
Received March 18, 2020, accepted April 14, 2020, date of publication April 16, 2020, date of current version May 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988379

Area-Time Efficient Hardware Implementation
of Modular Multiplication for Elliptic
Curve Cryptography
MD. MAINUL ISLAM 1, (Graduate Student Member, IEEE),
MD. SELIM HOSSAIN 2, (Member, IEEE),
MD. SHAHJALAL 1, (Student Member, IEEE),
MOH. KHALID HASAN 1, (Member, IEEE),
AND YEONG MIN JANG 1, (Member, IEEE)
1Department of Electronics Engineering, Kookmin University, Seoul 02707, South Korea
2Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

Corresponding author: Yeong Min Jang (yjang@kookmin.ac.kr)

This research was supported by the Ministry of Science and ICT (MSIT), South Korea, under the Information Technology Research Center
(ITRC) support program (IITP-2018-0-01396) supervised by the Institute for Information and Communication Technology Promotion
(IITP).

ABSTRACT In this paper, an area-time efficient hardware implementation of modular multiplication over
five National Institute of Standard and Technology (NIST)-recommended prime fields is proposed for
lightweight elliptic curve cryptography (ECC). A modified radix-2 interleaved algorithm is proposed to
reduce the time complexity of conventional interleaved modular multiplication. The proposed multiplication
algorithm is designed in hardware and separately implemented on Xilinx Virtex-7, Virtex-6, Virtex-5, and
Virtex-4 field-programmable gate array (FPGA) platforms. On the Virtex-7 FPGA, the proposed design
occupies only 1151, 1409, 1491, 2355, and 2496 look up tables (LUTs) and performs single modular
multiplication in 0.93 µs, 1.18 µs, 1.45 µs, 2.80 µs, and 4.69 µs with maximum clock frequencies
of 207.1 MHz, 190.7 MHz, 177.3 MHz, 137.6 MHz, and 111.2 MHz over five NIST prime fields of size
192, 224, 256, 384, and 521 bits, respectively. The hardware implementations on the Virtex-6, Virtex-5,
and Virtex-4 FPGAs also show that the proposed design is highly efficient in terms of hardware resource
utilization and area-delay product compared with other designs for modular multiplication.

INDEX TERMS Modular multiplication, interleaved multiplication, elliptic curve cryptography.

I. INTRODUCTION
Elliptic curve cryptography (ECC), a public key cryp-
tography (PKC), has become a buzzword in the fields of
network security, digital signatures, and radio frequency
identification (RFID) [1]–[3]. It has emerged as an opti-
mum solution for high-speed data encryption and energy
efficient node authentication in wireless sensor networks
(WSNs) [4]–[6]. The main advantage of ECC is that it
uses smaller key size compared with other PKC such as
RSA to provide equivalent security strength. ECC can be
implemented on both hardware and software platforms,
where hardware implementation provides better performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

than microcontroller-based software implementation [7].
Hardware-based ECC is more power efficient and can pro-
vide significant security improvements compared to software
approach. Over the past few years, field-programmable gate
array (FPGA)-based ECC schemes have been drawing exten-
sive attention of security researchers by offering a number
of advantages over other software-based cryptographic plat-
forms. Their re-programmability, reconfigurability, optimiza-
tion capability, lower latency, and higher throughput make
them more convenient for the IoT security.

The first level of an ECC hierarchy contains finite
field arithmetic such as addition, subtraction, multiplica-
tion, squaring, and inversion, which can be performed over
either a Galois binary field GF(2m) or a Galois prime field
GF(p) [1], where m is the order of the binary field and p is a

73898 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9686-5994
https://orcid.org/0000-0003-3754-3618
https://orcid.org/0000-0002-4876-6860
https://orcid.org/0000-0002-7773-3523
https://orcid.org/0000-0002-9963-303X
https://orcid.org/0000-0003-0586-090X

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

prime number. Although the hardware implementation of
ECC over GF(2m) is faster than that over GF(p), it is less
flexible for variable field sizes [8]. However, multiplication
over GF(p), namely, modular multiplication, is a crucial arith-
metic operation in ECC. The performance of an elliptic curve
cryptosystem is regulated by the efficiency of modular multi-
plication algorithm. A modular multiplier is an indispensable
part of an ECC processor. The area utilization and the max-
imum achievable frequency of the processor entirely depend
on its adopted modular multiplier. It is a major challenge in
prime field ECC to develop a low-area modular multiplier for
lightweight cryptography without compromising the speed.
Hence, optimizing modular multiplication algorithm is a cru-
cial demand. Several hardware implementations of modular
multiplication over GF(p) are reported in [8]–[15], where
most of the authors focused only on the multiplication speed.
They reduced the multiplication time costing more hardware
resources, which is not wise when ECC is implemented in
IoT platforms. Reducing computation time by expanding
area is not the proper way to meet the technical challenges
faced by the current cryptographic applications. To fulfill the
low latency, low memory, and low energy requirements of
resource-constrained IoT devices, designs should be efficient
in terms of both area and delay. Lightweight hardware imple-
mentations are only solutions for the enhancement of low-
area, low-power IoT applications. The details of the designs
are explained in a later section of this paper.

