
Received April 7, 2020, accepted April 13, 2020, date of publication April 16, 2020, date of current version May 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988207

Online Workload Burst Detection for Efficient
Predictive Autoscaling of Applications
FATIMA TAHIR1, MUHAMMAD ABDULLAH 1, FAISAL BUKHARI 1,
KHALED MOHAMAD ALMUSTAFA 2, (Associate Member, IEEE), AND
WAHEED IQBAL 1, (Member, IEEE)
1Punjab University College of Information Technology (PUCIT), University of the Punjab, Lahore 54000, Pakistan
2College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Corresponding author: Waheed Iqbal (waheed.iqbal@pucit.edu.pk)

This work was supported in part by Prince Sultan University, Riyadh, Saudi Arabia, and Higher Education Commission, Pakistan.

ABSTRACT Autoscaling methods are employed to ensure the scalability of cloud-hosted applications.
The public-facing applications are prone to receive sudden workload bursts, and the existing autoscaling
methods do not handle the bursty workloads gracefully. It is challenging to detect the burst online from the
incoming dynamic workload traffic, and then identifying appropriate resources to address the burst without
overprovisioning is even harder. In this paper, we address this challenge by investigating the appropriate
method for online burst detection and then proposed a novel predictive autoscaling method to use burst
detection for satisfying specific response time requirements. We compared the proposed method with
multiple state-of-the-art baseline autoscalingmethods undermultiple realistic and synthetic burstyworkloads
for a benchmark application. Our experimental results show a 60.8% average decrease in response time
violations as compared to the baseline method.

INDEX TERMS Autoscaling, predictive, SLO violations, response time, workload, burstiness, online burst
detection.

I. INTRODUCTION
Cloud computing is attractive to host and manage appli-
cations for scalability, performance, and cost-effectiveness.
One of the core features of cloud computing is on-demand
resource provisioning, which enables the users to auto-
matically scale the application resources to satisfy specific
service level objectives (SLOs). An application with high
response time loses the user attraction and will reduce busi-
ness opportunities for application owners. Therefore, applica-
tion response time SLO is critical to ensure for cloud-hosted
applications [1]–[3].

Typically, autoscaling methods are used to maintain the
performance of cloud-hosted applications by reducing the
latency and response time SLO violations [4]. Most of the
exiting autoscaling methods are based on either a reactive or a
predictive approach. The reactive autoscaling approach man-
ages the resources to the applications based on specific events
and a set of rules. For example, a typical reactive autoscaling
method increases the number of resources of a cloud-hosted
application whenever application-specific metrics, for exam-
ple, average response time or allocated hardware utilization,

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Piccialli.

for example, CPU,memory, and I/O reaches a specific thresh-
old [5], [6]. These rule-based autoscaling methods do not
eliminate the SLO violations as these methods initiate scaling
decisions after the occurrence of particular events. Whereas,
predictive autoscaling methods proactively scale the appli-
cation resources by anticipating any possible performance
issue may arise in the future. Most of the existing predictive
autoscaling methods [7], [8] are based on analytical mod-
eling [9], machine learning [10], and reinforcement learn-
ing [11] techniques.

Public-facing applications observe dynamic and bursty
workloads. A sudden burst in the workload drastically affects
the performance of the applications. If the autoscalingmethod
does not detect the burst and handle it appropriately, the per-
formance of the application will sharply deteriorate. The
existing autoscaling methods do not explicitly treat the burst
in workloads to minimize the response time SLO violations.
There have been some efforts to identify the burstiness in
workloads [12]–[15]. These workload detection methods are
based on offline techniques that require a large number
of historical workload observations as input to identify the
burst. It is challenging to identify the burst online in incom-
ing dynamic workloads using small historical observations
and then consume the burst detection in the autoscaling

73730 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3151-558X
https://orcid.org/0000-0002-7703-9742
https://orcid.org/0000-0003-2129-7686
https://orcid.org/0000-0002-1612-8549


F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

method efficiently to minimize the response time SLO
violations.

To highlight the challenges associated with identifying
bursts in dynamic workloads, we show two real work-
loads and one synthetic workload in Figure 1. SW1 and
SW2 show the two actual workload traces from the Cal-
gary university web server and ClarkNet servers, respec-
tively, whereas SW3 shows a synthetic workload with bursts.
The figures highlight the bursts in each workload, which is
challenging to detect online and automatically. These bursts
deteriorate the performance of the application if appropri-
ate resources are not allocated timely. A typical autoscaling
method will try to allocate and deallocate the resources fre-
quently during the bursts and would not be able to identify
appropriate allocation timely for minimizing response time
SLO violations [16].

FIGURE 1. Application workloads with bursts.

In this paper, we proposed an efficient autoscaling method
that detects bursts online in incoming workloads and then
use it in resource allocation decisions to minimum response
time SLO violations. In our proposed autoscaling method,
first, we predict the future workload using the last k historical
workload traces. Second, the predicted workload is used to
identify the number of resources instances needed to satisfy
the response time SLO threshold. Third, we detect the bursti-
ness in the last k historical workload traces using a burst
detection method. Finally, burst detection decision and pre-
dicted the number of resource instances are used to scale-out
or scale-in the application resources dynamically. We have
investigated three different techniques, including Sample
Entropy (SE), Normalized Entropy (NE), and Fast Fourier
Transformation (FFT), for online burst detection in dynamic
workloads. Our proposed method using a trace-driven sim-
ulation using four synthetic and five real workloads show
excellent performance as compared to the existing state-of-
the-art baseline autoscaling methods. We also show the vali-
dation of the proposed method on a real containerized testbed
infrastructure. The main contributions of this work include:
i. Propose an autoscaling method to minimize the response

time SLO violations.
ii. Design an autoscaling method with online burst detec-

tion in incoming workload for better performance.
iii. Simulation-based evaluation of the proposed system

using four synthetic and five real workloads.
iv. Compare the proposed autoscaling method with state-of-

the-art reactive and predictive autoscalingmethods as the
baselines.

v. Validation of the proposed autoscaling method on a real
testbed infrastructure.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. We explain the proposed
system in Section 3. The experimental setup and design is
discussed in Section 4. Experimental results are presented in
Section 5. Finally, conclusions and future work are discussed
in Section 6.

II. RELATED WORK
There have been many efforts to design autoscaling
methods for cloud-hosted applications. For example,
Liu and Wee [29] present a reactive autoscaling method.
The proposed autoscaling method dynamically scale the
application resources whenever CPU utilization or band-
width utilization of the application resources saturates.
Krieger et al. [30] proposed a reactive autoscaling method
for the bioinformatics and biomedical cloud-hosted appli-
cations. The proposed method horizontally scale the appli-
cation resources to maximize application performance.
Chieu et al. [31] proposed a reactive autoscaling method.
The proposed system used the number of active sessions to
find the number of resource instances. However, the pro-
posed method does not maximize the performance of com-
plex applications under dynamically changing workloads.
Liu et al. [32] also present a reactive autoscaling method.
The proposed method uses fuzzy logic to find the resource
cluster size to maintain the application response time.
Abdullah et al. [33] use a simple reactive autoscaling method
to maintain the performance of microservices. The proposed
method dynamically adds the resources to the microservices
whenever response time saturates.

Recently, several researchers designed and evaluated pre-
dictive autoscalingmethods. For example, Radhika et al. [34]
present the predictive autoscaling method. The authors
use Auto-Regressive Integrated Moving Average (ARIMA)
and Recurrent Neural Network-Long Short Term Memory
(RNN-LSTM) to predict the future workload using histori-
cal CPU and memory utilization and then scale the appli-
cation resources. Raghunath and Annappa [35] develop a
predictive autoscaling method. The author uses a fuzzy-based
system to predict the future resources which are needed
to maintain the application performance. A recent work
by Abdullah et al. [36] proposed a predictive autoscaling
method using a machine learning to identify the required
number of resources for satisfying the response time require-
ments using a forecasted workload and adjust the resources
accordingly.

