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ABSTRACT A novel convolutional neural network namely the modified CNN-GAP model is proposed for
fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN
by using a global average pooling layer to replace the fully connected layer of 2∼3 layers. The improved
CNN-GAPmethod mainly contains an input layer, a feature extraction layer, a global average pooling (GAP)
layer, and a Softmax output layer. Firstly, the raw 1-D time-series data directly input into the input layer
of the established CNN-GAP diagnosis model. The 2-D feature maps are reconstructed in the input layer.
Secondly, the representative features are automatically extracted from the 2-D feature maps by usingmultiple
convolutional layers and pooling layers. Thirdly, the dimension transformation and size compression of the
output image of the feature extraction layer is completed by the GAP layer. Finally, the fault diagnosis result
of the DC-DC inverter is automatically output in the Softmax output layer. The proposed method is used
for diagnosing the open-circuit fault of the IGBT in the isolated DC-DC inverter. The proposed method is
more accurate and effective than other mainstream intelligent diagnosis methods including the SVM, KNN,
DNN, and traditional CNN. The experiment results show that the diagnostic accuracy is up to 99.95%, and
the testing time can reduce by more than 15%. The improved CNN-GAP method could greatly reduce the
model parameter quantity of the traditional CNN more than 80%, which is more suitable for rapid fault
diagnosis in electronic devices.

INDEX TERMS Intelligent fault diagnosis, data-driven, convolutional neural network, global average
pooling, 2-D feature image, deep learning, DC-DC inverter, IGBT open-circuit fault.

I. INTRODUCTION
Ships are one of the most important water transportation
in the world, and it plays an irreplaceable role in the field
of shipping [1], [2]. Nowadays, with the rapid development
of the shipping industry, the ecological environment of the
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ocean has been severely damaged because the large pol-
lution gasses and high carbon emissions from fossil fuel
combustion of large ships are excessively discharged into
the ocean [1]. In the recent decade years, the whole world
is facing a series of intractable problems brought by fossil
energy such as environmental pollution, reduced reserves and
non-renewable [3], [4], etc. Pure electric propulsion ships
are the emerging green ships, which have the advantages
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of energy-saving, environmental protection and ‘‘zero emis-
sion’’, and have gradually become a key development direc-
tion of the most maritime powers [1]. Electric propulsion
ships can be powered by wind, solar, fuel cells and ultra-
capacitors [5]. Due to the variety of power sources and the
need to achieve cross networking and energy conversion, the
DC-DC inverter plays an extremely important role in the elec-
trical grid system of the electric propulsion ships [1], [6].
To meet the safety standards of an electric power system and
flexibility of the system reconfiguration, electrical isolation
is often required. The isolated bi-directional DC-DC invert-
ers have become a key component in the electrical power
systems of the new hybrid power ship [7]. In the electric
propulsion system, the fault and anomaly of the DC-DC
inverters will generate an enormous impact on the perfor-
mance of the power system [6], [7]. In practical applications,
the DC-DC inverter needs to run for a long time under com-
plex and changeable operating conditions, which needs to
withstand multiple work environments such as over-voltage,
over-current, overheating, high and low temperature, corro-
sion and dust, etc. Therefore, the DC-DC inverters often gen-
erate various faults [8]. In general, different from mechanical
faults, the initial characteristics of the electrical faults are
not very obvious and their upgrade speed is very fast. Once
the inverter fails, if it is not timely handled, it will cause
fluctuations or imbalances of the power system, the collapse
of the entire power grid, and even personal injury. Therefore,
it is necessary to establish an intelligent, fast, and automatic
fault diagnosis and anomaly detection system to ensure the
safe and stable operation of the DC-DC inverter [9]–[11].

According to the relevant studies, most DC-DC inverter
failures are caused by the damage of power thyristor in
the main circuit of the marine power system, especially the
high-frequency Insulated Gate Bipolar Translator (IGBT)
in the inverter circuit, accounting for about 38% of all
faults [11], [12]. The IGBTs usually run in the high-frequency
state with large wastage and heat radiation, and are more
likely to fail. The main fault type includes the short-circuit
fault (SCF) and open-circuit fault (OCF) [11], [13]. In prac-
tice, the short-circuit faults often accompany instantaneous
destructive large current. For the SCF, on the power grid sys-
tem, inverters are usually equipped with over-current detec-
tion devices. Once over-current occurs, the power systemwill
be automatically cut off in microseconds. Therefore, there are
mature hardware solutions to diagnose the short-circuit faults
of the IGBT [14]. Comparing with the SCF, the open-circuit
fault is more difficult to detect because the power system can
continue to work when the OCF occurs [8]. The main reason
is the external performance and fault feature of the IGBT is
not obvious when the incipient OCF occurs [14]. Generally,
the minimum fault level of the OCF is when only one IGBT is
failure. If the minimum fault level of the OCF is not handled
timely, it will quickly affect other IGBTs to produce over-
current, leading to the rapid evolution and upgrade from the
minor fault to significant fault [14]. Actually, the micro fault
feature of theminimum fault level of the OCF is difficult to be

detected because it is difficult to activate the protection pro-
gram of the power system [8].What’s worse, the fault upgrade
speed of the power device is very fast, which will cause a
chain reaction and eventually affect the normal operation of
the entire power system. Therefore, the rapid diagnosis and
positioning of the incipient OCF of the IGBT in the DC-DC
inverters are extremely necessary.

At present, in the electrical DC-DC inverter fault diagno-
sis field, the mainstream diagnosis approaches include fault
mechanism mathematical model-based method [15], [16],
expert system knowledge-based method [17], and data
driven-based method [18], [19]. The above methods have
been applied to some extent, and they have achieved pos-
itive and considerable effects on some diagnosis prob-
lems. However, some shortcomings of these methods still
exist [20], [21]. Model-based diagnosis methods need to
establish a high-precision mathematical model that describes
the fault evolution mechanisms. This method can obtain
better results to some extent. However, establishing a
high-precision complex multi-variable system fault model is
very difficult. In addition, the established fault mathematical
model usually aims to solve specific devices and fault prob-
lems, which is difficult to transplant to solve other devices
and similar problems [20]. Furthermore, with the increase
of the complexity of mechanical and electrical equipment,
the mathematical model-based fault diagnosis methods are
restricted in practical applications. The expert system-based
diagnosis method needs not to establish a high-accuratemath-
ematical model. However, it needs to establish a relatively
comprehensive knowledge base, rule base, and inference
machine for fault diagnosis [17]. Similarly, these works are
very complex and time-consuming. The expert system-based
diagnosis method relies excessively on the empirical knowl-
edge of the experts, and the accuracy of diagnosis depends
on the considerable amount of expert knowledge in the
knowledge base [8]. Furthermore, the knowledge-based fault
diagnosis method lacks the ability to autonomic learning,
and it is difficult to detect minor or unknown new faults
effectively [21]. Nowadays, with the rapid development of
‘‘Internet+’’ and industrial big data, the data-driven-based
fault diagnosis method has been gradually widely applied to
the electronic and electrical equipment such as the voltage
detection method [9], current detection method [14], and
wavelet transform-based method [25], etc. Although these
methods obtain much outstanding effectiveness on some
diagnosis problems, these methods still need abundant engi-
neering experiences. It requires engineers to master various
advanced signal processing techniques for data preprocessing
and feature extraction [20]. Actually, these signal process-
ing techniques and feature extraction methods are difficult
to master and a high threshold. These operations are very
complex and time-consuming. What’s more, different signal
types, different fault problem and different diagnosis objec-
tions need different signal processing to extract different fault
features. Furthermore, the extracted features are mainly used
to solve specific fault problems, and its versatility is poor.
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In recent years, with the rise of machine learning
and deep learning research, intelligence algorithm-based
fault diagnosis methods have gradually become a research
hotspot [22], [23]. The mainstream intelligent diagnosis
method includes the support vector machine (SVM) [18],
artificial neural network (ANN) [19], K-nearest neigh-
bor (KNN) [20], and extreme learning machine [22], etc.
Through many application and verification, the above three
algorithms have poor feature extraction ability due to
their shallow network structure, and it is difficult to mine
deeply the micro fault features hidden in the monitoring
data [20], [23]. Therefore, it is difficult to further improve
the fault diagnosis accuracy of these methods. To solve
this problem, some scholars usually combine manual fea-
ture extraction with shallow machine learning algorithms
to perform fault diagnosis [18]–[20]. In these methods, the
main fault feature is manually extracted from the raw fault
data firstly. Then the extracted features are input into the
shallow machine learning algorithm to finish the final fault
classification [18]–[20]. In general, the feature extraction
methods mainly include Fourier transform (FFT) [18], empir-
ical mode decomposition (EMD) [24], and wavelet trans-
form (WT) [25], etc. Although this combined method can
improve the effect of fault diagnosis to some extent, manual
feature extraction still needs to rely on the abundant expe-
riences and professional knowledge of the engineers. Addi-
tionally, the manual feature extraction operations are very
subjective, blind and time-consuming [20]. What’s more,
many micro-features reflecting the early-time micro-faults
are easily deleted as noise, which is very disadvantageous to
the rapid and high-effective intelligent diagnosis of the micro
fault in mechanical and electrical equipment. Therefore, it is
very necessary to explore a more powerful deep machine
learning method to mine and extract the deep features of the
micro fault.

