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ABSTRACT The clutter severely decreases the target visibility, thus the detection rates in ground pen-
etrating radar (GPR) systems. Recently proposed robust principal component analysis (RPCA) based
clutter removal method decomposes the GPR image into its low rank and sparse parts corresponding to
clutter and target components. Motivated by its encouraging results, many lower complexity low rank and
sparse decomposition (LRSD) methods such as go decomposition (GoDec) or robust non-negative matrix
factorization (RNMF) have been applied to GPR. This paper proposes a new clutter reduction method using
robust orthonormal subspace learning (ROSL). The raw GPR image is decomposed into its clutter and target
parts via ROSL. The proposed method is faster than the popular RPCA. Although it has similar complexity,
and similar performance with GoDec and RNMF for fine tuned parameters of these methods, the proposed
method does not require any presetting of the algorithm parameters. Its performance remains independent
for a broad range parameter value. Results demonstrate that the proposed method achieves 14− 48% higher
performance in terms of PSNR values than the state-of-the-art LRSD methods for an arbitrary parameter
choice.

INDEX TERMS Clutter reduction, low rank and sparse matrix decomposition, robust subspace
learning, GPR.

I. INTRODUCTION
Acommon problem in ground penetrating radar (GPR) sys-
tems is the presence of clutter which highly affects the tar-
get imaging/detection capabilities. The clutter is caused by
several reasons such as the reflected signal from the ground
surface (ground–bounce), the coupling signal between its
transmitting and receiving antennas (direct–wave arrival)
and the reflections from the subsurface discontinuities and
other candidate objects similar to the target [1]. Besides
the conventional approaches such as the simplest mean
value extraction or subspace based approaches [2], [3],
multiresolution-multidirection [4]–[6] and low rank and
sparse decomposition (LRSD) based methods [7]–[11] have
been extensively used to solve this and many similar prob-
lems [12], [13].

Subspace based clutter removal methods project the
raw data matrix onto clutter and target subspaces via
singular value decomposition (SVD), principal compo-
nent analysis (PCA) or independent component analysis
(ICA) [2]. The most dominant component corresponds to the
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clutter while the remaining ones are used to represent the
clutter-free target components. Thus, subspace based clutter
reduction methods also provide a low rank representation
of the input GPR data matrix. Although the highest eigen-
value indicates the dominant component for SVD or PCA,
this ordering is not respected in ICA. Moreover, the tar-
get component may be split into many components for
GPR images containing several targets. The recently pro-
posed non-negative matrix factorization (NMF) can also be
cited in the low rank methods. It has a better performance
compared to other low rank based methods but a similar
complexity [3].

As another approach, the target image can be decom-
posed into subimages using multiresolution analysis
(MRA), followed by directional filtering based decomposi-
tion [4]–[6]. Target component can be recovered by direct
inversion of the subbands containing target information.
Despite their satisfactory target detection performance,
the multiresolution-multidirection based approaches tend to
spread the target part, decreasing the visual quality of the
resulting images. Moreover, their complexity is much higher
compared to subspace or LRSD based methods.
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LRSD based methods express an input matrix as the sum
of a low rank and a sparse matrix. It is widely used in image
and video processing topics [14] such as denoising [15], clas-
sification [16], restoration [17], scene change detection and
foreground/background separation [18]. In GPR, the target
part can be considered as sparse compared to the whole GPR
image and the clutter part can be expressed by a low rank
matrix as demonstrated in [7]–[11]. Besides GPR, the clutter
problem is widely encountered in synthetic aperture radar
(SAR) systems. Detection of small targets from sea clutter
by maritime surveillance radars can be also cast into a LRSD
problem where the small target is provided by the sparse
component [12], [13].

