating physical objects [1], [2].
As an interactive paradigm more in line with natural
human behavior than Graphical User Interfaces (GUIs), TUI
has been introduced into areas such as gaming [3], [4],
education [5], [6] and design [7], [8]. TUI systems rely on
sensing and recognizing patterns of token objects to obtain
information on identification, position, direction and behav-
ior. Pattern design is one of the key building blocks of TUI
systems. However, research on pattern design and generation
remain sparse. In particular, pattern generation in nonoptical
tangible systems mainly relies on heuristic methods.

Patterns are generally formed by the ‘footprints’ that are
left on tabletops by objects or by the fiducial markers that are
attached to objects [9]–[12]. Initially, optical systems mainly
used high-contrast pictures composed of black-and-white
rectangles as recognition patterns [13], [14]. Optical patterns
require additional cameras to capture images, making optical
systems generally bulky and unsuitable for mobile devices.
In addition, optical pattern recognition is easily affected by
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light conditions and occlusions, thus reducing the recognition
rate. Some magnetic systems used the features of magnetic
fields, such as polar, shape and intensity, to construct unique
patterns [10], [15]. Magnetic patterns have good expressive-
ness and can provide a large number of unique IDs. However,
the sensing distance of magnetic sensors is usually close [16],
and the problem of magnetic field interference needs to be
addressed [10].

With the popularity of mobile tablets, an increasing num-
ber of TUI systems used portable capacitive touchscreens
as tangible surfaces [9], [17]–[20]. Capacitive patterns were
usually formed by relative spatial information of several
touchpoints. Unique patterns were obtained by changing
the distances between touchpoints. However, current capac-
itive touchscreens support a limited number of simultaneous
touches ranging from 10 to 20. Therefore, patterns on capac-
itive touchscreens generally contain 3-4 marker points. The
limited touchpoints also resulted in an insufficient number of
unique patterns on capacitive devices. Some studies installed
chips and circuits into tokens and provided IDs via wireless
communication [11], [19]. But these active tokens are expen-
sive and difficult to manufacture.

Our goal is to present a general pattern design, which
applies to a variety of tangible systems with a high
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recognition rate and a large number of unique IDs. PTPG uses
the spatial information of three marker points to construct a
triangular pattern, and introduces Poisson disk sampling to
search for a maximal number of patterns in pattern space.
By setting sampling constraints, we optimize the shape of pat-
terns to improve recognition rates and stability. In conclusion,
this paper makes the following contributions: (1) Present a
triangular pattern design suitable for various tangible screens,
and a light-weight and robust recognition algorithm. (2) Intro-
duce a novel Poisson-disk-sampling-based method to gener-
ate a maximal number of patterns in the feature vector space,
and improve the recognition rate of patterns by optimizing
their shapes. (3) Perform experiments to evaluate our method
in terms of the number of patterns, recognition rates on
different devices, and compare with other patterns.

After reviewing related work, we describe how to construct
the feature vector of a triangular pattern and the pattern
recognition algorithm based on template matching. Then,
we present the algorithm based on Poisson disk sampling
for generating and optimizing patterns. Next, we detail the
structure of the prototype token, the experimental results on
different devices, and the comparison with other methods.
Finally, we report the interactive experiences in three appli-
cations, summarize the limitations of our method and provide
a future research plan.

II. RELATED WORK
Wefirst give an overview of patterns used for optical tracking,
magnetic tracking, and capacitive tracking technologies, and
then discuss the active tokens with digital pattern IDs.

A. OPTICAL PATTERNS
Initial TUI tabletop systems used computer-visionmethods to
track objects and users’ gestures [7], [8]. Such optical systems
typically include a camera to capture images of objects and
a projector to output graphical interfaces and digital infor-
mation [21], [22]. The computer-vision algorithm tracks an
object by analyzing the fiducial markers on the surface of
the object [23] or the ‘‘footprint’’ left by the object on the
desktop [24]. ARTag [25] used several planar fiducial mark-
ers to identify objects. ReacTIVision [13] used images com-
posed of black-and-white rectangles as patterns, which can be
converted into a special tree structure to provide 128 unique
pattern IDs. Lumino [26] used a glass fiber bundle in each
tangible block to rearrange the marker images of 3D structure
blocks, and encoded 14 classes of objects by 4 marker bits.
Optical patterns are mature and suitable for large tabletops.
However, optical tracking relies on the resolution of cameras
and is easily affected by light conditions and occlusions, thus
reducing the recognition rate. Moreover, optical systems are
always too bulky to use with mobile devices.