Some researchers are working to scale the multi-player
online game applications resources hosted on the cloud.
For example, Khorsand et al. [17] proposed a self-learning
fuzzy approach for the proactive provision of resources for
multi-player online game applications in a cloud environ-
ment. The authors applied Maximum Likelihood Estimation
and Local Linear Regression for parameter prediction and
fuzzy decision-maker to determine appropriate autoscaling

VOLUME 8, 2020 73731



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

decisions. Khorsand et al. [18] proposed an approach to pro-
vision resources for multi-tier applications hosted on cloud
infrastructure using the autonomic computing MAPE-k con-
trol loop. Their approach use SVR and Fuzzy Analytical
Hierarchy Process in the analysis and planning phase of the
MAPE control loop and SVR is used to predict the workload.
A similar approach is used by Ghobaei-Arani et al. [19] for
the resource provisioning approach for multiplayer online
games in a cloud environment. Their approach forecasts
the workload in the analysis phase using ANFIS (Adap-
tive Neuro-Fuzzy Inference System) predictor and Fuzzy
Decision Tree in the Planning phase to estimate the num-
ber of resources to be allocated based on predicted work-
load to minimize the SLA violation rate. Rafieyan et al. [20]
proposed an adaptive approach for the multi-criteria task
scheduling problems. The proposed method is used to
schedule conflicting tasks with minimum QoS violations.
Khorsand and Ramezanpour [37] also designed a method for
the multi-criteria task scheduling problems with energy effi-
ciency. Safari and Khorsand [38] proposed a Dynamic Volt-
age and Frequency Scaling method for reducing the energy
consumption for time-constrained workflows by distributing
different tasks in workflows to appropriate VMs, consider-
ing their deadline. The goal of this method is to schedule
the user-submitted workflows within given time-constrained
with minimum SLO violations.

Workload forecasting is an exciting research area.
Many recent works address this problem. For example,
Attia et al. [39] use the Differential Evolution (DE) algo-
rithm named MSaDE and Artificial Neural Network (ANN)
to forecast the workload of cloud-hosted applications.
Iqbal et al. [40] use the unsupervised learning approach to
find future workload patterns for web applications. The
author uses URI space partitions using response time and
document size to compute the distribution of historically
access logs in different partitions. Further, partitions are used
to predict workload patterns using probabilistic techniques.
There have been some efforts to use the forecasted workload
in autoscaling. For example, Roy et al. [41] proposed an
autoscaling method which uses forecasted workload and
application resource utilization for the resource provisioning
decisions. Baig et al. [28] proposed a method for window
size estimation to maximize the prediction accuracy of data
center resource utilization using deep neural networks. Any
regression-based estimation model can use the predicted
window size method for the prediction of resource utiliza-
tion with minimum error. Similarly, Chen and Wang [27]
proposed a method to improve the accuracy and prediction
time of resource utilization. The authors use three different
components including Ensemble Empirical Mode Decom-
position, Run Tests, and ARIMA to improve the prediction
results.

A few efforts aremade tomeasure the burstiness in applica-
tionworkloads. For example, Balaji et al. [21] use a combina-
tion of Hurst Exponent and Sample Entropymethods to detect
burst patterns using offline workload traces. Zhang et al. [42]

use a two-state (ON/OFF) Markov chain model to detect the
burst in the given workload. Zhang et al. [43] also present a
system to identify the burstiness using the search query analy-
sis in web applications. The authors use a probabilistic model
on search queries and URLs of a web application to deter-
mine the burstiness. Tamime et al. [44] proposed a model to
measure the burstiness in health-related Wikipedia articles.
The authors use the ARIMA model and then classify the
burstiness as high, low, or moderate. Benmakrelouf et al. [45]
proposed a method for detecting abnormal variations in vir-
tualized systems by using a combination of two probabilistic
techniques including Z-score and Kullback-Leibler diver-
gence. The proposed solution provides a mapping between
resource level and service-level metrics and detects abnor-
mal changes dynamically. Some researcher quantifies the
burstiness in workload by analyzing with different methods.
For example, Minh et al. [12] proposed a system to quantify
the burstiness in the given workload by taking workload
as a signal. The authors use normalized entropy to calcu-
late the burstiness in the given workload. However, their
approach uses a complete offline workload as a single signal
and then calculate the burstiness. Ali-Eldin et al. [13] also
quantify the burstiness using the sample entropy method.
Shen et al. [14] also proposed a system to indicate the bursti-
ness in the given workload. The authors use the signal pro-
cessing technique (FFT) to compute the burst density. These
methods calculate the burstiness in the given offline workload
traces.

Table 1 shows the comparison of existing work with our
proposed method. All of the existing burst detection meth-
ods work offline on given workload traces, taking them as
a single signal. However, to detect the burstiness in work-
loads online and then use the burst detection decision in the
resource autoscaling methods to improve the performance
of the cloud-hosted application is a challenging task. In this
work, we tackled this challenge and proposed an efficient
predictive autoscaling method, which enhances the applica-
tion performance by using burst detection decisions as input.
We use sample entropy (SE), normalized entropy (NE), and
Fast-Fourier transformation (FFT) as burst detection tech-
niques and then identify the best method to use in our pro-
posed autoscaling method.

III. PROPOSED SYSTEM
The overall proposed systems is illustrated in Figure 2. The
flow and components of the system are labeled and numbered
to explain the working of the system. The systemworks in the
following steps:
• First, at every time interval, the last k workload obser-
vations {αt , αt−1, . . . , αt−k+1} are used to predict the
workload for the next interval α̂t+1. We explain this in
Section III-A.

• Second, the system uses the last k workload obser-
vations {αt , αt−1, . . . , αt−k+1} to detect the burstiness
using our proposed burst detection method, explained in
Section III-B.

73732 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

TABLE 1. Comparison of related work with proposed method.

• Third, the proposed system uses a resources prediction
model, explained in Section III-C, to predict the number
of resource instances n̂ required to satisfy the response
time SLO τslo requirement to serve the predicted
workload α̂t+1.

• Finally, the burst detection decision and predicted num-
ber of resource instances n̂ are used by the proposed
autoscaling method to adjust the allocated resources to
the application dynamically. We explained the proposed
autoscaling method in Section III-D.

A. WORKLOAD FORECASTING MODEL
Most of the existing workload forecasting techniques use
statistical methods, including ARIMA, ARMA, and Mov-
ing Average [46], [47], to estimate the future workloads.
However, statistical methods are not efficient in forecast-
ing bursty and dynamic workloads. Some of the recent
works [48], [49] use advanced machine learning methods to
forecast workload, including neural network, support vector
machine, and multi-layer perceptron. However, these meth-
ods are compute-intensive and required a large number of
training data to train themodel to yield better estimation accu-
racy. In our proposed workload forecasting method, we use a
small number of last k observations to capture local trends in

the incoming workload. Therefore, we used ElastNet (EN),
which is a regularized regression method with absolute and
squared penalization. EN performs better than other regres-
sion techniques [50]. Figure 3 shows the normalized Mean
Absolute Error of different regression algorithms for the
World Cup workload with different window sizes. EN shows
minimum MAE with window size 10. Therefore, we use EN
for workload forecasting.