Fortunately, Hinton and Salakhutdinov [26] propose a
novel machine learning method called Deep Learning (DL)
in 2006. Deep learning is a great breakthrough in the last
decade in the artificial intelligence (AI) field. Different from
the traditional shallow machine learning algorithms, the deep
learning uses the deep network architectures which can auto-
matically extract the useful representative features from the
raw monitoring data layer by layer [20]. At present, it has
been successfully applied in many fields such as image
recognition, speech recognition, and natural language pro-
cessing [23]. The convolutional neural network (CNN) is
one of the most important branches of deep learning. Com-
pared with other deep learning methods, CNN has more
powerful feature extraction capabilities and the potential
to overcome the aforementioned inherent shortcomings of
the traditional intelligent diagnostic methods on the micro-
fault [20]. Since 2013, deep learning has attracted the atten-
tion of researchers in the fault diagnosis filed [20], [23].
Literature [23] proposes an intelligent diagnosis method
based on a four-layer deep belief network (DBN) to diagnose
a closed-loop single-ended primary inductance converter.

Literature [25] proposes a novel method by combining the
DBN and wavelet packet energy spectrum to diagnose the
fault of the converter. Wang et al. [27] proposed a motor
fault diagnosis method based on short-time FFT and CNN.
Although the above studies using deep learning algorithms,
they still need some traditional feature extraction methods to
extract the features from raw fault data. In their researches,
the powerful feature extraction ability of CNN is not only
underutilized but also limits the further improvement of the
diagnostic effect. Literature [28] proposed a convolutional
discriminative feature learning method for the induction
motor fault diagnosis by using raw data directly. Although
this method improves the shortcoming of the traditional fea-
ture extraction in Literature [25], [27], a shortcoming still
existed in their research. In their CNN algorithm, the fully
connected multilayer perceptron (MLP) was adopted, which
lead to the trainable parameter quantity of the fully con-
nected (FC) layer in the CNNmodel too large. The parameter
quantity of the fully connected layer accounts for 80–90% of
the total parameter quantity of the CNNmodel [29]. Actually,
a huge parameter quantity will increase the training time and
testing time of the CNN diagnosis model. This shortcoming
is very disadvantageous to quickly diagnose and the real-time
detect the micro-faults of the electrical power inverter.

To solve the abovementioned shortcomings, this paper
presents a novel data-driven intelligent fault diagnosis
method based on a modified convolutional neural network
with a global average pooling layer and 2-D feature image for
fast fault diagnosis of the DC-DC inverter. Themain contribu-
tions of this paper are summarized as follows. Firstly, a novel
fast fault diagnosis frame based on improved CNN-GAP
is proposed. The proposed method improves the traditional
CNN algorithm structure by using a global average pool-
ing (GAP) layer to replace the fully connected layer with a
2∼3 layer. The proposed CNN-GAP algorithm contains an
input layer, a feature extraction layer, a GAP layer, and a Soft-
max output layer. Secondly, the improved method can effec-
tively reduce the model trainable parameters quantity and
diagnosis waiting time of the traditional CNNmodel, which is
more suitable for rapid fault diagnosis and real-time anomaly
detection in electronic devices. Thirdly, the proposed method
need not any manual feature extraction and feature selection
method on raw 1D time-series signals data. The raw voltage
signals data directly input into the input layer of the improved
CNN-GAP model. The raw 1-D time-series is automatic data
reconstructed into 2-D feature maps in the input layer. Then,
the representative features are automatically extracted from
the 2-D feature maps by the feature extraction layer. The
dimension transformation and size compression of the output
image of the feature extraction layer is completed by the
GAP layer. The fault diagnosis result of the DC-DC inverter
is automatically output in the Softmax output layer. The
proposed method can greatly get rid of the dependence on
expert knowledge and engineering experience. The experi-
ment result confirms the proposed method is more effective
than other existing mainstream intelligent diagnosis methods
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FIGURE 1. The basic structure of the convolutional neural network.

including SVM, KNN, ANN, DNN, and traditional CNN.
The end-to-end algorithm structure of the proposed method
has better operability and versatility.

The rest of this paper is organized as follows. In section 2,
the basic theory of CNN is given briefly. In section 3,
the improved CNN-GAP model structure and approach is
described in detail. In section 4, the proposed method is
applied to diagnose the open-circuit fault signals of the IGBT
in the DC-DC inverter, and experimental results are analyzed
and discussed. Finally, the conclusions and future works are
given in section 5.

II. CONVOLUTIONAL NEURAL NETWORK PRINCIPLE
The convolutional neural network (CNN, also known as Con-
vNets) is one of the most important branches of deep learning
technology [20], which is a special deep-layer structure of
the feed-forward artificial neural network (ANN) [27]. It was
first proposed byYann LeCun [23] in 1989 and is mainly used
for handwritten figure recognition. The CNN is inspired by
the layered structure of the animal’s brain, and the animal
vision system working principle is simulated in the CNN
model. Different from the traditional fully connected ANN,
the CNN has three outstanding advantages: firstly, the CNN
has the powerful feature extraction ability by constructing
multiple filters (also known as convolution kernels or neuron)
and using these filters to automatically extract the repre-
sentative features from the input data layer by layer [20].
Secondly, CNN can greatly reduce the number of training
parameters by combining the sparse connection with the
parameter weight sharing mechanism [30]. Each convolution
kernel is only sparsely connected to a small region of the
feature map in the previous layer on the CNN [31], [32]. The
data dimension is down-sampled in time and space, which
effectively avoids over-fitting of the model. Thirdly, CNN
has a good adaptive ability to scaling, tilting, and translation
of the images. Nowadays, CNN is great widely applied in
image recognition and other similar problems [20]. In gen-
eral, CNN has many different model structures. A classical
LeNet-5 CNN structure is shown in Figure 1 [31]. In Figure 1,
this is a multi-stage neural network that consists of several
filter stages and one classification stage. The filter stage is
used to extract representation features from the input data,
which contains two kinds of layers: the convolutional layer
and the pooling layer. The classification stage is a multi-layer
perceptron fully connected network, which is composed
of several fully-connected layers and a Softmax classifier.

The basic components of the CNN algorithm are introduced
as follows.

A. CONVOLUTIONAL LAYER
The convolutional layer is one of the most important core
modules on CNN. The main role of the convolutional layer
is to extract the representation feature from the input image
by several convolutional kernels (also known as filter or
neuron) [30]. In general, each filter will extract a type feature.
Different filters will extract different features. In order to
extract more features, themore convolutional kernel is used in
the convolutional layer [20]. During the forward propagation
process, each filter is used to convolve with the input feature
map. Through the convolutional calculation, many new fea-
ture maps are generated and as the input of the next layer. The
mathematical expression [33] of the convolution operation
can be described as follows:

X (k)
i = f

(∑C

c=1
W (c,k)
i ⊗ X (c)

i−1 + B
(k)
i

)
(1)

where ⊗ represents the convolutional operator; i denotes the
index of the network layer; k represents the index number
of the convolution layer output feature maps and also marks
the k th group convolution kernel; each group contains C
convolution kernel; k = 1, 2, . . . , K; c = 1, 2, . . . , C and
is the channel index number of input feature maps; X (c)

i−1 is
the input feature map of channel c; X (k)

i is the kth output
feature map after the convolution calculation of the kth group
convolution kernel and the input feature map; W (c,k)

i is the
weight of the convolution kernel at the ith layer, the filter
of cth channel in the kth group convolution kernel; and B(k)i
is the bias of the kth group filter in the ith layer. In this
paper, because the monitoring signal of the DC-DC inverter
is a voltage signal, therefore, C=1; f (·) is the nonlinearity
activation function. In the CNN, the most common activation
functions include the Sigmoid, hyperbolic Tangent, and Rec-
tified linear unit (RELU). Different activation functions can
obtain different nonlinear transformations. In this paper, the
RELU function is used as the activation function of the pro-
posed method because it can more effectively reduce
the gradient disappearance and over-fitting of the CNN
model [20].