B. MAGNETIC PATTERNS
As a low-cost and reliable object sensing technology,
magnetic sensing methods have been adopted by some

tangible systems. Sensetable [27] uses unique reso-
nant frequencies generated by coils to identify objects.
GaussBits [16] used a thin magnetic sensor grid that is
attached to the back of a display to track the bi-polar magnetic
fields of tokens. GaussStones [10] combines different fea-
tures of magnetic fields such as shape, intensity, and quantity
to code pattern IDs. MagnID [15] spun a magnet by a motor
and encoded eight tokens with the frequencies of polarity
changes. Magnetic patterns can utilize different features of
magnetic fields to provide hundreds of unique IDs. However,
Hall-sensor grids have a short sensing distance so that they
are often used for thin screens. Furthermore, there are inter-
ferences between magnetic tokens that need to be handled.

C. CAPACITIVE PATTERNS
Capacitive touchscreens have the advantages of portabil-
ity, low cost, and durability. An increasing number of
researchers are exploring object recognition methods using
capacitive sensing [11], [12], [14], [19], [28]. General capac-
itive patterns use relative spatial information among several
touches [17]. TouchTokens [20] used three touches to form
a triangular pattern, and selected a group of 12 patterns by
heuristic experiments. TriPOD [29] generated 24 triangular
patterns by project points in a 3D space according to size
and distance conditions. To further expand the number of
capacitive patterns, ToMMI [28] and TUIC-2D [30] use three
fiducial points plus one coding point to generate patterns.
These four-marker patterns have more spatial features than
three-marker patterns and are able to provide more unique
IDs, but they do not make full use of the relative spatial infor-
mation between the marker points. Capacitive touchscreens
were originally designed to sense human finger contacts,
so they usually have a limited number (10-20) of simulta-
neous touches and a low accuracy of position information.
The more touches a token contains, the fewer tokens that can
exist on the screen simultaneously. How to use the limited
number of touches and the imprecise position information
to generate patterns is a challenging problem in capacitive
tangible systems.

D. PATTERNS OF ACTIVE TOKENS
To address the limitation in the number of unique patterns,
some researchers have installed additional chips into active
tokens to provide unlimited pattern IDs. PERCs [19] used
three fiducial touches to provide location and direction infor-
mation and provided object IDs via Bluetooth wireless com-
munication. IDsense [31] and RapID [32] used RFID (radio
frequency identification) tags to track objects at room-scale
distances. Zanzibar [11] used NFC (near field communica-
tion) to mark the unique IDs of objects and used flexible,
touchable materials to further improve the portability of the
system. Active tokens can provide a nearly unlimited number
of pattern IDs, but there are problems such as manufacturing
difficulty, high cost, and limited battery life.
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FIGURE 1. Pattern recognition process. (a) Sort input vertices counterclockwise; (b) compute the lengths of three sides to form the feature vector of
the pattern; (c) compute the distance between the pattern and each template, use the ID of the best-matched template as the recognition result;
(d) define fiducial axes to calculate the position and orientation of the pattern.

III. TRIANGULAR PATTERN
In this section, we first propose a triangular pattern design and
the feature vector of the pattern. Then, a pattern recognition
algorithm based on template matching is described in detail.

A. PATTERN DESIGN
We expect our pattern design to be applied to a variety of
tangible systems that use different sensing technologies. The
pattern design needs to meet the following requirements:

1) can express ID, location, and direction and provide as
many IDs as possible.