Robust principal component analysis (RPCA) is used
in [7], [9] to perform LRSD for clutter reduction in subsur-
face and through wall imaging applications. In RPCA [19],
the non–convex rank minimization problem is relaxed by
the convex nuclear norm minimization. However, the nuclear
norm minimization requires extensive SVD computations,
decreasing the efficiency of this method for field studies.
Randomized low rank and sparse matrix decomposition or
the go decomposition (GoDec) [20] proposes to replace SVD
operations by bilateral random projections (BRP) as a less
time consuming approach [21]. Another solution for rank
minimization is non-convex matrix factorizations such as
robust matrix factorization (RMF) or low rank matrix fit-
ting (LMaFIT) both of which require a presetting of the
rank parameter [22]. The recently proposed robust orthonor-
mal subspace learning (ROSL) [22] can be thought as a
non–convex relaxation of RPCA. It replaces the nuclear norm
minimization with the group sparsity of the coefficients under
orthonormal subspace for the modelling of the low rank part.
Thus it does not require any a priori information such as the
rank value which is bounded by the non–zero rows of the
sparse coefficient matrix [22].

Another low rank modelling attempt may be cited as [3],
where the low rank modelling of the GPR image is obtained
by NMF. Since the clutter dominates the reflections from
the target, a small rank value provides the clutter part, while
the remaining corresponds to the target part. The idea has
been developed in [11] where a robust version of NMF
(RNMF) [23], which gives a sparse part besides the low rank
one, is used for the decomposition of the GPR image. RNMF
in [11] is reasonably fast and presents excellent results, but its
performance is very sensitive to the value of the penalization
parameter, requiring preprocessing for its choice.

Motivated by the success of LRSD methods for GPR clut-
ter removal, this paper proposes a new LRSD based clutter
reduction method which does not suffer from the drawbacks
of the former ones. The decomposition of the GPR data
matrix is carried on by ROSL [22]. ROSL is a non-convex
relaxation of RPCA, it accelerates the LRSDmethod by using
fast sparse coding methods, does not require the rank infor-
mation, and has the same global minimum as RPCA since
the group sparsity norm of the sparse coefficient is lower
bounded by the nuclear norm [22]. Thus, it requires only the

knowledge of a unique parameter which provides a constant
performance in a broad interval for this single parameter.

The rest of the paper is organized as follows. Section II
introduces a ROSL based GPR clutter reduction method.
Results for simulated and experimental datasets as well as
comparisons with state-of-the art LRSD based clutter reduc-
tionmethods such as RPCA,GoDec and RNMF are presented
in section III. This chapter also investigates the effect of the
parameter choice in LRSD based methods and proves the
superiority of ROSL among them. Concluding remarks are
given in section IV.

II. ROSL BASED CLUTTER REDUCTION IN GPR
Let the GPR image be represented by a rectangular matrix
X with dimensionsM × N representing the depth (time) and
the down-track (antenna position) index. Since the reflection
from the target is dominated by the clutter and the target may
be considered as sparse with respect to the whole GPR image,
the GPR data matrix can be modeled using LRSD as

X = L + S (1)

where L ∈ RM×N and S ∈ RM×N correspond to clutter
and target parts, respectively. L and S can be recovered from
the input data matrix X ∈ RM×N via rank minimization.
Since this problem is non-convex, a convex solution may be
obtained by nuclear norm minimization. RPCA [19] solves
this minimization as

min
L,S
‖L‖∗ + λ ‖S‖1 s.t. L + S = X (2)

where ‖.‖∗, ‖.‖1 and λ are the nuclear norm, L1-norm and the
penalization parameter, respectively. RPCA is computation-
ally expensive due to the use of iterative SVD operations [19].
An alternative solution is GoDec, which uses BRP instead of
SVD [20]. For the rank minimization problem, one may use
non-convex matrix factorization for fast low rank recovery.

ROSL [22] offers a solution for LRSD problem by mod-
elling the low rank part under an orthonormal subspace
such as

D =
[
D1,D2, . . . ,Dk

]
∈ RM×k and DTD = I (3)

L is given as

L = Dα (4)

The rank of L, i.e. the sparse coefficient vector α is upper
bounded by the number of nonzero rows of α defined as
‖α‖row−0
L and S are recovered by

min
S,D,α
‖α‖row−0 + λ ‖S‖0 s.t. Dα + S = X , DTD= I (5)

where λ refers to the penalization parameter.
Using L1-norm as a relaxation for NP hard L0-norm

and group sparsity ‖α‖row−1 for ‖α‖row−0, the final form
becomes

min
S,D,α
‖α‖row−1 + λ ‖S‖1 s.t. Dα + S=X , DTD= I (6)
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Here ‖α‖row−1 is defined as
∑k

i=1 ‖αi‖2 and (6) can be
solved by augmented Langrangian method removing the
equality constraint X = Dα + S and writing the augmented
Langrangian function as

L
(
D, α, S,Y , µ

)
= ‖α‖row−1 + λ ‖S‖1 + Y

(
X − Dα − S

)
+
µ

2
‖X − Dalpha-S‖2F s.t. DTD = I

(7)

where Y and µ denote the Langrange multiplier and the
over-regularization parameter [22].