This paper presents an efficient interleaved modular multi-
plication algorithm along with its hardware design and imple-
mentations over GF(p) for lightweight, reconfigurable ECC
processors [16], where primes p are National Institute of
Standard and Technology (NIST)-recommended [17], [18].
The values of p are shown in Table 1. The powers exist-
ing in the expressions of these primes are all multiples
of 32 except the prime p521. These properties accelerate
modular reduction operations on machines with word-size
of 32 bits [1].

TABLE 1. NIST-recommended prime fields.

The remainder of this paper is organized as follows:
Section II presents the mathematical background and moti-
vation of this paper. Section III demonstrates proposed algo-
rithm and hardware architectures for modular multiplication.
Section IV presents the implementation results of the pro-
posed design. A performance comparison of our proposed
modular multiplier with other modular multipliers is shown
in Section V. Finally, this research work is concluded in
Section VI.

II. MATHEMATICAL BACKGROUND AND MOTIVATION
This section presents the role of a modular multiplier in ECC
and comparative discussion about several popular modular
multiplication algorithms.

The Weierstrass form of an elliptic curve over GF(p) in
affine coordinates is given by the equation:

Ep : y2 = x3 + ax + b mod p, (1)

where the variables x, y and the curve constants a, b are in the
range [1, p− 1] with

4a3 + 27b2 6= 0. (2)

An ECC processor generates a public key Q(x, y) by mul-
tiplying a base point G(x, y) on Ep with a random scalar s
such that Q = s ·G [19]. This multiplication is called elliptic
curve scalar multiplication (ECSM), which is the backbone
operation of an ECC processor. It deals with a number of
arithmetic and group operations. A modular multiplier mul-
tiplies two integers in GF(p) (e.g., x × x, y × y, and x × y)
in such a manner that the output always remains in the range
[1, p−1]. The complexity of ECSM is severely affected by the
modular multiplications performed to accomplish the ECSM
operation.

Several widely used algorithms for modular multiplication
are the Montgomery, interleaved, residue number system
(RNS), and the Karatsuba-Ofman [1], [9], [20], [21]. These
can be further classified into radix-r (r = 2, 4, 8 . . .) compu-
tations, which specify the number of bits to be processed in
each iteration as well as determine the number of clock cycles
required to complete the multiplication operation.

Let q be a prime number in the range of 2n−1 < q < 2n

such that the greatest common denominator gcd(2n, q) = 1
and A,B be two operands in the range of [0, q − 1]. The
Montgomery algorithm computes the modular multiplication
of A and B as C = A · B · R−1 mod q, where R = 2n [22].
This method reduces the delay caused by the trial division
required to determine the multiple of the prime q, which
would be subtracted from the regular product of the operands.
The trial division is replaced by a division by R and a modulo
R reduction, which are light operations in finite fields as R is
a power of 2 [23], [24]. It is noteworthy that the division by
2n is exactly the same as n-bit right-shift operation. The main
disadvantage of this algorithm is that it needs some prepro-
cessing and post-processing operations to eliminate the extra
factor 2−n and confine the intermediate results within the
range of the prime field. Furthermore, this algorithm works
only on the integers that are represented in the Montgomery
domain.

RNS provides high-speed computation by representing a
large integer with some small integers and processing the
small integers independently. In RNS-based modular multi-
plication, the prime q is represented by N co-prime moduli
such that {q1, q2,, qN } and the operands A,B are rep-
resented in N channels such that A = {a1, a2,, aN }
and B = {b1, b2,, bN }, where ai = A mod qi and
bi = B mod qi [25]. Then the multiplication is performed

VOLUME 8, 2020 73899

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

in parallel on the individual residues in the RNS repre-
sentations of the operands with reduction steps including a
division by one of the moduli in each step [14]. The RNS
domain is converted back to the original domain by Chinese
remainder theorem (CRT) [26]. Although the RNS repre-
sentations speed up the multiplication process significantly,
they consume more power because of their high complex-
ity and require a vast amount of hardware resources to be
implemented on machines. Therefore, RNS modular mul-
tiplication is not suitable for resource-constrained devices.
In the Karatsuba-Ofman method, modular multiplication is
performed using divide-and-conquer [1] approach to speed up
the multiplication process. Each of the operands is split into
smaller segments up to a reasonable size and the segments
are multiplied recursively with each other. A major drawback
of Karatsuba multiplication is that the amount of resources
required to implement this algorithm in hardware grows
exponentially with operand size. Although this algorithm is
fast, it is highly recursive that increases the hardware com-
plexity [27]. Because of recursive nature, this algorithm is
not convenient for low-power, resource-constrained devices.

The basic idea of interleaved modular multiplication is
multiply by 2 and add operations followed by modular reduc-
tion in a repeated manner. The modular multiplication of the
multiplicand X and the multiplier Y over GF(p) is given by
the general expression [19],

Z = X · Y mod p

= y0 · (20X)+ y1 · (21X)++ yn · (2nX) mod p

=

n−1∑
i=0

yi · (2iX) mod p, (3)

where p is a prime number, X and Y are two integers such
that X ,Y ∈ [1, p− 1], and n is the length of the integers.