2) use a small number of marker points.
3) apply to a variety of sensing technologies.
4) apply to active tokens and passive tokens.
Drawing on the pattern designs of previous studies [12],

[19], [29], we use the spatial information of three mark-
ers to construct a pattern. The triangular pattern design is
based on the following considerations: the shape of a triangle
can express ID, position, and direction, and we can pro-
vide unique IDs by selecting different triangles. The pattern
formed by three markers is suitable for tangible devices that
have limited markers such as capacitive touchscreens and
infrared touchscreens. The pattern only uses spatial infor-
mation of markers, so it is applicable to different sensing
technologies and tokens.

To describe and compare patterns, we need to select appro-
priate features to construct a feature vector. Many parameters
can be used to describe a triangle, such as side lengths, area,
angles, vertex coordinates, local coordinates of vertices, etc.
Inspired by previous work [29], we use the counterclockwise
arrangement of side lengths to construct the feature vector

(Figure 1b). The advantages of the feature vector are that each
feature vector can be uniquely mapped to a triangle, and other
information such as angles and area can be easily calculated
by side lengths.

Three sides of a triangle have three counterclockwise
arrangements, corresponding to three feature vectors, such as

f = (x1, x2, x3) , f ′ = (x2, x3, x1) , f ′′ = (x3, x1, x2)

where x1, x2, x3 are the lengths of the triangle sides. We call
f , f ′, f ′′ equivalent feature vectors that describe the same
triangle. Assume that there are two triangles T and G, and
their feature vectors are f and g, respectively. We define the
distance d between the two triangles as theminimumL2 norm
between the equivalent feature vectors of the two triangles as
follows:

d(f , g) = min
(
‖f − g‖,

∥∥f ′ − g∥∥ , ∥∥f ′′ − g∥∥)
(1)

d = 0 denotes that the two triangles have the same shape and
size, and a larger d refers to a greater difference between the
two triangles.

Apart from equilateral triangles whose orientations are
ambiguous, an unlimited number of triangles can be used
as patterns. In practice, the selection of triangles needs to
consider the conditions of token size, sensing accuracy, etc.
These conditions limit the maximum and minimum lengths
of triangle sides and the distance between patterns.

B. PATTERN RECOGNITION
When an object with a triangular pattern is placed on a tangi-
ble surface, the TUI system senses the markers of the object
and provides marker positions to the recognition algorithm.
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The recognition process is shown in Figure 1. The recognition
algorithm first sorts the three vertices’ positions counter-
clockwise to obtain a sorted vertex sequence {v1, v2, v3} and
then calculates the lengths of the triangle sides to obtain the
feature vector f as follows:

f = (‖v1 − v2‖ , ‖v2 − v3‖ , ‖v3 − v1‖) (2)

For a known set of pattern templates {T1,T2, . . .Tn},
we used equation (1) to calculate the distance between f and
each template, and then the ID of the template that has the
smallest distance is obtained as the recognition result. Next,
we define a reference frame on the triangle to obtain the
position and the direction of the pattern. The origin of the
reference frame is defined at the center of the three vertices.
The x-axis is defined by the vector formed by the first point
of the matching template and the origin. Finally, the angle
between the x-axis of the frame and the positive x-axis of the
screen is used as the rotation angle of the triangular pattern
(Figure 1d).

Our recognition algorithm is easy to implement, robust
and fast. We implement the template-matching algorithm
in the Unity engine using C#, which amounts to approxi-
mately one hundred lines of code. We also considered and
tested several alternative approaches including linear least
squares regression, k-nearest neighbor (KNN), support vector
machine (SVM), and deep neural network (DNN) methods.
We used both raw data and descriptive features to evaluate
these alternative approaches. The raw data was preprocessed
to make it independent from rotation and screen position.
The descriptive features we considered included the bounding
rectangle of markers, as well as various statistics for mea-
sures such as point-centroid distance, distance between any
pair of points, etc. These alternative approaches achieved
recognition rates ranging from 95.3%-100% using differ-
ent devices and tokens, consistent with the result of the
template-matching approach.

IV. PATTERN GENERATOR
In this section, we describe the details of the pattern gen-
eration algorithm based on Poisson disk sampling, and the
optimizing constraint to address the marker-loss problem on
capacitive screens.