The proposed workload forecasting model predicts the
workload α̂t+1 for the next interval t+1 using the last k actual
workload observations {αt , αt−1, . . . , αt−k+1}. For a specific
application at the current time interval t , we have the last k
workload observations {αt , αt−1, . . . , αt−k+1}. Then, we can
estimate the future workload using:

α̂t+1 = b0 + b1αt , (1)

where b0 and b1 are the regression parameters, which are
estimated using the following objective function:

min
b0,b1

k−1∑
i=0

||αt−i − b0 − b1αt−i−1||22

+λ

ρ 1∑
j=0

||bj||1 +
1− ρ
2

1∑
j=0

||bj||22

 , (2)

VOLUME 8, 2020 73733



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

FIGURE 2. The proposed system components and their interactions. At the first step, the last k
workload observations are used to build a ‘‘Workload Forecast Model’’ to get the next interval
estimated workload. Second, the forecasted workload and user-specific response time SLO
threshold are used to get the required number of predicted resources from the ‘‘Resource
Prediction Model’’. Third, the last k interval observations of the workload are used by the
‘‘Brust Detection’’ module to identify the burst in the incoming workload. Finally, the predicted
resources count and burst detection (on/off) is used to autoscale the application resources.

FIGURE 3. Normalized mean absolute error for world cup workload with
different regression methods.

where λ is a hyper-parameter which decides the relative
importance of reconstruction error and the sparseness of coef-
ficients, || · ||1 and || · ||22 are the `1 and `2 norms respectively,
and ρ is the mixing ratio or `1 ratio.

Once the regression parameters b0 and b1 are learned,
we can estimate the workload for the next time interval as

α̂t+1 =

(
1
αt

)> (b0
b1

)
. (3)

B. BURST DETECTION METHOD
Cloud-hosted applications serve dynamic and bursty work-
loads, which are difficult to detect online. There have been
some efforts to detect the burstiness in workloads using
offline techniques [12]–[15]. However, online burst detection
will help to improve the autoscaling method for minimizing
response time violations. In this paper, we investigate the use
of different techniques, including Sample Entropy, Normal-
ized Entropy, and Fast Fourier Transformation, for detecting
bursts in dynamic workloads for cloud-hosted applications.

Our proposed burst detection technique uses the last k his-
torical workload observation to detect the burstiness online in
local workload patterns. Equation 4 shows the burst detection
function to identify the burstiness at a current time interval t:

φ : (αt , αt−1, . . . , αt−k+1)→ x̃, where x̃ = {0, 1} (4)

where φ is the burst detection function, {αt , αt−1, . . . ,
αt−k+1} are the last k workload observation which are used to
identify the burstiness, and x̃ is the burst detection decision.
The value of x̃ = 0 shows the current workload observations

73734 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

are not bursty, and x̃ = 1 means the current workload
observations are bursty. We investigate the use of Sample
Entropy (SE), Normalized Entropy (NE), and Fast Fourier
Transformation (FFT) techniques to detect the bursts online.
We explain these methods in the following subsections.

1) SAMPLE ENTROPY (SE)
Sample Entropy is a measure of information which can
be used to detect burst in a given signal and also useful
to identify the uncertainty and randomness in time-series
data. In our proposed method, last k historical workload
observation {αt , αt−1, . . . , αt−k+1} are used to detect the
burstiness. To compute the sample entropy, first we com-
pute {ω1, ω2, . . . , ωk−m+1} sequence vectors of length m in
the given k workload observations. Each sequence vector
ωi = {αi, αi+1, . . . , αi+m−1} where 1 ≤ i ≤ k − m + 1.
Once we have sequece vectors, then we use the Equation 5 to
compute the sample entropy.

SE =

∣∣∣∣−log(ψm+1

ψm

)∣∣∣∣ , (5)

ψm is computed by using following equation:

ψm
=

1
k − m

k−m∑
i=1

1
k − m− 1

ψm
i , (6)

where,

ψm
i =

k−m∑
j=1

Xj, (7)

Xj =

{
1 if d[ωi, ωj] ≤ r
0 otherwise

∀1 ≤ j ≤ k − m and j 6= i,

(8)

where, d[ωi, ωj] is computed using chebyshev distance for-
mula [51]. Sample Entropy depends on two parameters m
and r . m is the length of the sequence in the given workload,
and r is the deviation tolerance or similarity criteria. A large
value of m and a smaller value of r gives sharper peaks in the
given workload. In our evaluations, we refer the online burst
detection technique using Sample Entropy as B_SE.

2) NORMALIZED ENTROPY (NE)
Normalized Entropy is another technique commonly used to
detect noise, bursts, and randomness in a give time-series sig-
nal. In our proposed autoscaling methods, we use normalized
entropy to detect the burstiness in last k historical workload
observations {αt , αt−1, . . . , αt−k+1}. Equation 9 is used to
compute the Normalized Entropy of the last k workload
observations.

HNE = −

∑t
i=t−k+1 pi log pi

log k
, (9)

where pi is the probability of each workload observation
according to all workload observations, which is computed

using the following equation:

pi =
αi∑t

j=t−k+1 αj
. (10)

The value of normalized entropy close to 0 shows that
a given workload is bursty. We compare the normalized
entropy value of the given workload observation window
with the mean of normalized entropy of each previously cal-
culated workload window observations. In our evaluations,
we refer the online burst detection technique using Normal-
ized Entropy as B_NE.

3) FAST FOURIER TRANSFORMATION (FFT)
Fast Fourier Transformation (FFT) is an algorithm to compute
the Discrete Fourier Transformation of a given signal, which
converts the signal from the time domain to the frequency
domain and vice versa. This technique divides a signal into
different frequencies components to analyze the behavior
of the signal. Some researchers use FFT to compute the
burstiness in the offline workloads by considering it as a
signal.

We used FFT in our proposed autoscaling method to detect
the workload burstiness in the last k historical workload
observations {αt , αt−1, αt−2, . . . , αt−k+1}. First, we com-
pute the Fourier components of the given workload signal.
These Fourier components represent the amplitude of dif-
ferent frequencies. Second, we consider the top 80% fre-
quencies as high frequencies and apply inverse FFT over
the high-frequency components to calculate positive values,
which give the burst density metric. These metrics are used
to identify the burstiness and non-burstiness in the work-
load. The percentage of high-frequency is set to 80%. If we
choose less value of high-frequency, then it can not clearly
differentiate between bursty and non-bursty workload. In our
evaluations, we refer the online burst detection technique
using FFT as B_FFT.

C. RESOURCE PREDICTION MODEL
In our proposed system, the resource prediction model is
used to predict the resources instance count n̂ to satisfy the
response time SLO threshold τslo for forecasted workload
α̂t+1. The output of the workload forecasting model, the esti-
mated future workload α̂t+1 and user-defined response time
SLO threshold τslo are used as input in our proposed resource
prediction model. Equation 11 represents the resource predic-
tion model:

δ : (̂αt+1, τslo)→ n̂, (11)

where δ is the resource prediction model which predicts the
number of resource instances used to satisfy the τslo for the
forecasted workload α̂t+1.

We have evaluated different machine learning meth-
ods in the resource prediction model including Linear
Regression (LR), Polynomial Regression (PR), Elastic

VOLUME 8, 2020 73735



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

Net (EN) Regression, Ridge Regression, Lasso Regres-
sion XGBoost (XGB) Regression, Random Decision
Forests (RDF) Regression, and Decision Tree Regres-
sion (DTR). To train the resource prediction model, we used
initial performance traces collected from trace-driven simu-
lation. We conducted a small experiment to obtain the dataset
for the learning of the resources prediction model. We use
reactive autoscaling and increasing workload for the initial
examination for the collection of data set. The response time,
the number of workload requests and the required number of
resources instances are used as the features of the dataset. The
reactive autoscaling method dynamically adds the resource
instance whenever response time saturates for the linearly
increasing workload. We discard all performance traces,
which shows response time saturation from the dataset.
We split the dataset in 80% for training and 20% for testing
to evaluate the model. We select a regression method with a
minimum mean square error (MSE).