Algorithm 1 Conventional Interleaved Modular Multiplica-
tion (Left-to-Right)

Input : X =
n−1∑
i=0

xi2i,Y =
n−1∑
i=0

yi2i;

X ,Y ∈ [1, p− 1] & xi, yi ∈ {0, 1} .

Output : Z = (X · Y) mod p.

1: Z ← 0;
2: for i from n− 1 downto 0 do
3: U ← 2Z ;
4: V ← yi · X ;
5: W ← U + V ;
6: Z ← W mod p;
7: end for;
8: return Z ;

Algorithm 1 demonstrates conventional interleaved mod-
ular multiplication. In every iteration, the multiplier Y is
bitwise multiplied with the multiplicand X in left-to-right

direction and added to the partial product Z . Z is reduced
to modulo p at the end of each iteration so as to confine
the intermediate results always in the range [1, p − 1]. This
algorithm avoids the multiply by 2n operation required to
eliminate the extra factor 2−n exists in the Montgomery algo-
rithm and hence reduces the computation costs of modular
multiplication. So far, interleaved modular multiplication is
more efficient compared with other multiplications when
operand sizes are large.

In order to reduce the time complexity of ECSM over
GF(p) as well as the hardware resource requirements for
ECC, we propose an area-time efficient modular multiplier,
introducing a modified radix-2 interleaved modular multipli-
cation algorithm. The area utilization (in terms of hardware)
and the area × time complexity of the proposed modular
multiplier are significantly reduced.

III. PROPOSED ALGORITHM AND
HARDWARE ARCHITECTURES
This section presents the proposed interleaved modular
multiplication algorithm and hardware architectures for
the conventional and the modified interleaved modular
multiplications.

FIGURE 1. Proposed hardware architecture for modular multiplication
(Design-1).

A. MODULAR MULTIPLIER (DESIGN-1)
Figure 1 illustrates the proposed hardware architecture of
Algorithm 1 that operates iterative bitwise multiplication
followed by modular reduction operations. The bitwise mul-
tiplication is started from the most significant bit (MSB)
of the multiplier Y and moved towards the least significant

73900 VOLUME 8, 2020

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

bit (LSB) of it. The accumulator Z is doubled and computed
as U at the beginning of each iteration. The multiplier Y is
bitwise multiplied with the multiplicand X and the partial
product yiX is stored in register V (Reg V). The ith bit of Y is
selected by multiplexer MUX1 and the multiplication yiX is
performed by n number of 2-input AND gates. U is added to
V and the addition is reduced to modulo p in every iteration.
The modular reduction is performed by subtracting the prime
number p and 2p fromW . Multiplexer MUX2 is used to store
one of the three outputsW ,W−p, andW−2p into register Z
(Reg Z). A total of n+1 clock cycles are required to complete
this multiplication process.

A major drawback of this design is that it always spends
n + 1 clock cycles to accomplish single modular multiplica-
tion even if the multiplier Y is of less than n bits in size.

B. MODULAR MULTIPLIER (DESIGN-2)
Although higher radix (e.g. radix-4, radix-8, radix-16, and
radix-32) modular multipliers offer lower latency multiplica-
tion than lower radix such as radix-2modularmultiplier, these
consume more hardware resources that expand the overall
area required by an ECC processor. In order to reduce the
area, a modified radix-2 interleaved modular multiplication
algorithm is proposed to accomplish right-to-left bitwise
modular multiplication. Conventional interleaved modular
multiplication is replaced for performing memory-friendly
loop operation and reducing the time complexity of multi-
plication. Algorithm 2 demonstrates the proposed algorithm

Algorithm 2 Proposed Interleaved Modular Multiplication
(Right-to-Left)

Input : X =
n−1∑
i=0

xi2i,Y =
n−1∑
i=0

yi2i;

X ,Y ∈ [1, p− 1] & xi, yi ∈ {0, 1} .

Output : Z = (X · Y) mod p.

1: Z ← 0; U ← 0; V ← 0; T ← Y ;
2: while Y > 0 do
3: if T = Y then
4: U ← X ;
5: else
6: U ← 2X ;
7: end if;
8: if y0 = 1 then
9: V ← Z + U ;
10: else
11: V ← Z ;
12: end if;
13: Z ← V mod p; X ← U mod p;
14: Y ← ‘0’ || Y (n− 1 downto 1);
15: end while;
16: return Z ;

FIGURE 2. Proposed hardware architecture for modular multiplication
(Design-2).

for modular multiplication and Figure 2 depicts the proposed
hardware architecture based on this algorithm.