B. POOLING LAYER
The pooling layer (also known as sub-sampling layer or
down-sampling layer) is commonly applied after the convo-
lution layer in the CNN architecture. The main role of the
pooling layer is to down-sampling the feature dimensions and
to compress the size of the received feature map. Pooling
operations mainly include maximum pooling and average
pooling [30]. In CNN, the most common pooling layer is
the max-pooling [33]. The mathematical expression of the
max-pooling can be described as follows [20]:

P(k)i = max
(j−1)S+1<tx≤jS
(j−1)H+1<ty≤jH

{
X (k)
i

(
tx,y
)}

(2)
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FIGURE 2. The schematic diagram of the fully connected network.

where X (k)
i

(
tx,y
)
represents the tx,yth pixel value in the kth

output feature map of the ith layer, S and H are the width
and height of the pooling window respectively,

{
X (k)
i

(
tx,y
)}

is a matrix of the shape S ×H , and is the output feature map
after the pooling operation. In this paper, the max-pooling is
applied in each pooling layer. The size of the pooling kernel
is 2×2, and the stride size is 2. So, each feature map after the
pooling operation will reduce 75% parameter quantity [20].

C. FULLY CONNECTED LAYER
After alternately stacking multiple convolutional layers and
pooling layers, the fully connected (FC) layers are followed to
calculate the class scores [27]. The detailed process is shown
in Figure 2. In the traditional CNN, the fully connected layers
commonly contain 2∼3 layers fully connected multilayer
perceptron.

Usually, the final output feature map of the CNN is trans-
formed into a one-dimensional array by a Flatten layer [28].
Then, the 1-D array is as the input layer of the FC layer.
Finally, the output of the FC layer has n neuron. The n neuron
represents n fault types. In the fully connected network, all
neurons between layers are interconnected, with the follow-
ing definition [20]:

o(X ) = f (W · X + B) (3)

where f (·) denotes the activation function; X is the input
of the fully connected layer; o(X ) is the output of the fully
connected layer;W and B are the weights and biases of a fully
connected network, respectively.

By summarizing the existing literature of the CNN model,
in the traditional CNN, the main role of the fully connected
layer contains two aspects [27]–[33]. On the one hand, the FC
layers are used to further extract the representative features
from the output feature maps of the last pooling layer on
the CNN. On the other hand, the fully connected layer acts
as a transitional bridge to connect the last pooling layer of
CNN to the Softmax classifier. However, in actual, there
have some inherent shortcomings in the fully connected layer.
Firstly, the FC layer has too many trainable parameters.
The parameter quantity of the FC layer accounts for 80–
90% of the total parameter quantity of the CNN model [29].
Moreover, the number of parameters increases exponentially
with the increasing number of the FC layers [20]. Secondly,

in the traditional CNN, the FC layer is not only occupied too
much computing resources but also easily leads to the CNN
model over-fitting and gradient disappeared [29]. Thirdly,
the FC layer resulting in the training time and testing time of
the traditional CNN is too long. This shortcoming will lead
to the trained fully connected CNN model not suitable for
rapid fault diagnosis and real-time anomaly detection in the
electronic DC-DC inverter.

III. PROPOSED CNN-GAP INTELLIGENT
DIAGNOSIS METHOD
To solve the abovementioned shortcomings of the traditional
CNN model and the mainstream shallow machine learning
algorithms, in this paper, it develops a novel data-driven
intelligent fault diagnosis method based on the modified
convolutional neural network with a global average pooling
layer and 2-D feature image for fast fault diagnosis of the
DC-DC inverter. The proposed CNN-GAP algorithm con-
tains an input layer, a feature extraction layer, a global aver-
age pooling layer, and a Softmax output layer. The proposed
arithmetic structure in detail is shown in Figure 3. Different
from the traditional CNN, the proposed method improves
the traditional CNN algorithm structure, by using a global
average pooling layer to replace the fully connected layer
with 2∼3 layers. The proposed method designs a global
average pooling layer behind the feature extraction layer.
Compared with the traditional CNN model, the improved
CNN-GAP model is better than the traditional CNN model
with the fully connected layer. The main advantages of the
modified CNN-GAP can be summarized as follows: firstly,
the improved CNN-GAP has less trainable parameter quan-
tity. The GAP layer could greatly reduce the training parame-
ters quantity of the traditional CNNmodel. In our experiment,
the improved CNN-GAP could effectively reduce the param-
eter quantity of more than 80%. Secondly, the improved
CNN-GAP method has more fast diagnosis speed and more
few testing times of fault diagnosis. The proposed method
reduces the model layer quantities and model complexity
of the traditional CNN model by removing the fully con-
nected layer. Therefore, the trained CNN-GAP model has
fewer testing waiting times. It is very suitable for rapid
fault diagnosis and real-time anomaly detection in electronic
devices. Thirdly, the improved CNN-GAP method could
further reduce the risk of model over-fitting and avoid the
gradient disappearance problem by reducing the number of
network layers and trainable parameter quantity of the origi-
nal CNN model. The proposed method need not any manual
feature extraction and feature selection operations on the
raw signals data. It can greatly get rid of the dependence
on expert knowledge and engineering experience. The end-
to-end model structure of the proposed method has better
operability and versatility.

In the proposed method, the main working principle is
as follows: firstly, the raw one-dimensional time series fault
data can directly input into the improved CNN-GAP model
without any manual feature operation. The input layer could
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FIGURE 3. The model structure of the improved CNN-GAP method.

automatically transform the 1-D time-series input data into
2-D feature maps by a data reconstruction method. Secondly,
the feature extraction layer could automatically extract the
useful representative features from 2-D input feature maps
layer by layer. Thirdly, the dimension transformation and
size compression of the output feature map of the feature
extraction layer is completed by using the global average
pooling layer. Finally, the output of the GAP layer is fed
into the Softmax output layer. The fault diagnosis result of
the DC-DC inverter is automatically output in the Softmax
output layer. In our method, the output feature map channel
(dimension) quantity of the last convolutional layer in the
feature extraction layer should be set to the same as the
number of the fault categories. Here, it is assumed that there
are n fault categories. By the GAP layer operation, each
output feature map of the feature extraction layer will be
transformed into one value. So, the output of the GAP layer
is a 1-D array which has n value. The basic flow chart of the
improved CNN-GAP intelligent fault diagnosis algorithm is
shown in Figure 4.

In Figure 4, the proposed method is used for diagnosing
the micro-fault of the DC-DC inverter. The main procedure of
the proposed method for fault diagnosis can be summarized
as follow:

Firstly, the raw fault monitoring signal data of the diag-
nostic object are obtained by various sensors such as voltage
signal, and electric current signal, etc.

Secondly, some data process operations are applied in the
input layer such as data normalization, data segmentation,
data reconstruction, and data augmentation, etc. Through
these data process operations, the fault samples and fault
datasets are established for the training and testing of the
CNN-GAP diagnosis model.

Thirdly, all the samples of each fault type after the data
process are randomly divided into a training dataset, a valida-
tion dataset, and a testing dataset. The training dataset is used
for training the CNN-GAP model. The verification dataset
is used for verifying the accuracy of the trained CNN-GAP
model. The testing dataset is used for the final fault classi-
fication and accuracy assessment of the trained CNN-GAP
model.