Figure 4 shows the MSE of different machine learning
methods to predict the resources required to satisfy τslo.
We observed DTR yields a minimum error compared to other
methods. Therefore, we used DTR in our proposed resource
prediction method. DTR is a supervised machine learning
technique used for regression problems. DTR develop a
rule-based decision tree structure to construct the machine
learning model. It can train with less number of training
dataset and without normalization of data as compared to the
other machine learning techniques. Moreover, DTR performs
better as compared to the other tree-based machine learning
algorithms, for example, RDF, when the dataset has fewer
features.

FIGURE 4. Mean square error of different machine learning methods used
in the resource prediction model. The Decision Tree Regression (DTR)
yields minimum error on test dataset compared to other methods for
identifying the appropriate number of resources to the application.

D. PROPOSED AUTOSCALING METHOD
Algorithm 1 shows the proposed autoscaling method. The
algorithm takes input including monitoring time inter-
val (ξ ), response time SLO threshold (τslo), window size
(k), trained resource prediction model (δ), burst detec-
tion method (φ), and a set of allocated resources to the
application (R).

We used ξ as a monitoring interval to aggregate the
incoming user requests as one workload observation.

Algorithm 1 Proposed Autoscaling Method
Input: Application monitoring interval (ξ ), response time

SLO threshold (τslo), workload window size (k),
resource prediction model (δ), burst detection
method (φ), set of allocated resources to the
application (R)

Output: Updated set of allocated resources to the application
(R)

burstMode← false while true do
Wait for ξ seconds α̂t+1← forecast the workload using
{αt , αt−1, . . . , αt−k+1}

n̂t+1← δ(̂αt+1, τslo) x̃← φ(αt , αt−1, . . . , αt−k+1)
nmax ← Max (̂nt+1, n̂t , . . . , n̂t−k+1)
if x̃ == 1 & burstMode == false then

burstMode = true newResourceCount ← nmax
else if x̃ == 1 & burstMode == true then

newResourceCount ← nmax
else if x̃ == 0 & burstMode == true then

if n̂t+1 <
∣∣R∣∣ then

burstMode ← false newResourceCount ←
nt+1

else
newResourceCount ← nmax

end
else if x̃ == 0 & burstMode == false then

newResourceCount ← nt+1
end
if
∣∣R∣∣ < newResourceCount then
Scale-out {R}

else if
∣∣R∣∣ > newResourceCount then

Scale-in {R}
end

end

For example, ξ = 60 will aggregate the workload observation
on 60 seconds time interval. In each iteration, the autoscal-
ing method waits for ξ seconds and then used the fore-
casting method to identify future workload α̂t+1 using the
last k workload observations {αt , αt−1, . . . , αt−k+1}. After
workload forecasting, the autoscaling method predicts the
required number of resource instances using resource pre-
diction model δ for the forecasted workload α̂t+1 to satisfy
the response time SLO threshold τslo. Then the autoscaling
method uses the burst detection method φ to detect the bursti-
ness. Once the burst decision x̃ is made, then the system
predicts the number of resource instances required to satisfy
τslo. Finally, the predicted number of resource instances n̂t+1
are used to dynamically scale-out or scale-in the application
resources R.
In experimental evaluations, we used application response

time SLO threshold τslo = 200 milliseconds, application
monitoring time interval ξ = 60 seconds, and workload
window size k = 10. A large value of ξ can slow down the
autoscalingmethod to react, and the autoscalingmethodwaits
longer before making a decision. Whereas a smaller value of

73736 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

FIGURE 5. Synthetic workloads used in experimental evaluation.

ξ enables the autoscaling method to react quickly and make
decisions to manage application resources. However, a large
value of ξ ignores the small bursts in the workload. Therefore,
we use ξ = 60 seconds to monitor the application traces
before the autoscaling method triggers. The value of τslo is
also important; a lower value of τslo is challenging to satisfy
by the autoscaling method. In contrast, the larger value of
τslo is easier to ensure by the autoscaling method for web
applications. We set τslo = 200ms, which is reasonable for
a typical web application to offer as a response time service
level objective (SLO). The value of k also affects the autoscal-
ing method for the workload forecasting and burst detection.
A smaller value of k may not sufficient for forecasting model
and burst detection method, whereas a large value of k will
ignore local and small bursts. We use k = 10, which is
reasonable to train the forecasting model and burst detection
method.

IV. EXPERIMENTAL SETUP AND DESIGN
We evaluate the proposed autoscaling method through a
trace-driven simulation for a benchmark application and also
validate the simulation results through experiments on a real
testbed infrastructure. We compared the effectiveness of the
proposed solution with multiple existing baseline autoscal-
ing methods under different synthetic and real workloads.
We explained the benchmark application, workloads used in
evaluation, baseline autoscaling methods used to compare
the proposed system, trace-driven simulation environment,
and validation infrastructure and experiments in the following
subsections.

A. BENCHMARK APPLICATION
Nowadays, most of the applications are embedding intelli-
gence usingMachine Learning (ML)models. TheMLmodels
need historical data to train before providing intelligence in
the applications. Therefore, to emulate a machine learning
workload, we used a regression-based supervised machine
learning algorithm (Support Vector Regression) to train on
IoT data of size 200K. The dataset consists of time-series
data obtained from IoT devices that capture temperature data.
The benchmark application is a web application that pro-
cesses each request by first training the SVR model and
then predicts the temperature for the next interval as HTML

output. This benchmark application emulates a typical
CPU-bound workload.

B. WORKLOADS
In our experimental evaluations, we used four synthetic and
five real workloads. Figure 5 shows the synthetic work-
load 1 (W1), synthetic workload 2 (W2), synthetic workload
3 (W3), and synthetic workload 4 (W4) reflecting different
burstiness behaviors. Whereas Figure 6 shows FIFA World
Cup [52], web traces of Wikipedia [53], Calgary University
web server traces, web traces of NASA’s Kennedy Space
Center web server, and web traces of ClarkNet web server,
which are real workloads used in our experimental evaluation.
All of these real workload traces are available publicly.1

C. BASELINE AUTOSCALING
We use multiple baseline autoscaling methods to compare
and evaluate the proposed autoscaling method. We use two
state-of-the-art autoscaling methods, namely React and Pre-
dict, used as baseline methods. The React [54] is a reactive
autoscaling method that uses a predefined set of rules to
scale-out and scale-in the application resources automati-
cally. The React scale-out the application resources when-
ever the response time of the application increase from the
user-defined threshold and the React scale-in the application
resources whenever the response time of the last three time
interval of the application decreases from the half of the
user-defined threshold. The Predict [36] autoscaling method
is a recent work that uses a predictive resources provisioning
model to identify the required number of resources to satisfy
the response time requirements using a forecasted workload
and adjust the resources accordingly.

D. TRACE-DRIVEN SIMULATION
We evaluate the proposed autoscaling method using a
trace-driven simulation presented in our recent work [36].
For a trace-driven simulation, we model the response time
of the benchmark application. We then use the model to
identify the application behavior on different workloads and
use autoscaling algorithms to manage the allocated resources
dynamically. We evaluated three different burst detection

1The Internet Traffic Archive, http://ita.ee.lbl.gov/index.html

VOLUME 8, 2020 73737



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

FIGURE 6. Real workloads used in experimental evaluation.

techniques with our proposed autoscaling method to detect
the burstiness, as explained in Section III-B. We evaluated
the proposed solution under nine different workloads and
compared it with two state-of-the-art autoscaling method.

E. VALIDATION INFRASTRUCTURE AND EXPERIMENT
To validate our proposed autoscaling method, we performed
experiments on a Docker Swarm testbed Cluster [55]. The
testbed cluster consist of four core i7 physical machines
with 8-cores CPU, 16 GB physical memory and 2 TB disk.
We configured three physical machines as Docker swarm
worker nodes and one physical machine configured asDocker
swarm manager node. We can run a maximum of 12 contain-
ers instances simultaneously with one-core CPU and 2 GB
physical memory on the testbed cluster.