Using inexact alternating direction method (ADM) L(.)
can be solved in 3 steps;

1) Solve (Di+1, αi+1) = argmin L(D, α, S i,Y i, µi)
2) Solve S i+1 = argmin L(Di+1, αi+1α, S,Y i, µi)
3) Update Y i+1 = Y i + µi(α − Di+1αi+1 − S i+1),

µi+1 = ρµi, ρ > 1.

The sparse component can be easily updated by
thresholding as

S i+1 = Tλ/µi (X − D
i+1αi+1 +

Y i

µi
) (8)

where Tα(X ) = max{abs(X ) − α, 0} is the shrinkage
function.

Step 1 presents a non–convex problem (simultaneous solu-
tion of D and α with constraint)

Dα + S = X +
Y
µ

(9)

which may be recast into two convex sub–problems updat-
ing one matrix while keeping the other constant. These
sub–problems can be solved using the block coordinate
descent (BCD) method.

The BCD sequentially updates (Dt , αk ) pair for 1 ≤ t ≤ k
is updated as

Di+1t = Ritα
iT

αi+1t =
1∥∥∥Di+1t

∥∥∥
2

T̄1/µi (D
i+1T
t Rit ) (10)

where the residual is

Rit = X +
Yi
µi
− S i −

∑
j<t

Di+1j αi+1j −

∑
j>t

Dijα
i
j (11)

and the magnitude shrinkage function is

T̄α(X ) = max{‖X‖2 − α, 0}X/ ‖X‖2} (12)

for ‖X‖2 6= 0.
To speed up the convergence, the subspace dimension k is

shrunk by discarding the zero pairs. For more details, refer
to [22]. The steps of the proposed method are presented
in Table 1.

TABLE 1. ROSL–based clutter reduction algorithm in GPR.

III. EXPERIMENTAL RESULTS
The proposed ROSL method is compared with PCA [2],
NMF [3] RPCA [9], GoDec [10] and recently proposed
RNMF [11] to show its superiority over conventional
subspace–based methods as well as the other recently pro-
posed LRSD based methods. The visual and quantitative
results are presented for simulated and real datasets, respec-
tively to compare their performances. Peak signal-to-noise
ratio (PSNR) is used for the quantitative analysis metric

PSNR(dB) = 10log
(

1
MSE

)
(13)

and the mean square error (MSE) can be expressed as

MSE =
1

M × N

M∑
i=1

N∑
j=1

(
X (i, j)− Xref (i, j)

)2 (14)

where M and N are the dimensions of the input GPR data
matrix. X and Xref denote the reconstructed clutter-free GPR
image and reference images, respectively.

The raw GPR data matrix is decomposed into its low
rank and sparse parts which correspond to the clutter and
the target, respectively. There is no parameter selection for
conventional PCA and NMF methods however LRSD based
methods generally need fine-tuned parameter/parameters.
Unlike RPCA [9], GoDec [10] or RNMF [11], proposed
ROSL–based method does not require any presetting of rank
parameter r , but only the value of the penalization parame-
ter λ. Fig. 1 shows the change of PSNR value with respect
to λ parameter. The empirical formulation of λ parameter is
proposed in [9] as follows

λ =
1

√
max(M ,N )

(15)

However, (15) is not always optimal for RPCA [9] and
RNMF [11] for the clutter removal problem in GPR. These
methods seem to need more fine tuning for λ parameter.
However, the clutter removal performance of the proposed
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FIGURE 1. Variation of the PSNR with respect to λ and card (S) parameter for a) RPCA, RNMF, and ROSL
b) GoDec.