Fourthly, the improved CNN-GAP fault diagnosis model
is adjusted. Initialize the CNN-GAP model parameters. The
established CNN-GAP model is trained by multiple epoch

FIGURE 4. The flow chart of the CNN-GAP intelligent diagnosis algorithm.

repeated iterative calculations. In this section, the fault sam-
ples of the training dataset are fed into the established
CNN-GAPmodel. In the training stage, the forward propaga-
tion and the back-propagation are performed in each iteration
calculation. The error between the forward-propagation pre-
dicted result of the CNN-GAP model and the actual label of
the sample is calculated. The loss function J (w) is minimized
by the error back-propagation algorithm. During the training
process, the verification dataset is used for verifying the
accuracy of the trained CNN model. After several iterations
of the CNN-GAP model, when the accuracy rate on the
verification dataset is obviously lower than the accuracy rate
on the training dataset, it indicates that the CNN-GAP model
may generate the over-fitting. Here, themodel training should
be stopped timely. Through repeated to adjust parameter and
testing, the model hyper-parameter is compared and selected
according to the precision curve of the verification set.
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FIGURE 5. The data segmentation of the overlap sampling method.

The training process of the CNN-GAP model is finished
when the accuracy rate of the verification dataset meets the
requirement.

Finally, the testing dataset data is input into the trained
CNN-GAP model, the representative feature of the raw
input data is automatically extracted by using the trained
CNN-GAPmodel. The final classification result of fault diag-
nosis is automatically outputted.

In the proposed method, the basic components of the
improved CNN-GAP algorithm are as follows.

A. INPUT LAYER
In the proposed CNN-GAP model, the main role of the input
layer contains two aspects. The one is to receive the raw 1-D
time-series fault date from the monitoring sensors. The other
is to make some necessary data process operations that could
transform the raw 1-D data into the standard formation to
meet the input data format requirements of the CNN-GAP
model. The common data process operations mainly include
data normalization, data segmentation, data format recon-
struction, data augmentation, etc [32], [33].

1) DATA NORMALIZATION
In general, different fault types will obtain different raw
fault monitoring data. These data usually is a continuous
and long-time 1-D time-series data. Different fault moni-
toring raw data have different magnitudes and amplitudes
range under the data acquisition process in actual. However,
the large magnitude difference between the different fault
samples is disadvantageous to train the CNN model [20].
To solve this problem, data normalization is a common and
effective method. Each fault monitoring raw data is normal-
ized into the range [0, 1] in advance. The common data
normalization is the mean value method [34], and the mathe-
matical expression [20] is described as follows:

X = {xi} =
xi − xmin

xmax − xmin
(4)

where xmax represents the maximum value in the input
sample, xmin represents the minimum value in the sample,
X is the result after standardization, and the value range is
between 0 and 1.

2) DATA SEGMENTATION
After the data normalization, each fault sample data still
is a long 1-D time-series data. In the CNN model training
process, if this long 1-D time-series data are inputted into
the CNN model one-time, it will not be processed due to the
computer memory overflow. To solve this problem, the data
segmentation [20] is adopted. According to the sampling
period, the fault occurs frequency or other references, the long
1-D time-series data can be segmented as many equal length
short 1-D time-series data segments. Here, each short 1-D
time-series data segment is a fault sample. To improve the
correlation between adjacent samples, in this paper, the over-
lap sampling method is designed by using a sliding win-
dow [33]. Through this method, it can obtain more fault
samples for training and testing of the CNN-GAP diagnosis
model, as shown in Figure 5.

In Figure 5, this long 1-D time-series data segment has
2000 data points. Through data segmentation, it obtains
6 samples by using a sliding window overlap sampling
method. The length of each new sample is 400 points. The
data point quantity of the overlapping sample is 100 points
(the overlapping radio is 25%). The sample quantity cal-
culation method of the overlap sampling can be defined as
follows:

Samplenum =
inputlength −Windowlength + 1

stridelength
(5)

where inputlength represents the data point quantity of the raw
long 1-D time-series data segment, Windowlength represents
the data point quantity of the sliding window, stridelength
represents the data point quantity of each stride. Samplenum is
the new fault sample quantity by using the overlap sampling
method. It should be noted that the decimal point of the
calculation result should be treated as an integer. For instance,
in Figure 5, the inputlength is 2000, the Windowlength is 400,
the stridelength is 300, therefore, Samplenum is 6. It can be seen
from Figure 5, the rightmost sample is incomplete, so it can
not be used as a sample.

3) DATA RECONSTRUCTION
In general, CNN is widely used for processing the data with
mesh-like structures [20]. The input data format of CNN is
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FIGURE 6. The procedure of data reconstruction from 1D transform to 2D.

FIGURE 7. The schematic diagram of the data augmentation operation.

usually 2-D image data or 3-D video data [30]. After the
data segmentation, each fault sample is still a short 1-D
time-series. To meet the input data format requirement of
CNN, in this paper, each short 1-D time-series data can be
transformed into a 2-D feature map format by using the data
reconstruction method [20]. The data reshaping process is
shown in Figure 6.

4) DATA AUGMENTATION
To improve the generalization ability and robustness of the
trained CNN model, in the input layer of the proposed
CNN-GAP method, the data augmentation [35] is applied.
The data augmentation is a good approach to expend the sam-
ple quantity of the raw fault dataset by a series of small-scale
random image transformations [20]. It has been widely used
in image recognition [36]. The common data augmentation
operations include random cropping, rotation, flipping, etc.
The demonstration of the data augmentation operations is
shown in Figure 7. In Figure 7, the left side is the raw fea-
ture map. The right side is six data augmentation operations
including the random cropping, left-right flipping, left rota-
tion, average blurring, up-down flipping, and right rotation of
the original data. As can be seen from Figure 7, an aircraft is
still an aircraft after six data augmentation operations.

B. FEATURE EXTRACTION LAYER
The feature extraction layer is an important part of the
improved CNN-GAP method. The main function of the fea-
ture extraction layer is to extract the deep representative
feature from the 2-D input feature map fault data. The fea-
ture extraction layer is similar to the traditional CNN which
composed of several convolutional layers and pooling lay-
ers. A deep feature extraction layer could be constructed by
alternately stacking multiple convolution layers and pooling
layers. In general, the deep feature extraction layer can extract
more deep representative features. However, with the increase
of the layer quantity, the gradient disappearance may have

FIGURE 8. The structure of the GAP operation of the CNN-GAP method.

occurred in the training process of the CNN model. So,
it needs to design a suitable CNN model structure accord-
ing to the actual needs of the diagnostic object. A detailed
description of the convolutional layer and pooling layer can
refer to Sections 2.1–2.2.

C. GLOBAL AVERAGE POOLING LAYER
The global average pooling (GAP) layer is a core section of
the improved CNN-GAPmethod. The global average pooling
is a new technique to solve the problem of too many model
parameters of the fully connected network in the traditional
CNN [29]. The main principle of the GAP is similar to
the max-pooling operation of traditional CNN. However,
different from the ordinary max-pooling operating, multiple
special global average pooling filters (also known as pooling
window) are used in the GAP layer [20]. The GAP filter is a
special rectangular matrix. A detailed structural design of the
GAP is shown in Figure 8.

In Figure 8, it assumes that the size of each output feature
map before the GAP operation is h×k, by using the GAP
filter, the output of the GAP is 1 × 1. The main process of
the GAP operation can be summarized as follows: firstly,
the several global average pooling filters are designed. The
number of the GAP filter is set to the same as the number of
the output feature map. Assuming that the number of output
feature map is n, the number of the GAP filter is set as n.
Secondly, the size of each GAP filter is set to the same as
the size of the output feature map. So, the size of the GAP
filter is set as h×k. Then, each GAP filter calculates a global
average value from the corresponding each output feature
map. Finally, the size of the output feature map after the GAP
operating is 1 × 1. The mathematical expression [20] of the
GAP operation can be rewritten as Formula 6.

S lavg−pooling =
1
c

∑c

i=1
X l1:h,1:k,i (6)

where S lavg−pooling represents the calculated result by the
global average pooling of the l-th output feature map; l is the
index of output feature maps; c represents the total number
of element values in the global average pooling kernel; 1:
h denotes that the range of a pooling kernel in the height
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direction is from the 1st line to the h-th line; 1: k indicates that
the range of a pooling kernel in the width direction is from 1st
column to the k-th column; similarly, the h and k respectively
represent the height and width of an output feature map; and
X l1:h,1:k, i represents the element value corresponding to the
global average pooling filter.