A. PATTERN GENERATION
It is a challenge to choose a set of triangles for triangular pat-
terns. The pattern set needs to consider the distance between
patterns, token size, position error caused by sensing noise,
etc. Manual selection relies on experimental and heuristic
methods, and conflicts may occur when the number of pat-
terns increases. PTPG introduces Poisson disk sampling to
find a pattern set in the pattern space that meets different
conditions. Let F be the whole feature vector space of the
patterns. Every vector f i = (x1 i, x2 i, x3 i) in F satisfies the
following triangle side length constraints:

x1 i + x2 i > x3 i; x2 i + x3 i > x1 i; x1 i + x3 i > x2 i

We expect to sample a set of feature vectors
{
f 1, f 2, . . . f n

}
in F, and each element f i of the set satisfies the following
constraints:

(a) Side length constraint: x1 i, x2 i, x3 i ∈ [lmin, lmax]. The
maximum side length lmax is determined by the physical size
of the object, and the minimum side length lmin is determined
by the smallest distinguishable distance between twomarkers
on the tangible surface.

(b) Distance constraint: The distance between any two
feature vectors is greater than the specified distance:
d

(
f i, f j

)
> r , where r depends on the position error of the

sensing technology.
(c) Shape constraint: We need to exclude equilateral trian-

gles because they cannot uniquely determine the angle. The
standard deviation of three side lengths should be larger than
a specified value σ .

We record the subspace of F that satisfies the constraint
(a) as S. Then, we perform Poisson disk sampling [33]–[35]
to find the feature vectors that satisfy the constraints (b) and
(c) in S as follows.

Algorithm 1 Pattern Generation Algorithm
Step 1. Randomly select an initial vector f 0 that satisfies
constraints (b) and (c) in S. Add f 0 and its two equivalent
feature vectors to an active list.
Step 2. Randomly select a vector f i in the active list, and
randomly select a test vector f k at a random distance between
r to 2r around f i, where r is the minimum distance between
sample points.
Step 3. Check if f k satisfies constraints (b) and (c). If it sat-
isfies the constraints, accept f k and add f k and its equivalent
feature vectors to the active list. If f k does not satisfy the
constraints, repeat Step 2 and reselect an f k to test again. If the
number of attempts exceeds a constant value k (typically
k = 30), remove f i from the active list and add it to an inactive
list.
Step 4. Repeat Step 2 until the active list is empty. Remove
the redundant feature vectors in the inactive list, which means
only one of the three equivalent feature vectors is reserved.
Finally, the sampling result is obtained.

Figure 2 shows a sampling result using parameters:
lmin = 12 mm, lmax = 55 mm, r = 10 mm, and σ =
5 mm. Ten samples are obtained in the feature vector space,
corresponding to 10 triangular patterns with different shapes.

B. PATTERN OPTIMIZATION
By setting constraints in algorithm 1, we generate patterns
that meet different requirements. With this feature, we can
improve the recognition rates of passive tokens on capacitive
screens. Tokens that can generate touches without main-
taining human contact have been widely used in capacitive
tangible systems [12], [19], [29]. The principle is that the
token utilizes the inactive electrodes on a capacitive surface to
simulate the grounding effect, so that its conductive marker
pads generate touches on the capacitive screen (Figure 4b).
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FIGURE 2. A set of triangular patterns sampled from feature vector space
using Poisson disk sampling.

However, if a pair of pads is coupled to the same electrode,
the two conductive pads are unable to decrease the capac-
itance, and thus cannot generate touches on the capacitive
screen.

FIGURE 3. The background grids represent the transmitter
electrodes (horizontal) and the receiver electrodes (vertical) of a
capacitive screen. When patterns of different shapes are placed on the
screen at different angles, the detection results of markers are different.
(a) Marker A cannot be detected due to the alignment of the electrodes
and the markers. (b) All the three markers are correctly detected in this
orientation. (c) All the three markers can be correctly detected in any
orientation. (d) Add a shape constraint to find non-right triangles, and
thus address the marker-loss problem.