In this architecture, the multiplicand X is doubled and
added to accumulator Z depending on the least significant
bit (LSB) of the multiplier Y . A shift register Y (Reg Y)
is shifted right in every iteration for performing right-to-left
bitwise multiplication as well as well-synthesized loop oper-
ation. In the first iteration, U is computed as X and from
the second iteration, it is computed as 2X . U is added to Z ,
if y0 = 1 or Z remains unchanged if y0 = 0. BothU andV are
reduced to modulo p to confine them in the finite field GF(p)
andV mod p is stored in register Z (Reg Z). For thesemodular
operations, U is subtracted by p and V is simultaneously
subtracted by p and 2p. The subtractions U − p, V − p, and
V − 2p are accomplished by 2’s compliment method. The
comparisons U ≥ p, V ≥ p, and V ≥ 2p are executed by
determining the sign bits of the subtractions U − p, V − p,
and V −2p, respectively. At the end of each iteration, register
Y is shifted to right by 1 bit. After n−1 number of iterations,
the multiplier Y is shifted to zero value and the final modular
product is obtained from Reg Z.

The design comprises four multiplexers such as MUX1,
MUX2, MUX3, and MUX4. MUX1 selects X for the first
iteration and 2X for the remaining iterations,MUX2 performs
U mod p, MUX3 selects Z to keep Z unchanged if b0 = 0
or it selects V to add U to Z if b0 = 1, and MUX4 per-
forms V mod p. The latency to perform single modular

VOLUME 8, 2020 73901

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

TABLE 2. Implementation results of Design-1 on Virtex-7 FPGA.

TABLE 3. Implementation results of Design-2 on Virtex-7 FPGA.

multiplication with this design is around n + 1 clock cycles,
where n clock cycles are spent to accomplish n number of
iterations and an extra clock cycle is used for the initialization
of the loop operation. The number of clock cycles required for
the multiplication depends on the bit length of Y as the shift
register used controls over the loop operation. The proposed
modular multiplier can act as a modular squarer if the two
operands be identical.

The advantage of Design-2 over Design-1 is that it speeds
up themultiplication process as the loop operation is executed
by a shift register rather than a multiplexer. While perform-
ing ECSM, an n-bit ECC processor deals with a number
of modular multiplication operations where the bit-length of
the operands can be less than n bits. If an ECSM operation
includes m successive modular multiplications without any
inversion operation, it spends always m(n + 1) clock cycles
to be completed according to Algorithm 1.Whereas, the same
operation requires less than m(n+ 1) clock cycles to be exe-
cuted when it adopts Algorithm 2. Therefore, Algorithm 2 is
more beneficial for ECC than Algorithm 1.

IV. IMPLEMENTATION RESULTS
The proposed modular multipliers were implemented
on Xilinx Virtex-7 (XC7VX485T) FPGA platform. For
performance comparison with other available modular mul-
tipliers, Design-2 was also implemented on Xilinx Virtex-6
(XC6VHX380T), Virtex-5 (XC5VFX130T), and Virtex-4
(XC4VLX160) FPGA platforms, separately. The proposed
designs were synthesized, translated, mapped, post placed,
and routed on these FPGAs using the Xilinx ISE 14.7 Design
Suite. The Xilinx ISim (P.20131013) simulator was used
to simulate the modular multiplication and the simulation
results were verified by the Maple 18 software. The imple-
mentation results of the Design-1 and Design-2 on Virtex-7
FPGA are summarized in Table 2 and Table 3, respectively.

On Virtex-7 FPGA, Design-1 operates at maximum
clock frequencies of 147.9 MHz, 143.1 MHz, 134.7 MHz,
105.9 MHz, and 89.3 MHz with 147.1 Mbps, 142.5 Mbps,
134.2 Mbps, 105.6 Mbps, and 89.1 Mbps throughputs for
the field sizes of 192, 224, 256, 384, and 521 bits, respec-
tively. The numbers of slices utilized are 251, 325, 365,
578, and 592, which are equivalent to 972, 1221, 1400,
2048, and 2215 look up tables (LUTs). The delays spent
to perform modular multiplications over the prime fields
p192, p224, p256, p384, and p521 are 1.3 µs, 1.57 µs, 1.91 µs,
3.64µs, and 5.85µs, where the required clock cycles are 193,
225, 257, 385, and 522, respectively.

On the same platform, Design-2 performs 192, 224, 256,
384, and 521-bit modular multiplications in 0.93 µs, 1.18 µs,
1.45 µs, 2.80 µs, and 4.69 µs with maximum clock frequen-
cies of 207.1 MHz, 190.7 MHz, 177.3 MHz, 137.6 MHz,
and 111.2 MHz, respectively, where the corresponding
throughputs are 206.0 Mbps, 189.9 Mbps, 176.6 Mbps,
137.2 Mbps, and 111.0 Mbps. The design occupies 386, 490,
514, 820, and 375 slices and 1151, 1409, 1491, 2355, and
2496 look up tables (LUTs) to perform these multiplications.
Although Design-2 costs a few more hardware resources
than Design-1, it offers faster multiplication and is more
efficient for ECC. It reduces the latency of the most
time-consuming ECSM operation. It should be noted that no
additional digital signal processing (DSP) slice is used in
these implementations.