FIGURE 2. Experimental design for simulated dataset–I.

method remains constant for a comparatively larger interval
of λ values. This phenomenon is shown in Fig. 1(a). The
y-label shows the PSNR values in dB and the x-label shows
the performance change with respect to penalization parame-
ter λ in Fig. 1(a). Higher PSNR values indicate better results.
Fig. 1(a) shows that RPCA produces the best results around
λ = 0.22 and then the performance dramatically decreases.
However, (15) proposes to use λ = 0.0625 which does
not give a good result for RPCA. For the RNMF, the best
performance is obtained around λ = 3× 10−4 and this high
performance is valid for a very limited number of λ val-
ues compared to RPCA. Again (15) proposes to use λ =
0.0625 however the PSNR result provided in Fig. 1(a) is not
satisfactory. The proposed method ROSL gives satisfactory
results for values greater than λ = 0.02. thus it can be
assumed that the parameter selection does not effect ROSL
as in RPCA and RNMF. Thus, we can say that the proposed
ROSLmethod is almost parameter–free for clutter removal in
GPR problem.

As for GoDec, the penalization parameter is different
from RPCA, RNMF and ROSL, thus Fig. 1(b) is given
separately. As seen in Fig. 1(b), GoDec depends highly
on the card(S) value and it produces good results around
card(S) = 2000. For the other card(S) values, it pro-
duces results similar to the conventional subspace–based

methods. Moreover, it can be observed in Fig. 1(b) that
GoDec suddenly collapses for some card(S) values. Thus,
card(S) parameter should be selected very carefully, other-
wise the results can be very misleading.

RPCA [9], GoDec [10] and RNMF [11] require prepro-
cessing to determine the optimum λ and card(S) values
by making exhausting grid search. Although the λ value is
defined conventionally as in (15), our experiments for both
the simulated and the real datasets have demonstrated that
RPCA and RNMF behave poorly for this empirical value
when applied to the GPR clutter removal problem. Thus,
RPCA and RNMF both require a preprocessing step to deter-
mine the optimal λ value for each new dataset as well as
card(S) for GoDec. Several experiments validated that sim-
ilar PSNR curves are obtained for ROSL independent of the
datasets. Thus, we decided that a choice of λ value between
(0.02 − 1) interval permits adequate decomposition of the
input data in ROSL and any value used in this interval is
appropriate for the visual and quantitative results for the next
sections.

A. SIMULATED DATASET RESULTS
The gprMax simulation software, which is an open source
software that simulates electromagnetic wave propaga-
tion [24], is used to construct the simulated dataset. The sim-
ulated dataset permits us to do a quantitative analysis besides
the visual one since the reference target images can also be
constructed by gprMax. The experimental design of the sim-
ulated dataset can be given as follows. The antenna frequency
is selected as 1.5-GHz which is a commercial antenna in
the library of gprMax (GSSI 1.5GHz, Model 5100). Various
soil types, target materials and burial depths are used in the
simulations to model different scenarios. Which is shown
in the Fig. 1. The size of the GPR images in the simulated
dataset is 256 × 183. A more detailed information is given
in [8].

For the simulated dataset results, there is no parame-
ter selection for the PCA [2] and NMF [3]. The critical
λ parameters are selected as 3 × 10−4 for RNMF [11],
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FIGURE 3. Results for simulated dataset: aluminum target case. (a) raw GPR image. (b) reference data, target
components obtained by (c) PCA. (d) NMF. (e) RPCA. (f) GoDec. (g) RNMF. (h) ROSL.

1.8 × 10−2 for RPCA [9] and 0.1 for ROSL [22]. The rank
r is chosen as k = 1 for RNMF since the signal strength
of the clutter dominates the signal reflected from the target.
The k = 1 selection provides the clutter image directly, while
k = N , which corresponds to the full rank case, provides
the raw GPR image itself. For GoDec [10], the parameters
are chosen as rank(L) = 1 and card(S) = 1 × 103 for the
simulated dataset.