To validate the proposed solution on the real testbed,
we used the Clarknet workload to study the effectiveness of
the proposed autoscaling method. We compared the results
with React and Predict baseline autoscaling methods. For
the validation experiment, we generated the workload using
httperf [56] for the benchmark application.

F. EVALUATION METRICS
To evaluate the proposed method and compared it with base-
line methods, we compute total processed requests, response
time SLO violations, and the number of scale operations for
each experiment.

i. Total process requests shows the number of requests
served by the application for a given workload. The
autoscaling method yields higher total process requests
is considered better as it shows that maximum possible
requests are served and less requests are rejected com-
pared to the other autoscaling methods.

ii. Response time SLO violations refer to the number of
requests takes higher response time as compared to
the expected response time threshold. The autoscaling
method yield low number of SLO violations are consid-
ered better.

iii. The number of scale operations refers to the num-
ber of scaling decisions performed by the autoscaling
method to dynamically add or remove the resources. The
autoscaling method yield scale operations are considered

better as it will use less number of instances and will
incur less operational cost.

V. EXPERIMENTAL RESULTS
Table 2 summarizes the experimental results of React, Pre-
dict, and the proposed autoscaling method using B_SE,
B_NE, and B_FFT burst detection techniques under differ-
ent synthetic and realistic workloads. For each experiment,
we computed the total number of processed requests, the total
number of response time SLO violations, and the total num-
ber of scale operations for all workloads and autoscaling
methods. The autoscaling method yields the maximum num-
ber of processed requests, the minimum number of SLO
violations, and the minimum number of scale operations are
considered the best. The experimental evaluations show that
the proposed autoscaling method using burst detection tech-
niques outperform the baseline autoscaling methods. Over-
all, the proposed autoscaling method using B_SE techniques
shows better performance by minimizing SLO violations,
maximizing number of processed requests, and minimizing
the scale operations.

To explain the effectiveness of the proposed autoscaling
method, we show the box plot of application response time for
all experiments. Figure 7 and 8 show the box plot of response
time using each autoscaling method with synthetic and real
workloads respectively. Figures show that the application
response time with burst detection techniques is less as com-
pared to the other autoscalingmethodwithout burst detection.
Moreover, Sample Entropy-based burst detection technique
(B_SE) performs better as compared to the other two burst
detection techniques during the experiments to minimize the
response time violations.

Figure 9 shows the application response time and the
dynamic allocation of resource instances of each time interval
during the experiments using different autoscaling meth-
ods under the W4 synthetic workload. We use 200ms as a
response time SLO threshold. The figure shows the response
time SLO violations are high using the baseline methods
(React and Predict) as compared to the autoscaling with
burst detection techniques. Moreover, Sample Entropy-based
burst detection technique (B_SE) outperforms other
autoscaling methods to minimize the response time SLO
violations.

73738 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

TABLE 2. Percentage of the total number of processed requests, percentage of total SLO violations, and the total number of scale operations for all
workloads using baselines and the proposed autoscaling method using B_SE, B_NE, and B_FFT burst detection techniques.

FIGURE 7. Box plot for application response time using different autoscaling methods under synthetic
workloads.

FIGURE 8. Box plot for application response time using different autoscaling methods under real
workloads.

Figure 10 shows the application response time and the
dynamic allocation of resource instances in each time interval
using different autoscaling methods under the Calgary work-
load. This figure shows the response time SLO violations
are higher using the React and the Predict baseline methods
as compared to the proposed autoscaling with burst detec-
tion techniques. Moreover, B_SE burst detection outperforms
other burst detection techniques.

Figure 11 shows the comparison of processed requests,
SLO violations, and scale operations for autoscaling methods
relative to the React baseline autoscaling method using real
workloads. These results show that the Sample Entropy-based
(B_SE) predictive autoscaling method outperforms other
methods. B_SE yield 0.1×, 0.12×, 0.1×, 0.12×, and 0.2×
times higher total number of requests as compared to the reac-
tive autoscaling method for Calgary, World cup, Wikipedia,

VOLUME 8, 2020 73739



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

FIGURE 9. Experimental results showing application response time and
the dynamic allocation of instances for each time interval using React,
Predict, and the proposed autoscaling using B_SE, B_NE, and B_FFT burst
detection techniques under the W4 synthetic workload.

FIGURE 10. Experimental results showing application response time and
the dynamic allocation of instances for each time interval using React,
Predict, and the proposed autoscaling using B_SE, B_NE, and B_FFT burst
detection techniques under the Calgary workload.

ClarkNet and NASA workloads respectively. Moreover,
B_SE yield 0.84×, 0.97×, 0.6×, 0.98× and 0.98× times
less number of response time SLO violations as compared
to the reactive autoscaling method for Calgary, World cup,
Wikipedia, ClarkNet and NASA workloads respectively.
Whereas, the scale operations count is also minimized by
0.9×, 0.8×, 0.7×, 0.9×, and 0.9× times for the B_SE
as compared to the reactive autoscaling method using Cal-
gary, World cup, Wikipedia, ClarkNet and NASA workloads
respectively.

To study the cost of using different autoscaling methods,
we used 0.0014$ per minute cost for each instance similar to

FIGURE 11. Comparison of processed requests, SLO violations, and scale
operations for autoscaling methods relative to the React baseline
autoscaling method using real workloads.

AWS c5.large instance. Figure 12 shows the cost comparison
of autoscaling methods relative to the React baseline method
for synthetic workloads. B_SE yields 58%, 186%, 67%, and
76% more cost as compared to reactive autoscaling method
for W1, W2, W3, and W4 workloads respectively. B_NE
yields 6%, 30%, 11%, and 1% more cost as compared to
baseline for W1, W2, W3, and W4 workloads respectively.
B_FFT method takes 13% and 4% more cost as compared
to reactive for W2 and W3 workload. Whereas for W1 and
W4 B_FFT takes 1% and 9% less cost as compared to the
reactive baseline method.

Figure 13 shows the cost comparison of autoscaling meth-
ods relative to the React baseline method for real work-
loads. B_SE yields 58%, 31%,74%, 85%, and 147% more
cost as compared to reactive autoscaling method for World
Cup, Wikipedia, Calgary, ClarkNet and NASA workloads
respectively. B_NE yields 58%, 12%, 72%, 67%, and 145%
more cost as compared to baseline forWorld Cup,Wikipedia,
Calgary, ClarkNet andNASAworkloads respectively. B_FFT
method yields 58%, 5%, 22%, 19%, and 43% more cost as
compared to baseline for World Cup, Wikipedia, Calgary,
ClarkNet, and NASA workloads respectively.

To summarize the effectiveness of the proposed solution,
we computed the average percentage relative to the React
baseline method using the results of all workloads. We used
B_SE as a burst detection technique in the proposed autoscal-
ing method. Figure 14 shows the average percentage rela-
tive to the React baseline method for Predict and proposed
autoscaling methods. The proposed solution shows a 9.65%
average increase in the total number of processed requests as
compare to the React baseline method. Moreover, it yields
an average of 60.8% less response time SLO violations and
61.0% fewer scale operations using results of all workloads
as compare to the React baseline method.

73740 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

FIGURE 12. Comparison of cost using different autoscaling methods to satisfy response time SLO requirements under synthetic workloads.

FIGURE 13. Comparison of cost using different autoscaling methods to satisfy response time SLO requirements under real workloads.

FIGURE 14. The average percentage of total processed requests,
response time SLO violations, and scale operations for all workloads
results relative to the React baseline for the proposed (B_SE) and
predictive autoscaling method.