V. PERFORMANCE COMPARISON
Several works on FPGA implementation of modular multi-
plication have been documented in literature, where some
authors try to minimize the hardware utilization and others
aim to reduce the latency of multiplication. It is a chal-
lenging task to achieve a higher processing speed, utilizing
fewer hardware resources because area and time are two

73902 VOLUME 8, 2020

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

TABLE 4. Performance comparison of the proposed modular multiplier with other modular multipliers.

contradictory parameters of an FPGA-based hardware imple-
mentation. We tried to maintain a balance between these two
important performance criteria. A performance comparison
of our proposed modular multiplier (Design-2) with other
modular multipliers is shown in Table 4. Most of the articles
have compared area in terms of LUTs instead of slices and
some authors have not reported the amount of slices required
for their modular multipliers. For this reason area is compared
in terms of LUTs in this research study.

Yang et al. [8] proposed a low-latency FPGA implemen-
tation of 256-bit modular multiplication adopting the Mont-
gomery algorithm. On Virtex-6 FPGA, their multiplication
scheme occupies 23,977 LUTs and operates at a maximum
frequency of 40.1 MHz. Although the scheme is compara-
tively expensive in terms of hardware, it performs high-speed

multiplication. It takes 0.8 µs to perform 256× 256 modular
multiplication in 50 clock cycles. Ghosh et al. [9] exploited
a radix-2 interleaved modular multiplier for ECSM over
GF(p). Conventional interleaved modular multiplication was
implemented on Xilinx Virtex-II FPGA, costing 7328, 8547,
and 9821 LUTs over the prime fields p192, p224, and p256,
respectively. Their multiplier requires 4.8 µs, 6 µs, and
7.3 µs to complete modular multiplications over these fields,
where the operating frequencies are 40 MHz, 37 MHz, and
34 MHz, respectively. The flexible hardware ECC processor
proposed by Ananyi et al. [10] supports the five NIST prime
fields p192, p224, p256, p384, and p521. A regular multiplier is
employed for this processor that performs modular reduction
at the end of non-modular multiplication instead of perform-
ing bitwise multiplication followed by modular reduction.

VOLUME 8, 2020 73903

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

The multiplier requires a huge memory to store the interme-
diate output before modular reduction operation. The main
feature of this multiplier is that it is flexible, whichmeans that
the multiplier can perform 192, 224, 256, 384, and 521-bit
multiplications without reconfiguring the hardware. As the
design is flexible over different field orders, the hardware
utilizations for the multiplications over all the five prime
fields are the same. A major drawback of this design is that it
performs 192-bit multiplication, costing the same amount of
hardware resources as required to perform 521-bit multiplica-
tion. The multiplier utilizes 31,946 LUTs with 32 additional
DSP slices on Xilinx Virtex-4 FPGA platform and runs at a
constant frequency of 60 MHz over all the five prime fields.
The clock cycles required to performmodular multiplications
over p192, p224, p256, p384, and p521 are 74, 76, 78, 178, and
325, respectively.

Javeed et al. [11] adopted a radix-4 booth encodedmodular
multiplier for their ECC processor, which is another version
of interleaved modular multiplier. In this method, two signed
binary numbers are multiplied by 2’s complement represen-
tations. Instead of adding the multiplier to partial product and
quadrupling the partial product, themultiplicand is condition-
ally multiplied by {0,±1,±2} depending on three consecu-
tive bits of the multiplier in right-to-left direction and added
to the partial product shifted left by 2 bits. This method gives
the same results as the add-and-quadrupling method. How-
ever, their multiplier occupies 3020, 3427, 3877 LUTs on
Xilinx Virtex-6 FPGA and performs modular multiplications
in 0.97 µs, 1.16 µs, and 1.36 µs, operating at frequencies of
101.3 MHz, 98.2 MHz, and 95.2 MHz over the prime fields
p192, p224, and p256, respectively. In [12], Marzouqi et al.
introduced a redundant signed digit (RSD) based iterative
Karatsuba multiplier in which three Karatsuba blocks (low,
middle, and high) are used to perform bitwise multiplications
between two n-bit operands iteratively. Conventional recur-
sive Karatsuba multiplier is modified to iterative-recursive
version of it to reduce the hardware complexity. This mul-
tiplier consumes 19,747 LUTs on Xilinx Virtex-5 FPGA to
perform 256-bit modular multiplication. The operating fre-
quency, clock cycles required, and time to complete themulti-
plication are 160MHz, 212, and 1.33µs, respectively. On the
same platform, this multiplier is 1.75 times faster but costs
8.74 times more LUTs than our multiplier. The radix-4 paral-
lel modular multiplier reported in [13] utilizes 6300 LUTs on
Xilinx Virtex-6 FPGA and takes 0.79 µs to complete 256-bit
modular multiplication, where the maximum clock frequency
is 166 MHz. This multiplier performs very low-latency
multiplication by parallel multiplication technique. In [14],
the authors proposed radix-4 and radix-8 Booth encoded
interleaved modular multipliers over general prime fields
of 192, 224, and 256-bit field sizes, modifying bit serial inter-
leaved algorithm for modular multiplication. On Virtex-6
FPGA, the radix-4 multipliers occupies 2788, 4630, and
7479 slices, which are approximately equivalent to 11152,
18520, and 29916 LUTs. The times required to perform
192, 224, and 256-bit modular multiplications are 1.1 µs,

FIGURE 3. Performance comparison in terms of frequency.