As shown in Figure 3a, marker A, B and C form a
right-triangle pattern, and marker A and B are aligned with
the same horizontal electrode, meanwhile marker A and C
are aligned with the same vertical electrode. In this case,
the capacitance of marker A will not decrease, so that marker
A can not be detected by the capacitive screen, while marker
B and C are still detected reliably. This marker-loss problem

will lead to a decrease in the recognition rate. PERCs [19]
addressed this problem by adding a light sensor to infer
the position of marker A from the positions of marker
B and C, but this solution requires additional sensors and
power. We propose a novel method to solve this problem by
optimizing the shape of the pattern.

We add a new constraint (e) to algorithm 1 as follows:

lAF , lBF , lBD, lCD, lAE , lCE > pitch+ dm

As shown in Figure 3d, AD, BE , and CF are the perpen-
dicular lines of the triangle, and lAF , lBF , lBD, lCD, lAE , lCE
are the lengths of AF , BF , BD, CD, AE , CE segments, pitch
is the distance between two neighboring parallel electrodes,
and dm is the diameter of the marker. Patterns that satisfy the
constraint (e) ensure that each marker is always coupled to
different electrodes in any orientation, so that the marker-loss
problem will not occur (Figure 3c). The experimental results
in Section V show that the optimized patterns achieved a
100% recognition rate on tested capacitive screens, while the
nonoptimized patterns only achieved a lower recognition rate
of approximately 95%.

V. EXPERIMENT AND DISCUSSION
We now detail the implementation of prototype tokens. Then,
the experimental setup is described. Finally, we evaluate
the number of unique patterns generated by PTPG and the
recognition rates on three tangible devices, and discuss the
comparison with other patterns.

A. PROTOTYPE TOKEN
The implementation of the prototype token should meet the
requirements of low cost, ease of manufacture, and com-
patibility with various tangible devices. The structure of
the prototype token builds upon the prior studies [12], [29]
and extends to make it applicable to capacitive devices and
infrared devices. As shown in Figure 4, the prototype token
consists of three layers: three cylindrical legs made of con-
ductive silica gel, a layer of copper foil for connecting the
legs, and an acrylic base. The legs are attached to the cop-
per foil using conductive glue, so that they are conductive
with each other. This design allows the legs to reduce the
capacitances of the electrode intersections on a capacitive
touchscreen, thus creates touches without human contact
(Figure 4b). The exposed legs can also generate touches on
infrared surfaces by blocking infrared light. The token can
create a desired triangular pattern by adjusting the relative
positions of the legs, and then the ID of the token can be
identified from the pattern. The silica gel leg has a diameter
of 10 mm and a height of 6 mm, the diameters of the cop-
per foil and acrylic base are 65 mm, and the height of the
acrylic base is 10 mm. The materials cost only approximately
$0.50 and can be make into a token within two minutes.

B. EXPERIMENTAL SETUP
We first tested the number of patterns generated by sam-
pling method. We combined different parameters, including
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FIGURE 4. (a) Three layers of a prototype token. (b) Basic concept of the
capacitive coupling between markers and electrodes. When a current
signal is applied to a transmitter electrode that under a marker,
the marker and its connected markers reduce the capacitance of the
electrode intersection, and thus create a touch on the capacitive screen.

maximum side length, minimum side length, sampling dis-
tance, shape optimization constraint, and used algorithm 1 to
sample patterns in the feature vector space. Considering the
randomness of Poisson disk sampling, we sampled 20 times
with each parameter setting, and then recorded the average
result. Next, we tested the recognition rate and recognition
stability of the patterns. We performed ten samplings with
parameters of lmin = 15 mm, lmax = 55 mm, r = 10 mm,
and σ = 5 mm, in which five samplings enabled the
shape optimization constraint and the other five samplings
disabled the shape optimization constraint. For each pattern
set, we randomly selected ten patterns to make tokens, and
obtained a total of 100 tokens. Figure 5 shows one set of
sampling patterns and the set of tokens based on them.

We recruited three participants from neighbor colleges
(aged 22-35 years) to perform a large number of test cycles on
three tangible devices, which included an ILITEK 23.6-inch
capacitive touchscreen, a 9.7-inch iPad 5, and a CMC 32-inch
infrared touchscreen. Each test cycle was detailed as fol-
lowed: each participant tested a set of 10 tokens on a device at
a time. The participant placed a token on the screen, released
their hand, waited for 2 seconds, and then picked the token
up. Each token was placed 50 times at different positions and
angles on each screen. A recognition application automati-
cally recorded the experimental results. We performed this
test cycle for each device and each set of tokens, with a total
of 100× 3× 50= 15,000 placements. The whole experiment
lasted approximately four hours.