A. VALIDATION ON CONTAINERIZED TESTBED
To validate our trace-driven simulation results, we performed
experiments on a containerized testbed cluster, as explained
in Section IV-E. We compare the proposed autoscaling
method using B_SE burst detection techniquewith both of the
baseline autoscaling methods under ClarkNet’s real workload
traces.

Table 3 shows the percentage of total processed requests,
percentage of response time SLO violations, and scale oper-
ations count during the validation experiments using React,
Predict, and the proposed autoscaling methods for the bench-
mark application. The proposed autoscaling method yields a

higher number of processed requests, minimizes the response
time SLO violations, and also uses a fewer number of scale
operations to satisfy the response time requirements com-
pared to the baseline methods.

Figure 15 shows the comparison of the total number of
processed requests, response time SLO violations, and scale
operation for the validation experiments using the proposed
and baseline autoscaling methods. The proposed autoscaling
method outperforms the baseline methods to minimize the
SLO violations, maximize the number of processed requests,
and minimize the scale operations. The number of process
requests during the proposed autoscaling method increases
0.10× times as compare to reactive autoscaling. The pro-
posed autoscaling method yields 0.95× fewer response time
SLO violations and 0.30× less scale operations as compared
to the React baseline autoscaling method.

1) HYPOTHESIS TESTING
To determine the statistical evidence for the obtained results,
we designed the two sets of hypotheses. The first set of
hypothesis is related to the SLO violations for the comparison
of the proposed and the baseline algorithms.

H0a : µ1 = µ2

H1a : µ1 > µ2

The second set of hypothesis is related to the feature Pro-
posed Requests as

H0b : µ3 = µ4

H1b : µ3 < µ4

VOLUME 8, 2020 73741



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

TABLE 3. Percentage of the total number of processed requests, percentage of total SLO violations, and the total number of scale operations for ClarkNet
real workload using baselines and the proposed autoscaling method with B_SE burst detection technique under validation experiment.

FIGURE 15. Comparison of processed requests, SLO violations, and scale operations for autoscaling methods relative to the React
baseline autoscaling method using ClarkNet real workload under validation experiment.

1) µ1 : The population mean for the SLO violations of the
baseline method.

2) µ2 : The population mean for the SLO violations of the
proposed method.

3) µ3 : The population mean for the Processed Requests of
the baseline method.

4) µ4 : The population mean for the Processed Requests of
the proposed method.

The level of significance is set at α = 0.05. We rejected the
null hypothesis (H0 or H0b) when the p-value based on the
paired t-test is less than 0.05 for any specific feature. The null
hypothesisH0a for the first set of the hypothesis is rejected for
the Average SLO violations count as the p-value is less than
0.05 for this feature as described in Table 4. It means that
the average SLO violations count for the baseline methods is
greater than the proposed method.

TABLE 4. Statistical comparison of the proposed algorithm based on SLO
violations count and processed requests with the baseline algorithms.

We rejected the null hypothesis H0b for the second set
of the hypothesis for the feature Processed Requests as the

p-value is less than 0.05, as described in Table 4. It means
that one of the baseline algorithm React’s average Pro-
cessed Requests is less than the proposed algorithm. On the
other hand, we failed to reject the null hypothesis H0b
for one of the baseline algorithm Predictive as it’s p-value
is greater than 0.05. It means that there is no significant
difference between one of the baseline method (Predic-
tive) and the proposed method for the feature Processed
Requests. The hypothesis analysis proved the superiority of
our method for both the features compared to the baseline
algorithms.

B. DISCUSSION
Typical autoscalingmethods dynamically provision the appli-
cation resources without explicitly considering the burstiness
in the incoming application workload. The bursty workloads
degrade the application performance significantly, even in the
presence of traditional autoscaling methods. The proposed
autoscaling method detects the bursts in workload automat-
ically and then use the burst detection decision to manage
the application resources for minimizing the response time
SLO violations. Our solution is capable of identifying the
bursty traffic, which is frequently changing, and then disable
the scale-in decisions and only performs predictive scale-out
operations during the burst. This reduces the oscillation in
scale operations and helps tominimize the response time SLO
violations. The proposed autoscaling enhances the applica-
tion performance by maximizing the number of processed
requests and minimizing the response time SLO violations
under real and synthetic bursty workloads compared to the
existing autoscaling methods.

73742 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

For the validation experiment on a containerized testbed
infrastructure, the proposed autoscaling method increase
0.10× processed request, minimized 0.95× response time
SLO violations, and 0.30× less scale operations as compared
to the React baseline autoscaling. The proposed autoscaling
method will be helpful in handling the workloads containing
burstiness gracefully compared to the existing autoscaling
methods. Moreover, the proposed method yields an average
of 60.8% decrease in the number of SLO violations as com-
pared to the baseline methods by efficiently handling the
burstiness.

VI. CONCLUSION AND FUTURE WORK
Nowadays, cloud-hosted applications face dynamic and
bursty workloads, and autoscaling methods are used to main-
tain the performance of cloud-hosted applications. However,
bursty workloads degrade application performance because
the existing autoscaling methods do not explicitly handle
the bursts. In this paper, we proposed an efficient predictive
autoscaling method which is capable of detecting bursts in
dynamic workloads. The detected burst is incorporate in the
autoscaling method to satisfy a specific response time SLO
requirements. Our extensive evaluation using simulations
and then validation experiments on a real testbed show the
effectiveness of the proposed method by outperforming the
existing state-of-the-art autoscaling methods. The proposed
solution will be helpful to ensure application performance in
the presence of bursty workloads.

Currently, we are extending our work by investigating
the use of multi-objective optimization techniques to ensure
response time SLO requirements with minimal cost. In the
future, we also plan to improve the proposed method by
predicting the bursts to eliminate the chances of response time
SLO violations.

ACKNOWLEDGMENT
The authors would like to thank Prince Sultan University,
Riyadh, Saudi Arabia, for partially supporting this work.

REFERENCES
[1] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, ‘‘Elastic load balancing

for dynamic virtual machine reconfiguration based on vertical and horizon-
tal scaling,’’ IEEE Trans. Services Comput., vol. 12, no. 2, pp. 319–334,
Mar. 2019.

[2] V. Hayyolalam and A. A. P. Kazem, ‘‘A systematic literature review
on QoS-aware service composition and selection in cloud environment,’’
J. Netw. Comput. Appl., vol. 110, pp. 52–74, May 2018.

[3] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev, ‘‘Chameleon:
A hybrid, proactive auto-scaling mechanism on a level-playing field,’’
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 4, pp. 800–813, Apr. 2019.

[4] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, ‘‘Providing
performance guarantees for cloud-deployed applications,’’ IEEE Trans.
Cloud Comput., vol. 8, no. 1, pp. 269–281, Jan. 2020.

[5] W. Iqbal, M. Dailey, and D. Carrera, ‘‘SLA-driven adaptive resource
management for Web applications on a heterogeneous compute cloud,’’
in Proc. IEEE Int. Conf. Cloud Comput. Berlin, Germany: Springer, 2009,
pp. 243–253.

[6] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai, ‘‘Optimal
autoscaling in a IaaS cloud,’’ in Proc. 9th Int. Conf. Auton. Comput.
(ICAC), 2012, pp. 173–178.

[7] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, ‘‘Predictive
auto-scaling of multi-tier applications using performance varying cloud
resources,’’ IEEE Trans. Cloud Comput., early access, Sep. 27, 2019, doi:
10.1109/TCC.2019.2944364.

[8] C. Qu, R. N. Calheiros, and R. Buyya, ‘‘Auto-scaling Web applications
in clouds: A taxonomy and survey,’’ ACM Comput. Surv., vol. 51, no. 4,
pp. 1–33, Sep. 2018.

[9] L. Aniello, S. Bonomi, F. Lombardi, A. Zelli, and R. Baldoni, ‘‘An architec-
ture for automatic scaling of replicated services,’’ in Networked Systems.
Cham, Switzerland: Springer, 2014.