1.49 µs, and 3.37 µs. The radix-8 multipliers performs these
multiplications in 0.88 µs, 0.93 µs, and 2.69 µs consuming
4215, 5657, and 26120 slices, which are equivalent to 16860,
22628, and 104480 LUTs. Although these multipliers are
highly expensive in terms of hardware resources, the num-
ber of clock cycles required to perform interleaved modular
multiplications significantly reduced due to use the Booth
encoding technique. The radix-4 serial and parallel inter-
leaved modular multipliers reported in [15] offer high-speed
multiplication by reducing the latency. To perform 192, 224,
and 256-bit modular multiplications, the serial multiplier
takes 0.94 µs, 1.13 µs, and 1.3 µs with maximum clock
frequencies of 48 MHz, 56 MHz, and 64 MHz, whereas
the parallel multiplier takes 0.56 µs, 0.67 µs, and 0.77 µs
only. The number of LUTs required for these multiplications
by the serial multiplier are 3100, 3400, and 3900. On the
other hand, the parallel multiplier consumes 4200, 4900, and
5300 LUTs. Figure 3 shows the performance comparison
in terms of frequency for variable field sizes. Frequency
is a parameter of the hardware implementation of a multi-
plier that determines the speed at which the module runs.
It is directly correlated with the complexity of the hardware
design. The frequency of a complex design is lower than
that of a simple, memory-friendly design. From this figure,
it can be seen that the frequencies of our implementations on
different FPGA platforms are higher than that of the other
implementations except [12] and [13]. Figure 4 shows the
performance comparison in terms of area utilization over
different prime fields. From the one-to-one platform-wise
comparison, it is observed that our design costs less number
of LUTs than any of the other designs. Besides there are no
much differences among the hardware requirements of our
design for different field sizes. Therefore, the performance

73904 VOLUME 8, 2020

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

FIGURE 4. Performance comparison in terms of area.

FIGURE 5. Performance comparison in terms of area-time product.

degradation of our proposed modular multiplier for large
operands is endurable. Figure 5 shows the performance com-
parison in terms area-time (AT) product over different prime
fields. The performance of a modular multiplier is measured
by the reciprocal of its AT product. The smaller the AT
product, the better the performance. On the same platform,
the AT product of our proposed design is smaller than that
of the other designs over the same field, which ensures better
performance of our multiplier.

VI. CONCLUSION
A high-performance modular multiplier has been proposed,
exploiting a modified interleaved modular multiplication
algorithm. The proposed multiplier has been separately
implemented on Virtex-7, Virtex-6, Virtex-5, and Virtex-4
FPGA platforms over the five NIST recommended prime
fields p192, p224, p256, p384, and p521. The implementation
results and the performance comparison with other designs
show that the area utilization of our design is very low and
its area-time product is considerably small. Furthermore, our
proposed modular multiplier has diverse application fields
in ECC as most of the ECC processors over GF(p) reported
in literature are based on five NIST prime curves such as
P-192, P-1224, P-256, P-384, and P-521. This multiplier
could be recommended to manipulate in low-power, low-
memory, resource-constrained cryptographic devices.

REFERENCES
[1] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve

Cryptography. New York, NY, USA: Springer-Verlag, 2004.
[2] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, ‘‘Elliptic-curve-

based security processor for RFID,’’ IEEE Trans. Comput., vol. 57, no. 11,
pp. 1514–1527, Nov. 2008.

[3] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Y. Yang, ‘‘Highspeed
high-security signatures,’’ J. Cryptogr. Eng., vol. 2, no. 2, pp. 77–89,
Sep. 2012.

[4] D. Aranha, R. Dahab, J. López, and L. Oliveira, ‘‘Efficient implementation
of elliptic curve cryptography in wireless sensors,’’ Adv. Math. Commun.,
vol. 4, no. 2, pp. 169–187, May 2010.

[5] S. C. Seo and H. Seo, ‘‘Highly efficient implementation of NIST-compliant
Koblitz curve for 8-bit AVR-based sensor nodes,’’ IEEE Access, vol. 6,
pp. 67637–67652, 2018.

[6] H. Du, Q. Wen, and S. Zhang, ‘‘An efficient certificateless aggregate
signature schemewithout pairings for healthcare wireless sensor network,’’
IEEE Access, vol. 7, pp. 42683–42693, 2019.

[7] B. Rashidi, ‘‘Efficient hardware implementations of point multiplication
for binary edwards curves,’’ Int. J. Circuit Theory Appl., vol. 46, no. 8,
pp. 1516–1533, Aug. 2018.

[8] Y. Yang, C. Wu, Z. Li, and J. Yang, ‘‘Efficient FPGA implementation of
modular multiplication based on Montgomery algorithm,’’ Microproces-
sors Microsyst., vol. 47, art. 2016, pp. 209–215, Jul. 2016.

[9] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, ‘‘Petrel: Power
and timing attack resistant elliptic curve scalar multiplier based on pro-
grammable GF(p) arithmetic unit,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 58, no. 8, pp. 1798–1812, Jan. 2011.