Each of the devices was separately connected to a computer
running the recognition application. Each computer has an
Intel I7-6700 CPU at 3.40 GHz, an NVIDIA GeForce GTX

FIGURE 5. (a) A set of patterns sampled from the feature vector space.
(b) A set of tokens based on these patterns.

1080 GPU, and 16 GB RAM. We implemented the recog-
nition application and the sampling application in the Unity
engine using C#.

TABLE 1. Number of patterns generated by different parameter settings,
where lmax is the maximum side length; lmin is the minimum side length;
d is the sample distance; n is the number of patterns; n(optimized) is the
number of patterns sampled with the shape constraint; avg. and SD are
the average and the standard deviation of 20 sampling results.

C. RESULTS AND DISCUSSION
Table 1 lists the numbers of sampling results. We observe that
the sampling distance has the greatest effect on the number
of patterns. With a 5-mm sample distance, we can obtain
approximate 42 patterns for a token of 40 mm diameter,
and 443 patterns for a token of 80 mm diameter. By setting
a small sampling distance, the number of patterns greatly
increases. This is because a small sampling distance means a
high pattern density in the feature vector space, and therefore
more patterns can be selected. The value of the sampling
distance depends on the tracking accuracy of the tangible
device. For devices with high sensing resolution, we could set
a small sampling distance to obtainmore patterns. For devices
with low sensing resolution, we need to set a large sampling
distance to overcome the position error and ensure the accu-
racy of recognition. The maximum and minimum side length
parameters determine the volume of the sampling space and
therefore the number of patterns. We also found that the
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TABLE 2. A comparison of different patterns. Our method provides more unique patterns than other three-marker capacitive patterns, and have a higher
recognition rate than optical patterns (symbols ’-’ in the table indicate that the data is not provided by the authors). Compared with active tokens and
magnetic tokens, our tokens have advantages in manufacture and cost. The sampling parameters of our data are: sample distance = 5 mm; minimum side
length = 10 mm; maximum side length = 40 - 80 mm.

use of pattern optimization reduced the number of sampled
patterns by 16% - 59% because the shape constraint used by
algorithm 1 eliminates many patterns that have approximate
right-triangle shapes.

FIGURE 6. Recognition rates on three devices. Token sets 1-5 contain
nonoptimized patterns, and token sets 6-10 contain optimized patterns.
The recognition rates of the nonoptimized patterns are lower than those
of the optimized patterns because of the marker-loss problem.

Figure 6 shows the recognition rates of 10 sets of tokens
on the three tested devices. The token sets 6-10 with opti-
mized patterns achieved 100% recognition rates on the two
capacitive devices, and a 96.4% average recognition rate
on the infrared device. The token sets 1-5 with nonopti-
mized patterns achieved a 94.32% average recognition rate
on the 9.7-inch iPad 5, a 96.52% average recognition rate on
the ILITEK 23.6-inch capacitive touchscreen, and a 91.88%
average recognition rate on the infrared device. According to

our observation, the token sets 1-5 contain some patterns that
are close to right triangles. When these right-triangle patterns
were placed on the screens at a specific angle, the marker-loss
situation occurred; then, the recognition algorithm failed to
identify the patterns. As wementioned in Section IV, the opti-
mized tokens can address the marker-loss problem using
non-right-triangle shapes, so that token sets 6-10 can achieve
100% recognition rates on capacitive devices. In addition,
we also observed that the recognition rate of the infrared
screen was easily affected by the ambient light, which
reduced the sensing accuracy of touches and caused a large
error of touch position. Therefore, the infrared screen had a
lower recognition rate than that of the capacitive screens.