[10] R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente,
‘‘Efficient resource provisioning for elastic cloud services based on
machine learning techniques,’’ J. Cloud Comput., vol. 8, no. 1, p. 5,
Dec. 2019.

[11] W. Iqbal, M. N. Dailey, and D. Carrera, ‘‘Unsupervised learning of
dynamic resource provisioning policies for cloud-hosted multitier Web
applications,’’ IEEE Syst. J., vol. 10, no. 4, pp. 1435–1446, Dec. 2016.

[12] T. N. Minh, L. Wolters, and D. Epema, ‘‘A realistic integrated model of
parallel system workloads,’’ in Proc. 10th IEEE/ACM Int. Conf. Cluster,
Cloud Grid Comput., May 2010, pp. 464–473.

[13] A. Ali-Eldin, O. Seleznjev, S. S.-D. Luna, J. Tordsson, and E. Elmroth,
‘‘Measuring cloudworkload burstiness,’’ inProc. IEEE/ACM7th Int. Conf.
Utility Cloud Comput., Dec. 2014, pp. 566–572.

[14] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, ‘‘CloudScale: Elastic resource
scaling for multi-tenant cloud systems,’’ in Proc. 2nd ACM Symp. Cloud
Comput. (SOCC), New York, NY, USA, 2011, pp. 5:1–5:14.

[15] A. Adegboyega, ‘‘Quantifying cloud workload burstiness: New measures
and models,’’ in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage.
(IM), May 2017, pp. 987–990.

[16] D. Perez-Palacin, R. Mirandola, and J. Merseguer, ‘‘Accurate modeling
and efficient QoS analysis of scalable adaptive systems under bursty
workload,’’ J. Syst. Softw., vol. 130, pp. 24–41, Aug. 2017.

[17] R. Khorsand, M. Ghobaei-Arani, and M. Ramezanpour, ‘‘A self-learning
fuzzy approach for proactive resource provisioning in cloud environment,’’
Softw., Pract. Exper., vol. 49, no. 11, pp. 1618–1642, Nov. 2019.

[18] R. Khorsand, M. Ghobaei-Arani, and M. Ramezanpour, ‘‘FAHP approach
for autonomic resource provisioning of multitier applications in cloud
computing environments,’’ Softw., Pract. Exper., vol. 48, no. 12,
pp. 2147–2173, Dec. 2018.

[19] M. Ghobaei-Arani, R. Khorsand, and M. Ramezanpour, ‘‘An autonomous
resource provisioning framework for massively multiplayer online games
in cloud environment,’’ J. Netw. Comput. Appl., vol. 142, pp. 76–97,
Sep. 2019.

[20] E. Rafieyan, R. Khorsand, and M. Ramezanpour, ‘‘An adaptive scheduling
approach based on integrated best-worst and VIKOR for cloud comput-
ing,’’ Comput. Ind. Eng., vol. 140, Feb. 2020, Art. no. 106272.

[21] M. Balaji, C. A. Kumar, and G. S. V. R. K. Rao, ‘‘Non-linear analysis
of bursty workloads using dual metrics for better cloud resource manage-
ment,’’ J. Ambient Intell. Hum. Comput., vol. 10, no. 12, pp. 4977–4992,
Dec. 2019.

[22] M. C. Calzarossa, L. Massari, and D. Tessera, ‘‘Evaluation of cloud
autoscaling strategies under different incoming workload patterns,’’
Concurrency Comput., Pract. Exper., p. e5667, Jan. 2020, doi:
10.1002/cpe.5667.

[23] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, ‘‘An autonomic
resource provisioning approach for service-based cloud applications:
A hybrid approach,’’ Future Gener. Comput. Syst., vol. 78, pp. 191–210,
Jan. 2018.

[24] M. S. Aslanpour, S. E. Dashti, M. Ghobaei-Arani, and A. A. Rahmanian,
‘‘Resource provisioning for cloud applications: A 3-D, provident and flexi-
ble approach,’’ J. Supercomput., vol. 74, no. 12, pp. 6470–6501, Dec. 2018.

[25] M. Ghobaei-Arani, A. Souri, T. Baker, and A. Hussien, ‘‘ControC-
ity: An autonomous approach for controlling elasticity using buffer
management in cloud computing environment,’’ IEEE Access, vol. 7,
pp. 106912–106924, 2019.

[26] M. S. Aslanpour, M. Ghobaei-Arani, and A. N. Toosi, ‘‘Auto-scaling Web
applications in clouds: A cost-aware approach,’’ J. Netw. Comput. Appl.,
vol. 95, pp. 26–41, Oct. 2017.

[27] J. Chen and Y.Wang, ‘‘A hybrid method for short-term host utilization pre-
diction in cloud computing,’’ J. Electr. Comput. Eng., vol. 2019, pp. 1–14,
Mar. 2019.

[28] S.-U.-R. Baig, W. Iqbal, J. L. Berral, and D. Carrera, ‘‘Adaptive sliding
windows for improved estimation of data center resource utilization,’’
Future Gener. Comput. Syst., vol. 104, pp. 212–224, Mar. 2020.

VOLUME 8, 2020 73743

http://dx.doi.org/10.1109/TCC.2019.2944364
http://dx.doi.org/10.1002/cpe.5667


F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

[29] H. Liu and S. Wee, ‘‘Web server farm in the cloud: Performance evaluation
and dynamic architecture,’’ in Proc. 1st Int. Conf. Cloud Comput. (Cloud-
Com). Berlin, Germany: Springer-Verlag, 2009, pp. 369–380.

[30] M. T. Krieger, O. Torreno, O. Trelles, and D. Kranzlmüller, ‘‘Building an
open source cloud environment with auto-scaling resources for executing
bioinformatics and biomedical workflows,’’ Future Gener. Comput. Syst.,
vol. 67, pp. 329–340, Feb. 2017.

[31] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, ‘‘Dynamic scaling of
Web applications in a virtualized cloud computing environment,’’ in Proc.
IEEE Int. Conf. e-Bus. Eng., Oct. 2009, pp. 281–286.

[32] B. Liu, R. Buyya, and A. N. Toosi, ‘‘A fuzzy-based auto-scaler for
Web applications in cloud computing environments,’’ in Proc. Int.
Conf. Service-Oriented Comput. Cham, Switzerland: Springer, 2018,
pp. 797–811.

[33] M. Abdullah, W. Iqbal, and A. Erradi, ‘‘Unsupervised learning approach
for Web application auto-decomposition into microservices,’’ J. Syst.
Softw., vol. 151, pp. 243–257, May 2019.

[34] E. G. Radhika, G. S. Sadasivam, and J. F. Naomi, ‘‘An efficient predictive
technique to autoscale the resources forWeb applications in private cloud,’’
in Proc. 4th Int. Conf. Adv. Electr., Electron., Inf., Commun. Bio-Inform.
(AEEICB), Feb. 2018, pp. 1–7.

[35] B. R. Raghunath and B. Annappa, ‘‘Dynamic resource allocation using
fuzzy prediction system,’’ in Proc. 3rd Int. Conf. Converg. Technol. (ICT),
Apr. 2018, pp. 1–6.

[36] M. Abdullah, W. Iqbal, A. Erradi, and F. Bukhari, ‘‘Learning predictive
autoscaling policies for cloud-hosted microservices using trace-driven
modeling,’’ in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci. (Cloud-
Com), Dec. 2019, pp. 119–126.

[37] R. Khorsand and M. Ramezanpour, ‘‘An energy-efficient task-scheduling
algorithm based on a multi-criteria decision-making method in cloud
computing,’’ Int. J. Commun. Syst., vol. 33, no. 9, p. e4379, Mar. 2020.