The first row of Fig. 3(a) and (b) show the raw GPR image
and the reference target image for the simulated dataset where
an aluminium target is buried in dry sand soil at 1 cm depth
for this scenario. Fig. 3 (c)–(h) give the obtained target image
results of PCA, NMF, RPCA, GoDec, RNMF and ROSL,
respectively. PCA results present tails in vertical direction,
while some clutter can still be observed in the NMF result.
Since all the other methods are based on LRSDwith optimum
parameters, the obtained results are visually almost identical
for this simple scenario.

Fig. 4(a) and (b) show the raw GPR image and the ref-
erence target image for the simulated dataset where a plas-
tic target is buried in dry clay soil at 2 cm depth for this
scenario. Fig. 3(c)–(h) give the target image results of PCA,
NMF, RPCA, GoDec, RNMF and ROSL, respectively. All
the LRSD based methods successfully decompose the raw
GPR image for the aluminium case. There is some remaining
clutter in the PCA and NMF results. However the PCA result
does not present any vertical lines as in the aluminum case.

Fig. 5, Fig. 6, Fig. 7 and Fig. 8 presents the PSNR (dB)
results at various burial depths and for different soil types for
both target types in the simulated dataset. Fig. 4 and Fig. 5
present the quantitative results of the aluminum target buried
in dry sand soil and the plastic target buried in dry clay soil for
PCA, NMF, RPCA, GoDec, RNMF and the proposed ROSL

method at various burial depths. It is clearly seen that LRSD
based methods are superior over low rank based methods
PCA and NMF. This phenomenon is also observed in the
visual results. Although the visual results presented in Fig. 3
and Fig. 4 are similar, the quantitative results demonstrate the
superiority of our method among LRSD based approaches.
In the LRSD based methods, highest PSNR (dB) results are
mostly achieved by RNMF and ROSL, RPCA follows them
for the aluminum target scenario, while the performance of
GoDec remains behind them except for the 0 cm burial depth.
However, for the plastic target GoDec outperforms RPCA.
RNMFpresents the best scores overall and is closely followed
by ROSL. Thus, the proposed ROSL method outperforms
RPCA and GoDec and is slightly behind RNMF for the
results in Fig. 4 and Fig. 5 even when the optimum parameters
are exhaustively searched for RPCA, GoDec and RNMF
unlike ROSL.

Fig. 7 and Fig. 8 present the quantitative results at 2 cm
burial depth with various soil types for the simulated dataset.
Again, RNMF mostly gives the highest PSNR results. ROSL
has the second best score, RPCA and GoDec follow them for
the aluminum target case. For the plastic one, again RNMF
has the best result followed by ROSL, GoDec and RPCA.
In summary, quantitatively ROSL outperforms RPCA and
GoDec for almost all of the cases and its performance remains
slightly behind RNMF for some scenarios. GoDec presents
better results than RPCA in the plastic case however RPCA
defeats GoDec for aluminum cases. PCA and NMF present
the worst scores for both cases, as expected.

The PSNR (dB) results are provided for the best parameter
choices for the RPCA, GoDec and RNMF and there is no
parameter choice for PCA and NMF. The performances of
RPCA, GoDec and RNMF depend heavily on the choice
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FIGURE 4. Results for simulated dataset: plastic target case. (a) raw GPR image. (b) reference data, target
components obtained by (c) PCA. (d) NMF. (e) RPCA. (f) GoDec. (g) RNMF. (h) ROSL.

FIGURE 5. PSNR values for various depths for aluminum target.

FIGURE 6. PSNR values for various depths for plastic target.

of the parameters as it can be observed from the target
images obtained by RPCA, GoDec, RNMF and ROSL from
Fig. 9(b)-(e) and Fig. 10(b)-(e) for both plastic and aluminum
target cases. Here other choices than the optimum ones

FIGURE 7. PSNR values for various soil types for aluminum target.

FIGURE 8. PSNR values for various soil types for plastic target.

determined in a preprocessing step by extensive search are
used. The results for RPCA and RNMF are obtained by the
classical choice of λ parameter given in (15), and we have
opted for an average of card(S) values used for simulated and
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FIGURE 9. Effect of parameter selection on algorithms for aluminum case. (a) raw GPR
image. (b) reference data, target components obtained by (c) RPCA. (d) GoDec. (e) RNMF.
(f) ROSL.