Here, it is assumed that there are n fault classification cat-
egories. By the GAP operation, each output feature map will
be converted into one value. So, the output of the GAP layer
is a 1-D array which has n value. Then, the output of the GAP
layer is fed into the Softmax output layer. Finally, the results
of classification and diagnosis could be automatically output
by the Softmax layer. It can be seen from Figure 8, the input of
the Softmax classifier is a 1-D arraywhich has n value. There-
fore, in this method, the output feature map channels (dimen-
sions) quantity of the last convolutional layer in the feature
extraction layer should be set to the same as the number of the
fault categories. Through these designs, it realizes a perfect
connection and transition between the output of the feature
extraction layer and the input of the Softmax classifier. The
forward-propagation and error back-propagation can be per-
formed in the improved CNN-GAP method. In this method,
the GAP layer has not any training parameters. The global
average pooling technique could greatly reduce the training
parameters quantity and model complexity of the traditional
CNN model by removing the 2∼3 layers fully connected
network. Therefore, the improved CNN-GAP method could
further reduce the risk of themodel over-fitting andmore suit-
able for rapid fault diagnosis and real-time anomaly detection
in electronic devices.

D. SOFTMAX OUTPUT LAYER
Softmax is the most commonly used classification function in
pattern recognition [27]. In the proposed CNN-GAP method,
the main role of the Softmax layer is to convert the output
result of the GAP layer to a new final result which meets
a probability distribution [20]. Usually, the output result of
a fully connected layer is a 1-D array [33]. This 1-D array
has n quantized value. Actually, the n quantized value has
different magnitudes that do not conform to the probability
distribution. To solve this problem, the Softmax function
is used for normalizing the calculation. After the Softmax
normalization, the output of the Softmax layer is a 1-D vector
that conforms to the probability distribution [20]. Each value
is converted to a value between 0 and 1, and the sum is 1.
Assuming that the training input sample is x and the corre-
sponding label is y, sample x is predicted to be the probability
of category j, which can be defined as P(y = j | x). The
Softmax function mathematical expression can be defined
as [27]:

Y
′

i =


P(yi = 1 | xi)
P(yi = 2 | xi)

...

P(yi = n | xi)


T

= soft max(Yi) =
1

n∑
l=1

ex
T
i
·wl


ex

T
i
·w 1

ex
T
i
·w 2

...

ex
T
i
·w n


T

(7)

where Y
′

i is the output value of the ith sample after normaliza-
tion by Softmax; Y

′

i = (y(1)
′

i , · · · , y(l)
′

i , · · · , y(n)
′

i ); the range
of each value of Y

′

i is from 0 to 1, and
∑n

l=1 y
(l)′

i = 1, con-
forming to the probability distribution; P(yi = 1 | xi) is the
probability value of the ith sample, belonging to category 1;
ex

T
i
·w 1 represents converting y(1)i to a value between 0 and 1;

1/
∑n

l=1 e
xT
i
·wl is a normalization function; the maximum

value of each row in Y
′

i is the fault category predicted of the
CNN-GAP model.

The loss error can be calculated by comparing the nor-
malized prediction result with the corresponding sample
actual label. In this paper, the cross-entropy loss func-
tion is applied. Assuming that the input dataset has m
samples, the cross-entropy cost function is defined as fol-
lows [20], [37]:

J (w) = −
1
m
[
m∑
i=1

n∑
j=1

I {yi = j} log
ex

T
i ·wj∑n

l=1 e
xTi ·wl

] (8)

where i represents the ith training sample, j represents the jth
category (the total number of categories is n), and I {·} is a
logical indication function. If the value in the brackets is true,
I= 1, else I= 0. y(i) is the actual label of the ith sample. J (w)
is a cross-entropy loss value. The training process of CNN is
to constantly adjust the parameters in Equation 8 to minimize
the cost function J (w).

In this paper, the gradient descent algorithm is used for
minimizing the loss function J (w) according to the rule of
error back-propagation [37]. The weight and bias of the
model’s trainable parameters are updated in the training pro-
cess of the CNN-GAP model. In this paper, the Adam [38]
optimization algorithm is applied to train the CNN-GAP
model. In the Adam algorithm, the learning rate can auto-
matically adjust the learning rate step length according to the
local error surface of the mini-batch sample. The basic train-
ing process of the Adam adaptive learning rate optimization
algorithm [38] can be described as follows:

IV. FAULT DIAGNOSIS FOR THE
ISOLATED DC-DC INVERTER
To verify and evaluate the effectiveness and feasibility of the
improve CNN-GAP method for the intelligent and fast diag-
nosis in electronic devices, in this paper, the proposedmethod
is applied to diagnose and identify the open-circuit fault of the
IGBT in the isolated three-phase bridge bidirectional DC-DC
inverter. In this experiment, the open-circuit fault data of
the 12 IGBTs from the isolated DC/DC inverter simulation
model are obtained and processed firstly. Secondly, the fault
dataset of the IGBT is established. Thirdly, the raw fault data
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Adam Adaptive Moment Optimization Algorithm
Require:ε: Stepsize (default setting is 0.001)
Require:ρ1, ρ2 ∈ [0, 1): Exponential decay rates of the Moment estimates. (default setting is 0.9 and 0.999)
Require:δ: Small constant used for numerical stabilization. (default setting is 10−8)
Require:θ : Initial training parameters

t ← 0 : Initialize time-step
s0← 0 : Initialize 1st order moment variable
r0← 0 : Initialize 2st order moment variable
While θt not converged do

Random extracting a mini-batch of m samples {x1, x2, · · · , xm} from the training data set, the corresponding
target is {y1, y2, · · · , ym}.
gt ← 1

m∇θ
∑

i L(f (xi; θt ), yi) : Update gradient
t ← t + 1 : Update time step
st ← ρ1 · st−1 + (1− ρ1)gt : Update biased 1st order moment estimate
rt ← ρ2 · rt−1 + (1− ρ2) · g2t : Update biased 2st order moment estimate
ŝt ← st/(1− ρt1) : Compute bias-corrected 1st order moment estimate
r̂t ← rt/(1− ρt2) : Compute bias-corrected 2st order moment estimate

1θ = −ε · ŝ/
(√

r̂ + δ
)
: Calculate the update value

θt ← θt−1 +1θ : Update parameters
end while
return θt (Resulting parameters)

FIGURE 9. The working principle diagram of the isolated three-phase bridge bidirectional DC/DC
inverter.

are input into the improved CNN-GAP model without any
manual feature extraction. Finally, fault diagnosis results are
automatically outputted.

A. THREE-PHASE ACTIVE BRIDGE ZVS
BIDIRECTIONAL DC/DC INVERTER
The isolated bidirectional DC/DC inverter is an important
functional part of the modern power system. In the electric
propulsion ship, it plays an irreplaceable role due to the vari-
ety of power sources and the need to achieve cross networking
and energy conversion [1], [2]. The isolated bidirectional
DC/DC inverter has a high-frequency transformer between
the input side and output side. It could be effectively achieved
electrical isolation. At present, it has been widely applied
in medium and large power conversion occasions [7]. The
working principle diagram of the three-phase active bridge
ZVS bidirectional DC/DC inverter is shown in Figure 9.
In Figure 9, the DC/DC inverter is composed of three
single-phase half-bridge DC/DC topologies. The three-phase

topology works with 120◦ interleaving, and the low-voltage
side (LVS) half-bridge has two functions: 1) As a boost
inverter, which is implemented with a three-phase inductor
and an LVS half-bridge; 2) Generating a high-frequency AC
voltage [40].

At present, the common monitoring signals mainly include
voltage signals and current signals for fault diagnosis of
the IGBT open circuit fault in the DC-DC inverter [14].
Because the current signal is susceptible to load changes
and fluctuations, in this paper, the output voltage of the
DC-DC inverter is used as the monitoring signal of fault
diagnosis. Through a lot of research studies, it found when
the open-circuit fault of multiple IGBTs occurred at the same
time, the power system will generate significant fault con-
ditions, even power interruption. However, when only one
IGBT generates open-circuit fault at one-time, the power
system still could continue to work in actual [8]. Because the
open-circuit fault feature of the single IGBT is not obvious,
so the electronic system protector is not easy to activate.
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FIGURE 10. The system framework of the improved CNN-GAP intelligent fault diagnosis model.

In general, the open-circuit fault of single IGBT is the min-
imum fault level. It is easier to ignore because the fault
feature is difficult to detect. Therefore, this paper focuses on
research the rapid diagnosing and positioning of the incipient
open-circuit fault of the IGBT in the DC-DC inverters.