[38] M. Safari and R. Khorsand, ‘‘Energy-aware scheduling algorithm for time-
constrained workflow tasks in DVFS-enabled cloud environment,’’ Simul.
Model. Pract. Theory, vol. 87, pp. 311–326, Sep. 2018.

[39] M. A. Attia, M. Arafa, E. A. Sallam, and M. M. Fahmy, ‘‘Application
of an enhanced self-adapting differential evolution algorithm to workload
prediction in cloud computing,’’ Int. J. Inf. Technol. Comput. Sci., vol. 11,
no. 8, pp. 33–40, Aug. 2019.

[40] W. Iqbal, A. Erradi, and A. Mahmood, ‘‘Dynamic workload patterns pre-
diction for proactive auto-scaling of Web applications,’’ J. Netw. Comput.
Appl., vol. 124, pp. 94–107, Dec. 2018.

[41] N. Roy, A. Dubey, and A. Gokhale, ‘‘Efficient autoscaling in the cloud
using predictive models for workload forecasting,’’ in Proc. IEEE 4th Int.
Conf. Cloud Comput., Jul. 2011, pp. 500–507.

[42] S. Zhang, Z. Qian, Z. Luo, J. Wu, and S. Lu, ‘‘Burstiness-aware resource
reservation for server consolidation in computing clouds,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 4, pp. 964–977, Apr. 2016.

[43] C. Zhang, S. Zhang, C. Lei, and P. Lin, ‘‘Burstiness in query log: Web
search analysis by combining global and local evidences,’’ in Proc. IEEE
34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 1388–1391.

[44] R. Al Tamime, R. Giordano, and W. Hall, ‘‘Observing burstiness in
wikipedia articles during new disease outbreaks,’’ in Proc. 10th ACMConf.
Web Sci., May 2018, pp. 117–126.

[45] S. Benmakrelouf, C. St-Onge, N. Kara, H. Tout, C. Edstrom, and
Y. Lemieux, ‘‘Abnormal behavior detection using resource level to service
level metrics mapping in virtualized systems,’’ Future Gener. Comput.
Syst., vol. 102, pp. 680–700, Jan. 2020.

[46] P. Singh, P. Gupta, and K. Jyoti, ‘‘TASM: Technocrat ARIMA and SVR
model for workload prediction of Web applications in cloud,’’ Cluster
Comput., vol. 22, no. 2, pp. 619–633, Jun. 2019.

[47] D. Janardhanan and E. Barrett, ‘‘CPU workload forecasting of machines
in data centers using LSTM recurrent neural networks and ARIMA mod-
els,’’ in Proc. 12th Int. Conf. Internet Technol. Secured Trans. (ICITST),
Dec. 2017, pp. 55–60.

[48] S. Sharifian and M. Barati, ‘‘An ensemble multiscale wavelet-GARCH
hybrid SVR algorithm for mobile cloud computing workload prediction,’’
Int. J. Mach. Learn. Cybern., vol. 10, no. 11, pp. 3285–3300, Nov. 2019.

[49] J. Kumar and A. K. Singh, ‘‘Workload prediction in cloud using artificial
neural network and adaptive differential evolution,’’ Future Gener. Com-
put. Syst., vol. 81, pp. 41–52, Apr. 2018.

[50] Z. Zhang, Z. Lai, Y. Xu, L. Shao, J. Wu, and G.-S. Xie, ‘‘Discriminative
elastic-net regularized linear regression,’’ IEEE Trans. Image Process.,
vol. 26, no. 3, pp. 1466–1481, Mar. 2017.

[51] S. Gultom, S. Sriadhi, M. Martiano, and J. Simarmata, ‘‘Comparison
analysis of K-means and K-medoid with ecluidience distance algorithm,
chanberra distance, and chebyshev distance for big data clustering,’’ IOP
Conf. Ser., Mater. Sci. Eng., vol. 420, Oct. 2018, Art. no. 012092.

[52] M. Arlitt and T. Jin. (Aug. 1998). 1998 World Cup Web Site Access Logs.
[Online]. Available: http://www.acm.org/sigcomm/ITA/

[53] G. Urdaneta, G. Pierre, and M. van Steen, ‘‘Wikipedia workload analysis
for decentralized hosting,’’ Comput. Netw., vol. 53, no. 11, pp. 1830–1845,
Jul. 2009.

[54] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, ‘‘Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,’’ Future
Gener. Comput. Syst., vol. 27, no. 6, pp. 871–879, Jun. 2011.

[55] F. Soppelsa and C. Kaewkasi, Native Docker Clustering With Swarm.
Birmingham, U.K.: Packt, 2017.

[56] D. Mosberger and T. Jin, ‘‘Httperf: A tool for measuring Web server
performance,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3,
pp. 31–37, Dec. 1998.

FATIMA TAHIR received the B.S. degree in
software engineering from the University of the
Punjab, Lahore, Pakistan, in 2018, where she is
currently pursuing the M.Phil. degree in computer
science. Her research interests include cloud com-
puting, machine learning, system management,
and distributed computing.

MUHAMMAD ABDULLAH received the B.S.
and M.Phil. degrees in computer science from
the University of the Punjab, Lahore, Pakistan,
in 2014 and 2016, respectively, where he is cur-
rently pursuing the Ph.D. degree in computer
science. He is currently a Lecturer with the
Punjab University College of Information Tech-
nology, University of the Punjab. His research
interests include cloud computing, machine learn-
ing, scalable applications, and system performance
management.

FAISAL BUKHARI received the M.S. and Ph.D.
degrees in computer science from the Asian Insti-
tute of Technology (AIT), Thailand, and the M.Sc.
degree in statistics and the M.Sc. degree in com-
puter science from University of the Punjab (PU),
Lahore, Pakistan. He is currently an Assistant
Professor with the Punjab University College of
Information Technology (PUCIT), PU, and also
supervising the Imaging and Data Science Lab-
oratory. His research interests include computer

vision, image processing, data science, and machine learning.

73744 VOLUME 8, 2020



F. Tahir et al.: Online Workload Burst Detection for Efficient Predictive Autoscaling of Applications

KHALED MOHAMAD ALMUSTAFA (Associate
Member, IEEE) received the B.E.Sc. degree in
electrical engineering, and the M.E.Sc. and Ph.D.
degrees in wireless communication from the Uni-
versity of Western Ontario, London, ON, Canada,
in 2003, 2004, and 2007 respectively. He was a
General Supervisor of the Information Technol-
ogy and Computer Services Center (ITCS), Prince
Sultan University (PSU), Riyadh, Saudi Arabia,
the Chairman of the Department of Communica-

tion and Networks Engineering (CME), PSU, and the Vice Dean of the
College of Engineering, PSU. He is currently working as an Associate
Professor with the Department of Information Systems (IS), College of
Computer Science and Information Systems (CCIS), PSU, and the Direc-
tor of the Research and Initiatives Center. His research interests include
error performance evaluation of MIMO communication systems in partially
known channels, adaptive modulation, and channel security, text recognition
models, control systems with renewable energy applications as well as
features selections and data prepossessing.

WAHEED IQBAL (Member, IEEE) received the
dual master’s degrees in computer science and
information technology from the Asian Institute
of Technology and the Technical University of
Catalonia (UPC), Barcelona, Spain, in 2009, and
the Ph.D. degree in computer science from the
Asian Institute of Technology, Bangkok, Thailand,
in 2012. Hewas a Postdoctoral Researcher with the
College of Engineering, Qatar University, Doha,
Qatar, from 2017 to 2018. Since 2014, he has been

an Assistant Professor with the Punjab University College of Information
Technology, University of the Punjab, Lahore, Pakistan. His research inter-
ests include big data, cloud computing, distributed systems, and machine
learning.

VOLUME 8, 2020 73745