FIGURE 10. Effect of parameter selection on algorithms for plastic case. (a) raw GPR
image. (b) reference data, target components obtained by (c) RPCA. (d) GoDec. (e) RNMF.
(f) ROSL.

real datasets. The λ parameter for ROSL is set to 0.05. It can
be observed that RPCA and RNMF loose most of the target
information, while the remaining clutter is still present in the
GoDec results for simulated dataset. ROSL is able to remove
the clutter for a wide range of λ parameters as demonstrated
in Fig. 1. To validate the difference in visual results for
Fig. 3 and Fig. 4 vs. Fig. 9 and Fig. 10, the PSNR (dB)
results of the optimum parameters and an arbitrary choice of
the parameters are compared in Table 2 and 3, respectively.

The results show that, RNMF is the highest while GoDec
is the least effected one from the parameter changes. The
performance of ROSL is not effected even if we reduce the
λ value by half. The visual and quantitative results show that
ROSL is more robust to parameter changes.

B. REAL DATASET RESULTS
To test the performance of the proposed algorithm, two real
GPR datasets are used. In the real dataset–I, PMA-3 and

VOLUME 8, 2020 74151



D. Kumlu, I. Erer: GPR Clutter Reduction by ROSL

FIGURE 11. Experimental design for real dataset–I.

FIGURE 12. Experimental design for real dataset–II.

TABLE 2. PSNR (dB) results of different parameter choices for aluminum
case.

TABLE 3. PSNR (dB) results of different parameter choices for plastic
case.

PMA-1 type anti-personal landmine, stone and copper strip
targets are buried at the depth of 5 cm. The first two targets
contain plastic material and the soil type is dry clay with small
rocks. Thus the soil surface is rough and the irregularities are
around 10 cm. The antenna frequency is 1 GHz. The size of

the obtained GPR image (a B-Scan) is 512 × 197 and the
experimental design of the real dataset–I is given in Fig. 11(a)
and the obtained raw GPR image is given in Fig. 11(b) [25].

The real dataset–II is obtained from a project of the
International Test and Evaluation Program for Humanitarian
Demining [26]. SIR-3000, a commercial GPR antenna, with
1.5-GHz frequency was used. Five landmines, all PPM-2,
with a diameter of roughly 13 cm were buried in the same
directions with positions of 0.6, 1.4, 2.2, 3.0, and 3.8 m. and
at burial depths 25, 20, 15, 10 and 5 cm, respectively. The soil
type is magnetic sand, an artificial mixture to replicate soil
with high magnetic susceptibility. The size of the obtained
GPR image is 2049× 401 and the experimental design of the
real dataset–II is given in Fig. 12(a), the obtained raw GPR
image is given in Fig. 12(b) [26].

Fig. 13 (a)-(h) show the raw and the obtained target images
of real dataset–I and the target images obtained by RPCA,
NMF, RPCA, GoDec, RNMF, and ROSL, respectively. It can
be observed that PCA results present some disturbing ver-
tical lines, while NMF fails to remove the clutter com-
pletely. Again LRSDmethods are able to extract the complete
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FIGURE 13. Results for real dataset–I: Target components obtained by (a) PCA. (b) NMF. (c) RPCA. (d) GoDec. (e) RNMF.
(f) ROSL.

FIGURE 14. Results for real dataset–II: Target components obtained by (a) PCA. (b) NMF. (c) RPCA. (d) GoDec. (e) RNMF.
(f) ROSL.

target information. GoDec and RNMF present clearer results.
However, we should note that the performance of GoDec
depends heavily on the choice of card(S) with respect to the
GPR image size: a larger value fails to remove the clutter
while a smaller value weakens the targets. The proposed
method does not need any presetting for rank and cardinality
parameters.

Fig. 14 (a)-(h) show the raw and the obtained target images
of the real dataset–II and the target images obtained by

PCA, NMF, RPCA, GoDec, RNMF, and ROSL, respectively.
This dataset is more challenging due to the soil type, thus
the raw GPR data presents noise as it can be observed
in Fig. 12 (a). Vertical lines are still present in the PCA
result, while remaining clutter is observed in NMF result.
As expected, GoDec, which decomposes the input image
into clutter, target and noise parts presents the clearest target
image. However, hyperbolas are not complete.The targets are
more visible in RNMF and ROSL results despite the noise

VOLUME 8, 2020 74153



D. Kumlu, I. Erer: GPR Clutter Reduction by ROSL

FIGURE 15. Effect of parameter selection on algorithms: real dataset–I, target components obtained
by (a) RPCA. (b) GoDec. (c) RNMF. (d) ROSL.