B. INTELLIGENT FAULT DIAGNOSIS FOR THE DC-DC
INVERTER BASED ON THE PROPOSED METHOD
According to the aforementioned research result, in this
paper, a novel intelligent and fast fault diagnosis frame based
on the improved CNN-GAP algorithm is proposed for diag-
nosing the IGBT open circuit fault in the DC-DC inverter. The
framework structure of the proposed fault diagnosis model is
shown in Figure 10. In Figure 10, there are threemodules. The
lowest layer is the fault data acquisitionmodule of theDC-DC
inverter. The top layer is the result output module of the fault
diagnosis, and the middle layer is the proposed CNN-GAP
intelligent algorithm module. In this intelligent diagnosis
framework, the common monitoring signal of the DC-DC
inverter includes the voltage signal and current signal, etc.
The raw 1-D time-series fault data of the DC-DC inverter can

directly input into the proposed diagnosis system without any
manual feature extraction and signal processing operations.
The fault diagnosis result is automatically output in real-time.
The proposed method can greatly get rid of the dependence
on expert knowledge andworking experience. This intelligent
diagnosis system is an end-to-end framework structure that
has better operability and generality than traditional intelli-
gent diagnosis methods.

In this paper, the isolated three-phase bridge bidirec-
tional DC/DC inverter simulation model is established by
MATLAB Simulink software, as shown in Fig. 11. MATLAB
Simulink is a superior simulation platformwhich has realistic
simulation performance and has widely applied in the field of
electrical equipment development. In this paper, the simula-
tion model is used to investigate all possible combinations
of the open-circuit fault of the IGBT. The DC/DC inverter
has 12 IGBTs. It supposes that only one IGBT failing at one-
time. Therefore, there are 13 health states including 12 fault
states and one normal state. In Figure 11, the isolated bidirec-
tional DC/DC inverter model has a single 100V DC source.
The primary side and secondary side of the transformer
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FIGURE 11. Isolated three-phase bridge bidirectional DC/DC inverter simulation model.

TABLE 1. The model parameters of the isolated three-phase bridge
bidirectional DC-DC inverter.

consist of six power-switching devices to build full-bridge
switching circuitry respectively. The six power-switching
devices of the primary side are IGBT G1∼ IGBT G6 respec-
tively. The six power-switching devices of the secondary side
are IGBT G7∼ IGBT G12 respectively. The step-up ratio is
1:4 between the primary side and the secondary side. The
main parameters of the DC-DC inverter are listed in Table 1.

The fault data are collected from the voltage output inter-
face of the DC-DC inverter simulation model. In this exper-
iment, the sampling frequency is 24 kHz. The sampling
time of each fault state is 20 seconds. Therefore, each fault
type obtains a long 1-D time-series data segment which has
480,000 data points. Finally, it obtains a raw fault dataset
which is a matrix of [13, 480000]. In this paper, the raw
fault dataset is directly input into the input layer of the
proposed CNN-GAP fault diagnosis model. According to
Section 2.1, in the input layer of the proposed CNN-GAP
model, some data process operations are performed including
data normalization, data segmentation, data reconstruction,

and data augmentation. Each raw 1-D long time-series data
segment which has 480,000 data points is normalized firstly.
The amplitude of each data segment is transformed into
0∼1. Then, according to Figure 5 and Formula 5, each long
1-D time-series data segment is segmented into 1599 short
data segments by the overlap sampling data segmentation
method. Here, each short data segment is a fault sample that
contains 400 data points. The overlap rate is 25%, and the
length of the stride is 300. To facilitate statistics, the first
1500 samples of each fault type are retained in this experi-
ment. Finally, it obtains a new fault dataset which is a matrix
of [13, 1500, 400]. Different fault sample has different fault
label. The detail fault dataset is listed in Table 2. Figure 12 is
the output voltage waveform of the isolated DC/DC inverter
under the normal working state. Figure 13 is the output
voltage waveform of 12 IGBT under the fault state. It can
be seen from Figure 13, the output voltage fault waveform
of the IGBT in the primary side (IGBT1∼IGBT6) is obvi-
ously different from the secondary side (IGBT7∼IGBT12).
However, the fault waveforms of IGBTs on the same side are
particularly similar and it is difficult to distinguish them.

To meet the data format requirement of the input layer
in the proposed CNN-GAP, according to Section 2.1, each
1-D time-series data fault sample can be transformed into a
2-D feature map by the data reconstruction method shown
in Figure 6. In Table 2, each 1-D time-series data (400, 1) are
reconstructed into a 2-D input feature map form (20, 20, 1).
Here, the first 20 represents the height of the feature map,
the second 20 represents the width of the feature map,
and 1 represents one channel. Therefore, each fault state
has 1500 2-D input feature map sample data, as shown
in Table 2. The input 2-D feature map of 12 faults is shown
in Figure 14. Finally, the fault dataset is divided. All the
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TABLE 2. The description of the fault dataset of the DC-DC inverter.

FIGURE 12. The output voltage waveform of DC/DC inverter under the normal working
state.

FIGURE 13. The output voltage waveform of the DC/DC inverter under the 12 faults state.

samples of each fault type are randomly divided into a train-
ing dataset, a validation dataset, and a test dataset. 30%
of samples in each fault type (1500 samples) are randomly
taken as a test dataset. In the remaining 70% of the samples,
80% are randomly selected as a training dataset and 20%
are a validation dataset. In this experiment, the total sample
quantity is 19500 (1500× 13). The sample quantity of the
total test dataset is 5850 (19500× 0.3). The sample quantity

of the total training dataset is 10920 (19500 × 0.7 × 0.8).
The sample quantity of the total verification dataset is 2730
(19500× 0.7× 0.2).
In this paper, the training dataset is used for training the

established CNN-GAP model. During the training process,
the verification dataset is used for verifying the accuracy of
the trained CNN-GAP model. Through repeated to adjust
model parameters and testing, the hyper-parameter of the
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FIGURE 14. The 2-D feature map of DC/DC inverter under the 12 faults state.

FIGURE 15. The structure of the improved CNN-GAP fault diagnosis model.

CNN-GAP model is compared and selected according to the
precision curve of the verification dataset. The test dataset is
used for the final fault classification and accuracy assessment
of the trained CNN-GAP model. Finally, the new fault data
is input into the trained CNN-GAP model. The fault feature
of the raw input data is automatically extracted by using the
trained CNN-GAP model. The final fault diagnosis classifi-
cation result is automatically outputted.

C. HYPER-PARAMETERS OF THE ESTABLISHED CNN-GAP
FAULT DIAGNOSIS MODEL
In general, different topology structures and hyper-
parameters of the CNN model can obtain different diagnosis
effect. Selecting the appropriate model hyper-parameters can
effectively improve the fault diagnosis accuracy, training
speed, and test speed [20]. The main model hyper-parameters
include activation functions, optimizers, learning rates, con-
volution kernels, pooling kernels, and the CNN layer quan-
tity, etc. Literature [20] gives a reference for hyper-parameter
selection. According to the aforementioned research [20],
in this section, the proposed intelligent fault diagnosismethod
based on the improved CNN-GAP model is established,
as shown in Figure 15.

This model contains 3 convolution layers, 2 max-pooling
layers, 1 global average pooling layer, and 1 Softmax layer.
The detail hyper-parameters of the established CNN-GAP
model are listed in Table 3. Firstly, the raw 2-D feature map
is inputted into the first convolution layer of the improved
CNN-GAP model. In the first convolution layer, there are 64
representative features are extracted from the raw input fea-
ture map. Each representative feature corresponds to an out-
put feature map. Therefore, the output of the first convolution
layer is a multi-dimensional tensor which has 64 channels.
Behind the first convolutional layer is a max-pooling layer.
By the max-pooling operation, the feature map could reduce
by 75% of its original size. Behind the first pooling layer
is the second convolutional layer. In the second convolution
layer, there are 32 representative features are extracted from
the output feature map of the first pooling layer. Behind
the second convolutional layer is the second pooling layer.
The size of each output featuremap is further reduced. Behind
the second pooling layer is the third convolutional layer.
The output of the third convolutional layer is directly a 13
channels feature map. Behind the third convolutional layer is
a global average pooling layer. The GAP layer has 13 global
average pooling kernels. The output of the GAP layer is a
1-D array which has 13 values. Behind the GAP layer is a
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TABLE 3. The hyper-parameters of the improved CNN-GAP model in the experiments.

TABLE 4. The detail hyper-parameters of the traditional CNN model in the experiments.