[10] K. Ananyi, H. Alrimeih, and D. Rakhmatov, ‘‘Flexible hardware processor
for elliptic curve cryptography over NIST prime fields,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1099–1112, Aug. 2009.

[11] K. Javeed, X. Wang, and M. Scott, ‘‘High performance hardware support
for elliptic curve cryptography over general prime field,’’Microprocessors
Microsyst., vol. 51, art. 2016, pp. 331–342, Jun. 2017.

[12] H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis, and T. Stouraitis,
‘‘A high-speed FPGA implementation of an RSD-based ECC proces-
sor,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1,
pp. 151–164, Jan. 2016.

[13] K. Javeed and X. Wang, ‘‘Low latency flexible FPGA implementation of
point multiplication on elliptic curves over GF(p),’’ Int. J. Circuit Theory
Appl., vol. 45, no. 2, pp. 214–228, Feb. 2017.

[14] K. Javeed and X. Wang, ‘‘Radix-4 and radix-8 booth encoded interleaved
modular multipliers over general Fp,’’ in Proc. 24th Int. Conf. Field Pro-
gram. Log. Appl. (FPL), Munich, Germany, Sep. 2014, pp. 1–6.

[15] K. Javeed, X.Wang, andM. Scott, ‘‘Serial and parallel interleavedmodular
multipliers on FPGA platform,’’ in Proc. 25th Int. Conf. Field Program.
Log. Appl. (FPL), London, U.K., Sep. 2015, pp. 1–4.

[16] C. A. L.-Nino., A. D.-Perez., and M. M.-Sandoval., ‘‘Elliptic
curve lightweight cryptography: A survey,’’ IEEE Access, vol. 6,
pp. 72514–72550, Nov. 2018.

VOLUME 8, 2020 73905

M. M. Islam et al.: Area-Time Efficient Hardware Implementation of Modular Multiplication

[17] E. Barker, ‘‘Recommendation for key management—Part 1: General (revi-
sion 4),’’ NIST, Gaithersburg, MD, USA, Tech. Rep. SP 800-57, Jan. 2016.

[18] L. Chen, D. Moody, A. Regenscheid, and K. Randall, ‘‘Recommendations
for discrete logarithm-based cryptography: Elliptic curve domain parame-
ters,’’ NIST, Gaithersburg, MD, USA, Tech. Rep. SP 800–186, Oct. 2019.

[19] M. M. Islam, M. S. Hossain, M. K. Hasan, M. Shahjalal, and Y. M. Jang,
‘‘FPGA implementation of high-speed area-efficient processor for ellip-
tic curve point multiplication over prime field,’’ IEEE Access, vol. 7,
pp. 178811–178826, 2019.

[20] P. L. Montgomery, ‘‘Modular multiplication without trial division,’’Math.
Comput., vol. 44, no. 170, p. 519, May 1985.

[21] J.-C. Bajard, L.-S. Didier, and P. Kornerup, ‘‘An RNS montgomery mod-
ular multiplication algorithm,’’ IEEE Trans. Comput., vol. 47, no. 7,
pp. 766–776, Jul. 1998.

[22] A. F. Tenca and C. K. Koc, ‘‘A scalable architecture for modular multipli-
cation based on montgomery’s algorithm,’’ IEEE Trans. Comput., vol. 52,
no. 9, pp. 1215–1221, Sep. 2003.

[23] C. Kaya Koc, T. Acar, and B. S. Kaliski, ‘‘Analyzing and comparing mont-
gomery multiplication algorithms,’’ IEEE Micro, vol. 16, no. 3, pp. 26–33,
Jun. 1996.

[24] Z. Liu and J. Großschädl, ‘‘New speed records for Montgomery
modular multiplication on 8-bit AVR microcontrollers,’’ in Progress
in Cryptology—AFRICACRYPT (Lecture Notes in Computer Science),
vol. 8469. Berlin, Germany: Springer-Verlag, 2014, pp. 215–234.

[25] S. Asif and Y. Kong, ‘‘Highly parallel modular multiplier for elliptic curve
cryptography in residue number system,’’ Circuits, Syst., Signal Process.,
vol. 36, no. 3, pp. 1027–1051, Mar. 2017.

[26] G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede, ‘‘Novel RNS
parameter selection for fast modular multiplication,’’ IEEE Trans. Com-
put., vol. 63, no. 8, pp. 2099–2105, Aug. 2014.

[27] N. Nedjah and L. D. M. Mourelle, ‘‘Fast less recursive hardware for large
number multiplication using Karatsuba–Ofman’s algorithm,’’ in Computer
and Information Sciences (Lecture Notes in Computer Science), vol. 2869.
Berlin, Germany: Springer, 2003, pp. 43–50.

MD. MAINUL ISLAM (Graduate Student Mem-
ber, IEEE) received the B.Sc. degree in electrical
and electronic engineering (EEE) from the Khulna
University of Engineering & Technology (KUET),
Bangladesh, in 2018. He is currently pursuing
the M.Sc. degree in electronics engineering with
the Wireless Communication and Artificial Intel-
ligence (WiComAI) Laboratory, Kookmin Univer-
sity, South Korea. His research interests include
wireless communications security, cryptography,

elliptic curve cryptography (ECC), Edwards-curve digital signature algo-
rithm (EdDSA), the Internet of Things (IoT) security, VLSI design, FPGA
technology, blockchain, 5G, and 6G.