FIGURE 16. Effects on parameter selection on algorithms: Real dataset–II, target components
obtained by (a) RPCA. (b) GoDec. (c) RNMF. (d) ROSL.

part that has remained in the whole image. The horizon-
tal clutter is completely eliminated in both results. RPCA
presents the worst result.

To investigate the effect of the parameter choice on the
results, the empirical formula given in (13) is used for RPCA
and RNMF along an arbitrary parameter choice for GoDec
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FIGURE 17. Evaluation of the clutter-target separation performance of the methods, from top to bottom: raw GPR image and clutter removal results, plot
of vertical energy profile (A-scan) and zoomed version of vertical energy profile between (400-800) (a) raw GPR image (b) RPCA. (c) GoDec. (d) RNMF.
(e) ROSL.

and ROSL. The results are shown in Fig. 15 and 16. Again
RPCA removes the clutter but looses some target information
for both datasets, RNMF results seem to be better but still
remain behind ROSL, the second target is hardly visible in
the results of the real dataset–I. GoDec also fails to remove
the clutter, while keeping the target for both datasets. To eval-
uate the clutter-target separation performance of the methods,
energy profiles (plots of energy versus depth) are also used.
Fig. 17 (a)-(e) show energy profiles obtained for raw data,
RPCA, GoDec, RNMF and ROSL results, respectively. The
A-scan, used in the energy calculation is shown by dotted
red line in top row of Fig. 17. The middle row gives the
energy profiles for raw data and target images obtained by
each method. A closer look is given in the bottom row. The
clutter seen between indices 400-500 of the energy profile
corresponding to raw data is missing as expected in the results
of the clutter removal methods. Some target information
between indices (700-800) seem to be lost in RPCA. RNMF
and ROSL present similar profiles. GoDec profile seems to
be the best. However, we should remark that although GoDec
completely removes the clutter for most of the scenarios,
it looses some target information as shown in the clutter
removal results for simulated and real scenarios. This may
cause an undesired decrease in the detection rates of the
targets.

The computational complexities of LRSD based methods
RPCA, GoDec, RNMF and our method are given in the
Table 4 [14], [18].M andN are the size of the input GPR data

TABLE 4. Computational complexity of the methods and comparison of
the number of processes for real dataset–II.

matrix and r is the rank of the decomposition. According to
the Table 4, the fastest method is ROSL and RNMF follows it.
GoDec is faster than RPCA however it is slower than ROSL
and RNMF. The number of computations is calculated for
the Real dataset–II (M = 2049, N = 401 and r = 1) in the
Table 4 to show the computational complexity. Since r = 1,
the computational complexity of GoDec, RNMF and ROSL
decrease considerably with respect to RPCA. We can con-
clude that the proposed ROSL based clutter removal method
can compete both visually, quantitatively and in complex-
ity with RNMF and outperforms it by the fact that it does
not require a preprocessing step to determine its parameters
unlike RNMF.

IV. CONCLUSION
A new LRSD based clutter reduction method is proposed for
GPR. The proposed method separates the raw GPR image
into its low rank and sparse parts, namely clutter and tar-
get parts via ROSL. Compared to other LRSD approaches
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already used in GPR such as RPCA and GoDec, ROSL
does not require nuclear norm minimization, thus the use
of SVD operations. ROSL outperforms RPCA in running–
time, it also has a faster implementation compared to GoDec
which replaces SVD operations with bilateral projections.
It does not require a presetting of cardinality and rank param-
eters as GoDec does. The proposed ROSL based method
reaches approximately the performance of recently proposed
RNMF, a robust non-negative factorizationmethod. However,
in RNMF the penalization parameter requires a preprocessing
for the choice of the optimum parameter, while the proposed
method does not present such an issue.
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