Softmax function. Finally, the classification results could be
automatically output by the Softmax classifier.

In this experiment, the deep learning training skills includ-
ing dropout technology, and batch normalization are applied
in the training stage of the CNN-GAP model to prevent
the model over-fitting problem. To improve the general-
ization ability and robustness of the trained CNN model,
the data augmentation is applied in the model training pro-
cess including the random cropping, left-right flipping, left
rotation, average blurring, up-down flipping, and right rota-
tion, etc. These operations are automatically performed by
computer programs. The ReLU activation function is used in

all convolutional layers. The optimizer is a very important
selection to impact the convergence of the CNNmodel. In this
experiment, the Adam adaptive learning rate optimization
algorithm [20] is used. The learning rate can automatically
adjust according to the local error surface of each epoch
iteration. In this paper, themini-batch trainingmethod is used.
The number of samples in each mini-batch is set to 256. The
iteration epoch is 50. To compare with the traditional CNN
model, in this paper, a traditional CNN model with a fully
connected layer is established. The detail hyper-parameters
of the traditional CNN model are listed in Table 4. The
traditional CNNmodel has the same model hyper-parameters
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TABLE 5. The fault diagnosis results of the different CNN models.

to the improved CNN-GAPmodel in the feature extract layer.
This comparison reference model has 3 fully connected hid-
den layers.

Compared with Table 3 and Table 4, the total parameter
quantity of the traditional CNN diagnosis model using the
fully connected layer of 3 layers is up to 140,890. How-
ever, the total parameter quantity of the improved CNN-GAP
diagnosis model using the global average pooling layer is
only 22,861. Therefore, the result shows that the improved
CNN-GAP model can greatly reduce more than 80% train-
able parameters quantity. The calculation method of the
model parameter quantity in each network layer can refer to
Formula 9 [20].{

CNNnum = Knum × kheight × kwidth × Inum × Bnum
FCNnum = Ninput × Noutput × Bhidden

(9)

where CNNnum is the parameter quantity of the convolution
layer, FCNnum is the parameter quantity of the fully con-
nected layer, Knum is the number of convolution kernels (the
number of output channels), kheight × kwidth represents the
height × width of the convolution kernel, Inum is the number
of input data channels, Bnum is the number of biases of the
convolutional layer, Ninput ×Noutput represents the product of
the number of neuron nodes between two adjacent layers in
the fully connected layer, and Bhidden is the bias of the hid-
den layer. The max-pooling layer, dropout layer, and global
average pooling layer have not any trainable parameters.

The diagnosis result and time cost of the improved
CNN-GAP model and the traditional CNN model are listed
in Table 5. As can be seen from Table 5, the effectiveness
of the improved CNN-GAP model is obviously better than
the traditional CNN model. In terms of time, the training
time and test time of the improved CNN-GAP model is
obviously faster than the traditional CNNmodel. The training
time and test time of the traditional CNN are 901.26 sec-
onds and 2.945 seconds respectively. However, the training
time and test time of the improved CNN-GAP method are
824.89 seconds and 2.488 seconds respectively. In terms
of accuracy, the test accuracy of the improved CNN-GAP
model is better than the traditional CNN model. The accu-
racy rate of the traditional CNN model on the test dataset
is 99.23%. The accuracy rate of the improved CNN-GAP
on the test dataset is up to 99.95%. Therefore, the results
confirm that the improved CNN-GAP method can effectively
improve the diagnosis speed and test accuracy. The experi-
ment is completed on the computer with Intel i5-2430 CPU,
8GBmemory, NVIDIAGeForce GT 550MGPU, Tensorflow
1.10 version and Python 3.6.

D. THE FAULT DIAGNOSIS RESULT EVALUATION
It is meaningful to further evaluate and compare the classi-
fication performance of the improved CNN-GAP algorithm
and the traditional CNN method or other methods. In the
evaluation system of classifiers, F1-measure is a widely used
criterion, which contains both the Precision ratio and the
Recall ratio. The mathematical expressions of the three indi-
cators are shown in Formula 10 [20]. Table 6 lists the pre-
cision rates, recall rates, and F1-score of the final diagnosis
results (as shown in Table 5) of the improved CNN-GAP
method and traditional CNN method.

P = TP/(TP+ FP)× 100
R = TP/(TP+ FN )× 100
F1 = 2TP/(2TP+ FP+ FN )× 100

(10)

where P is the precision rate, R is recall rate, F1 is a harmonic
average value of the precision rate and the recall rate, TP
represents the number of true-positive instances, FP repre-
sents the number of false-positive instances, TP represents
the number of true-positive instances, and FN represents the
number of false-negative instances.

It can be seen from Table 6, the diagnosis accuracy of
the improved CNN-GAP method is obviously better than the
traditional CNN method. The F1-measure of the improved
CNN-GAP is up to 99.95%, however, the traditional CNN
method is 99.23%. Although it seems that there is not much
difference in the results of the two methods, in fact, it is a
great improvement. To further accurately locate and display
the location and number of misclassification, a visualization
method called multi-class confusion matrix [32] is intro-
duced. The multi-class confusion matrix of the improved
CNN-GAP method and traditional CNN method correspond-
ing to the results of Table 6 is shown in Figure 16 (a) and
Figure 16 (b) respectively.

In Figure 16, the abscissa axis of the multi-class confusion
matrix represents the predicted category of the improved
CNN-GAP. The ordinate axis represents the actual category
label of the DC-DC inverter. The elements on the main diag-
onal represent the sample number of the correct classifica-
tion of each fault state. As can be seen from Figure 16 (a),
in the 5850 samples, only 3 samples are misclassified by
the improved CNN-GAP prediction. The actual label of the
misclassified sample is Fault 1, the predicted category of
the CNN-GAP model is Fault 5 (2 samples) and Fault 6
(1 sample) respectively. Except for the recall rate of Fault 1 is
99.33%, the recall rates of other conditions are 100%. The
diagnosis accurate of the normal state is 100%.As can be seen
from Figure 16 (b), the traditional CNN method has 45 sam-
ples mistake classification. Among them, 12 Fault 1 are
misjudged as Fault 3 (1 sample) and Fault 5 (11 samples).
33 Fault 7 are misjudged as Fault 11. The results show
that the proposed CNN-GAP method has superior recog-
nition ability and diagnostic accuracy than the traditional
CNN method for the IGBT open-circuit fault of the DC-DC
inverter.
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TABLE 6. The evaluation results of the two different CNN model.

FIGURE 16. The multi-class confusion matrix of fault diagnosis results
under different methods.

E. COMPARISON WITH TRADITIONAL
INTELLIGENT METHODS
Totally different from the traditional methods, the proposed
method focuses on the intelligent and fast fault diagnosis
without any manual feature extraction. To further validate
the superiority of the modified CNN-GAP algorithm than
other traditional methods, in this paper, the three common
mainstream traditional intelligent diagnosis algorithms are
compared with the proposedmethod. The current mainstream
intelligent diagnosis algorithms include the support vector
machine (SVM), BP neural network (BPNN), K nearest
neighbor (KNN), and deep BP neural network (DNN). In the
traditional intelligent fault diagnosis methods, the manual
feature extraction of the raw dataset is conducted firstly.
Then, the extracted features are inputted into the intelligent
diagnosis algorithm to complete the classification predic-
tion [37]. Statistical features in the time domain and fre-
quency domain are widely used method in fault diagnosis
fields [41], [42]. Xia et al. [37] extracted 14 features from
raw data by using 14 feature extraction operators, including
10 time-domain features and 4 frequency-domain features.
The detailed feature parameters are listed in Table 7 [20]. This
paper uses the 14 feature extraction operators to calculate
the 14 statistical features of each fault sample of Table 2.
Then, the extracted 14 features are input into SVM, KNN,
and BPNN for fault diagnosis. The experimental results of
the precision rate and the recall rate of the different methods
are listed in Table 8.

Comparing Table 8, it can be seen the accuracy of the pro-
posed CNN-GAP method is obviously better than other intel-
ligent algorithms. In terms of accuracy, the precision rates of
the SVM, KNN, and BPNN after manual feature extraction
are 96.13%, 95.15%, 80.32% respectively. The precision rate
of the DNN is 97.01% by using 5 hidden layers to train raw
data. It can be seen in Table 8, the classification accuracy of
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TABLE 7. The statistical feature extractions in the time-domain and frequency-domain.