MD. SELIM HOSSAIN (Member, IEEE) received
the B.Sc. degree in electrical and electronic engi-
neering (EEE) from the Khulna University of
Engineering & Technology (KUET), Bangladesh,
in 2008, and the Ph.D. degree in engineering from
Macquarie University, Sydney, NSW, Australia,
in 2017. He was an Intern with Lund University,
Sweden, from January 2016 to February 2016.
In 2008, he joined the Department of Electrical
and Electronic Engineering (EEE), KUET, as a

Lecturer, where he became anAssistant Professor, in 2012. In 2019, he joined
the Department of EEE, KUET, as an Associate Professor. He has authored
or coauthored over 35 refereed journal articles and conference papers.
His research interests include cryptosystems (elliptic curve cryptosystem),
processor architectures, high-speed and energy-efficient arithmetic circuits,
FPGA, ASIC, and antennas. He is also a member of Institution of Engineers,
Bangladesh (IEB). In 2013, he received the International Macquarie Univer-
sity Research Excellence Scholarship (iMQRES) to pursue his Ph.D. degree.

MD. SHAHJALAL (Student Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronic engineering (EEE) from the Khulna Uni-
versity of Engineering & Technology (KUET),
Bangladesh, in May 2017, and the M.Sc. degree
in electronics engineering from Kookmin Univer-
sity, South Korea, in August 2019, where he is
currently pursuing the Ph.D. degree in electronics
engineering. His research interests include opti-
cal wireless communications, wireless security,

non-orthogonal multiple access, the Internet of Things, low-power wide-area
networks, and 6G mobile communications. He received the Excellent Stu-
dent Award.

MOH. KHALID HASAN (Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronic engineering from the Khulna University of
Engineering & Technology, Bangladesh, in 2017,
and the M.Sc. degree in electronics engineering
from Kookmin University, Korea, in 2019. He is
currently attached as a full-time Researcher with
the WiComAI Lab, Kookmin University. His cur-
rent research interests include wireless communi-
cations, deep learning, 6G, and wireless security.

He received the Academic Excellence Award.

YEONG MIN JANG (Member, IEEE) received
the B.E. and M.E. degrees in electronics engi-
neering from Kyungpook National University,
South Korea, in 1985 and 1987, respectively,
and the Ph.D. degree in computer science from
the University of Massachusetts, USA, in 1999.
He was with the Electronics and Telecommuni-
cations Research Institute (ETRI), from 1987 to
2000. Since 2002, he has been with the School
of Electrical Engineering, Kookmin University,

Seoul, South Korea, where he was the Director of the Ubiquitous IT Con-
vergence Center, from 2005 to 2010, and has also been the Director of
the LED Convergence Research Center, since 2010, and the Director of
the Internet of Energy Research Center, since 2018. His research inter-
ests include 5G/6G mobile communications, Internet of Energy, eHealth,
multiscreen convergence, public safety, optical wireless communications,
optical camera communication, and the Internet of Things (IoT). He is
currently a Life Member of the Korean Institute of Communications and
Information Sciences (KICS). He received the Young Science Award from
the Korean Government (2003–2006). He has organized several conferences
and workshops, such as the International Conference on Ubiquitous and
Future Networks (2009–2017), the International Conference on ICT Conver-
gence (2010–2016), the International Conference on Information Network-
ing 2015, and the International Workshop on Optical Wireless LED Com-
munication Networks (2013–2016). He had served as the Founding Chair of
the KICS Technical Committee on Communication Networks, in 2007 and
2008, the Executive Director of KICS, from 2006 to 2014, the Vice President
of KICS, from 2014 to 2016, and the Executive Vice President of KICS,
since 2018. He serves as the Co-Editor-in-Chief of ICT Express, which is
published by Elsevier. He has been the Steering Chair of the Multi-Screen
Service Forum, since 2011, and the Society Safety System Forum, since
2015. He had served as the Chairman of the IEEE 802.15 Optical Camera
Communications Study Group, in 2014. He is also serving as the Chairman
of the IEEE 802.15.7m Optical Wireless Communications Task Group and
the IEEE 802.15 Vehicular Assistive Technology (VAT) Interest Group.

73906 VOLUME 8, 2020

	INTRODUCTION
	MATHEMATICAL BACKGROUND AND MOTIVATION
	PROPOSED ALGORITHM AND HARDWARE ARCHITECTURES
	MODULAR MULTIPLIER (DESIGN-1)
	MODULAR MULTIPLIER (DESIGN-2)

	IMPLEMENTATION RESULTS
	PERFORMANCE COMPARISON
	CONCLUSION
	REFERENCES
	Biographies
	MD. MAINUL ISLAM
	MD. SELIM HOSSAIN
	MD. SHAHJALAL
	MOH. KHALID HASAN
	YEONG MIN JANG