Table 2 compares our method with other patterns in terms
of the number of patterns, number of markers, recognition
rate, token size, etc. According to the comparison, PTPG pro-
vides the largest number of patterns among the three-marker
patterns. It is because the Poisson-disk-sampling-based algo-
rithm explores the whole pattern space and samples patterns
in the space while maintaining a certain distance between
them. Compared to four-marker patterns, our method pro-
vides more patterns on a small token size (40 mm). Never-
theless, as the token size increases, the four-marker patterns
benefit frommore expressive features and have more patterns
than ours. On the other hand, because our tokens use only
three touches, the number of our tokens is 33%more than the
number of four-marker tokens when simultaneously placed
on the capacitive screen. Supporting more tokens could be
useful when applied tomulti-user tabletop applications. Com-
pared with magnetic tokens and active tokens, PTPG gener-
ates a limited number of patterns because of using only spatial
information, but our tokens have advantages in manufac-
ture, cost, durability, and volume. Among passive capacitive
tokens, our optimized patterns have the highest recognition

VOLUME 8, 2020 76025



Z. Huang et al.: PTPG: Poisson Triangular Pattern Generator for Tokens on Tangible Surfaces

rate of 100% on capacitive devices because of the solution to
the marker-loss problem. In comparison with optical patterns,
our patterns achieve a higher recognition rate but support a
fewer number of patterns.

VI. APPLICATIONS
We developed three prototype applications and invited six
participants (aged 21-43 years) to experience tangible inter-
actions. All the patterns of tokens were created by our pattern
generator, and had different shapes and sizes for a variety of
usages.

FIGURE 7. Tangible tabletop applications. (a) Blood vessels and the
muscle structure of a human body are shown inside a ring token.
(b) Dual-screen application for car customization. (c) Tabletop ice hockey
game.

Figure 7a shows the application of human body structure
introduction. Users rotate the tangible button to switch the
body part and move the tangible ring to reveal the body
details. The screen area inside the ring displays the blood ves-
sels and muscle structures beneath the skin. When users are
operating, the application plays audio to provide additional
information.

A dual-screen application for car customization is shown
in Figure 7b. The application provides two tangible buttons,
one to operate the camera and the other to adjust the appear-
ance of the car. By controlling the virtual camera, users can
observe the car from multiple views, such as the top view and
the inside view. Another button can adjust colors, accessories,
components to customize the car. Users can acquire the most
satisfactory appearance through different combinations.

Tabletop ice hockey supports single-player mode and
two-player mode (Figure 7c). Players move handles to hit
a puck into the opposite goal while watching for random
vortices that could engulf the puck and throw it out of a
random direction.

Feedbacks from the six participants demonstrate that
tokens with triangular patterns have high recognition rates
and low operation latency.

These prototype applications illustrate that triangular pat-
terns generated by our method are applicable to tokens of
different size and shape, and have high recognition rates and

stability on different devices. We believe that our study can
be introduced to a variety of areas such as spacecraft design,
collaborative tabletops, and education. Our pattern generation
algorithm can also help other capacitive patterns to address
the marker-loss problem and improve the recognition rate.

VII. CONCLUSIONS AND FUTURE WORK
We presented PTPG, a method for triangular pattern genera-
tion and optimization. PTPG can generate more patterns than
previous heuristic methods. This is achieved by introducing
Poisson disk sampling to explore the feature vector space
and generate a maximal number of patterns. By using sample
constraints to optimize the shape of patterns, we addressed
the marker-loss problem in a common design of capacitive
tokens, and thus improved the recognition rates to 100% on
the tested capacitive screens. Experimental results and appli-
cations proved that our triangular patterns could be reliably
recognized on common tangible surfaces.

There is still potential to improve upon the number of
patterns and the robustness of recognition. First, the number
of unique patterns for small tokens remains limited compared
with active tokens. For example, a tokenwith a 60-mmdiame-
ter can use approximately 150 unique patterns. Second, some
three-finger gestures tend to be misidentified as triangular
patterns. In future research, we will consider a hybrid pattern
combining spatial information and other information such
as the area of touches to expand the number of patterns.
Furthermore, we plan to apply machine learning methods to
learn the features of finger gestures, and then we can add a
gesture feature constraint to exclude gesture-like patterns in
the sampling process. The gesture constraint would reduce
the interference between finger gestures and tokens on tangi-
ble surfaces.
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