TABLE 8. The precision rate and recall rate of different methods.

all methods in normal samples is 100%. However, as for fault
samples, only 2 hidden layers of BPNN have the lowest test
accuracy and serious over-fitting. Because of the shallow net-
work structure of the SVM, KNN, and BPNN, their diagnos-
tic accuracy is difficult to further improve. When the number
of DNN layer exceeds 5 layers, the accuracy of the DNN is
difficult to increase because of the gradient disappearance
and the over-fitting of the model is gradual obviousness.
Comparing the results of the above six algorithms, it can
be confirmed that the proposed CNN-GAP algorithm has
more accurate and superior performance than other intelligent
methods.

The main parameters of other methods are described as
follows: (1) SVM: the penalty factor C= 10, kernel function
is Gaussian radial basis function (RBF), and slack variable
ξ = 0.01; (2) KNN: using the Minkowski distance, the k
value is 3 and the leaf node is 30; (3) BPNN: the architecture
is 14-256–128–13, the Adam adaptive learning rate opti-
mization algorithm is used, the activation function is Tanh,
the regularization coefficient λ = 0.001, the batch size is

256, and the iteration epoch is 300; and (4) DNN: the archi-
tecture is 400–512–256–128–64–13, which is decided by
repeated trial experiences and guiding principles, the Adam
optimization algorithm is used, the activation function is
Tanh, the regularization coefficient λ = 0.001, the batch size
is 256, and the iteration epoch is 300.

F. VISUALIZATION OF LEARNED
FEATURE REPRESENTATION
In the above research result, this paper shows that the
improved CNN-GAP model has the outstanding feature abil-
ity to learn representative features from raw fault data. How-
ever, it can not show how to learn these features. Conse-
quently, in order to explain the black box operation process,
a visualization method called t-distributed stochastic neigh-
bor embedding (t-SNE) [33] is used. The t-SNE is a manifold
learning algorithm. It is an effective method to visualize
high-dimensional data by mapping the data samples from
their raw feature space into a two or three-dimensional space
map [28].
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FIGURE 17. Scatter plots of the feature visualization under the test dataset using the t-SNE method. (a) The feature distribution of
raw data, (b) the feature distribution of the convolutional layer 1, (c) the feature distribution of the convolutional layer 2, (d) the
feature distribution of the convolutional layer 3, (e) the feature distribution of the global average pooling layer, (f) the feature
distribution of the Softmax output layer.

Assuming that the parameter sets of the extracted fea-
ture sample is F = [f1, f2, . . . , fm]T , where fi =
[fi1, fi2, . . . , fin], i = 1, 2, . . . m, m is the number
of samples; where i ∈ Rn(n denotes the dimensional of the
sample). The t-SNE aims to learn a map P (e.g., a Euclidean
distance map) to transform F into a low dimensional embed-
ding L = [l1, l2, . . . , lm]T , where li ∈ Rs(s denotes the
embedding dimensions and usually s = 2 or 3). In order
to learn the map L, t-SNE firstly measures the pairwise
similarity of the elements in F by Formula 11 [42].pj|i =

exp(−P(fi, fj)2/2σ 2
i )∑

k 6=i exp(−P(fi, fk )2)/2σ
2
i

, and pi|i = 0

pij = (pi|j + pj|i)/2m

(11)

where pij and pj|i are the joint and the conditional probability
between fi and fj, and σi is the bandwidth of the Gaussian
kernels. Then, t-SNE computes the pairwise similarity of the
elements in L by Formula 12.

p̃ij =

(
1+ ||li − lj||2

)−1∑
k 6=h

(
1+ ||lk − lh||2

)−1 , and p̃ij = 0 (12)

where is p̃ij the joint probability between li and lj. Lastly,
the location of the embedding element li will be determined
by optimizing the Kullback-Leibler divergence between the
joint distributions pij and p̃ij. This paper uses 3-D space
visualization, so s = 3. In this experiment, the 5850 samples
of test datasets are as input data to input into the t-SNE. The
data feature distribution of each layer after a dimensionality
reduction by the t-SNE method is shown in Figure 17.

Figure 17(a)–(f) show the data feature distribution visu-
alization of the input layer, the convolutional layer 1, con-
volutional layer 2, convolutional layer 3, the global average

pooling layer, the Softmax output layer respectively. It can
be obviously seen from Figure 17 (a)–(f), in the input layer,
the 13 health states of the DC-DC inverter are very confusing.
In convolutional layer 1, the different fault state has a slight
distinction. In the convolutional layer 2, convolutional layer 3
and the global average pooling layer, the feature extraction
ability of each layer is gradually increased. Finally, after
the Softmax function is calculated, the 13-class health status
data of the DC-DC inverter is clearly classified. As can
be seen from Figure 17 (f), a few samples are still mis-
classified, which is consistent with the result of the confu-
sion matrix of Figure 16 (a). The classification visualization
obviously shows that the trained CNN-GAP model has an
outstanding feature extraction ability and nonlinear mapping
ability.

In the modern electrical power system, the open-circuit
fault diagnosis of the DC-DC inverter is always an intractable
and difficult problem. In this paper, the main purpose is to
explore a novel fault diagnosis method based on the modified
GAP-CNN algorithm for fast fault diagnosis of the DC-DC
inverter. In this paper, the simulation data of the DC-DC
inverter is used. Comparing with the actual DC-DC inverter,
the simulation model of DC-DC inverter may generate some
difference of output voltage waveform under the interference
from the working environment to some extent. However,
the deep learning-based fault diagnosis model has superior
self-adaption on the real industrial data. One of the most
important advantages of the CNNmodel is that they can auto-
matically learn the representative features and the complex
nonlinear relationships from the raw data In the actual indus-
trial application, the proposed method still can automatically
process the raw 1D time-series industrial data according to
the proposed procedure in Section III. The end-to-end model
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structure of the proposed method will obtain better operabil-
ity and versatility on real industrial applications.

V. CONCLUSION
Fault diagnosis and health monitoring technology based
on artificial intelligence is gradually widely used in elec-
tronic and electrical equipment. The traditional intelligent
fault diagnosis method based on manual feature extraction
extremely relies on the experience of engineers, and it is
difficult to identify the micro features of the early-term faults.
Convolutional neural network (CNN) has powerful feature
extract ability which has the potential to extract the micro
fault features. However, the fully connected layer structure
of the traditional CNN has numerous trainable parameters
which are not suitable for rapid diagnosing and real-time
detecting of the incipient fault. In this paper, a novel deep
learning model named improved CNN-GAP is proposed.
This method is developed for fast fault diagnosis of the
IGBT open-circuit fault in the DC-DC inverter. The proposed
approach improves the model structure of the traditional
CNN by using a global average pooling layer instead of the
2∼3 layers fully connected layer. The trainable parameter
quantity of the traditional CNN model is greatly reduced
by using the proposed improved method. The improved
CNN-GAP method is mainly composed of an input layer,
a feature extraction layer, a global average layer, and a
Softmax output layer. The proposed method can directly
learn features from raw 1-D time-series data without any
time-consuming manual feature extraction and signal pro-
cessing operations.

The proposed method is applied to address the intelligent
fault diagnosis problem of the IGBT’s open-circuit fault in
the DC-DC inverter. The experiment result confirms the pro-
posed method is more effective than other existing intelli-
gence diagnosis methods including the SVM, KNN, BPNN,
DNN, and traditional CNN. The experiment results show that
the diagnostic accuracy is up to 99.95%, and the testing time
can reduce by more than 15%. The improved CNN-GAP
method could greatly reduce the model parameter quantity
of the traditional CNN more than 80%, which is more suit-
able for rapid fault diagnosis and real-time online anomaly
detection in electronic devices. The results confirmed that
the proposed CNN-GAP algorithm has more accurate and
superior diagnosis performance than other intelligent meth-
ods. The proposed method needs not any manual feature
extraction and feature selection in raw 1-D time-series sig-
nals data. In this paper, the data augmentation and overlap
sampling method are used to expand the number of fault
samples. The multi-class confusion matrix and the t-SNE
visualization method are used to further explain the classifi-
cation performance of the CNN-GAP model. The end-to-end
model structure of the proposed method has better operability
and versatility on other applications. It is very interesting
to develop other deep learning methods for intelligent fault
diagnosis fields. The authors would further research this topic
in the future.
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