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ABSTRACT Channel state information (CSI) fingerprint based indoor positioning has been extensively
studied. While centimeter-level positioning accuracy has been demonstrated for Wi-Fi systems, only
meter-level accuracy was reported for Long-term Evolution (LTE) systems. To investigate whether the
centimeter accuracy is achievable or not for LTE systems, we examine the factors that affect the positioning
accuracy to guide the implementation of a LTE-CSI fingerprinting system,where a novel phase compensation
method is proposed to improve the CSI quality. We demonstrate for the first time that the centimeter-level
positioning accuracy is achievable for LTE systems through extensive experiments.

INDEX TERMS Indoor positioning, fingerprinting, channel state information (CSI), LTE.

I. INTRODUCTION
With the rapid development of wireless techniques and the
wide proliferation of smart devices, wireless indoor posi-
tioning has received considerable attention [1]. Wireless
indoor positioning suffers from complex multipath propaga-
tion environment, under which the traditional methods for
outdoor positioning usually perform poorly [2]. Nevertheless,
the rich multipath leads to a significant change of small-scale
channel state information (CSI) over small distances on the
order of a wavelength, which has been exploited to achieve
high-accuracy indoor positioning by applying the fingerprint
based positioning techniques [3], [4].

CSI fingerprint based indoor positioning (CSI fingerprint-
ing for short in the sequel) is typically applied in wide-
band communication systems such as Wi-Fi and LTE. There
have been numerous studies with respect to Wi-Fi systems
in the literature, where various CSI fingerprinting methods
have been proposed [1] and the centimeter-level positioning
accuracy has been reported [4]. For LTE systems, there are
only few works on fingerprint based indoor positioning, e.g.,
[5]–[7]. In [5] the fingerprints are generated based on ref-
erence signal received power (RSRP) and reference signal
received quality (RSRQ) rather than CSI, and thus far [6] and
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[7] are the only two works studying the LTE-CSI fingerprint-
ing. We conjecture that the very little attention paid to the
LTE-CSI fingerprinting in the literature is mainly caused by
the difficulty of acquiring the LTECSI. ForWi-Fi systems the
CSI can be easily extracted by, e.g., the Intel 5300 network
interface card [4], [8]. For LTE systems, although the RSRP
and RSRQ can be readily obtained, e.g., via the application
program interface (API) of some mobile phones, off-the-
shelf equipment for CSI acquisition is still unavailable. For
example, the SDR platform is employed in [6] and [7] while
we employ the ZedBoard, both of which require the imple-
mentation of LTE baseband processing via either software
or hardware.

LTE and Wi-Fi systems exhibit different channel charac-
teristics due to the different propagation environments. Thus,
although existing works have shown the high positioning
accuracy of the Wi-Fi CSI fingerprinting, it is still unclear
what accuracy the LTE-CSI fingerprinting can achieve. The
first results of the LTE-CSI fingerprinting are presented in [6],
where the positioning accuracy is on the meter level, compa-
rable to the RSRP fingerprinting. The latest LTE-CSI finger-
printing results are provided in [7], where the mean distance
errors of 0.47 and 19.9 meters are achieved for indoor and
outdoor scenarios, respectively. The performance is much
worse than the centimeter-level accuracy achieved by the
Wi-Fi CSI fingerprinting as reported in [4].
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In this paper, we investigate the positioning accuracy of the
LTE-CSI fingerprinting with the following contributions:

• To the best of our knowledge, we demonstrate for the
first time that the centimeter positioning accuracy is
achievable for the LTE-CSI fingerprinting. To obtain the
results, we examine the factors affecting the positioning
accuracy, under whose guide a LTE-CSI fingerprinting
system is implemented for performance assessment.

• We propose a novel phase compensation method to
improve the quality of CSI, which plays an important
role to achieve the centimeter positioning accuracy as
shown by the experimental results.

II. FACTORS AFFECTING POSITIONING ACCURACY
Except for channel characteristics, the design of CSI finger-
printing system has a major impact on the positioning accu-
racy. In this section, we examine the design aspects that affect
the positioning accuracy by comparing the CSI fingerprint-
ing system designed for Wi-Fi systems with centimeter-level
accuracy [4] and the CSI fingerprinting systems designed for
LTE systems with meter-level accuracy [6], [7], respectively.
The aim is to guide us to build a high-accuracy LTE-CSI
fingerprinting system.

A. POSITIONING ALGORITHM
The positioning algorithms in [4] and [6], [7] are different,
where [4] employs a time reversal based algorithm while
[6] and [7] employ machine-learning algorithms, specifically
the K -nearest neighbor (KNN) algorithm and the multi-layer
perceptron method, respectively. Considering that the finger-
print matching problem involved in the CSI fingerprinting
system is essentially a classification problem, we will employ
a machine learning algorithm to improve the positioning
accuracy and reduce the complexity of online positioning.

B. CSI QUALITY
In [4] both channel amplitude and phase are employed for
fingerprinting, while [6] and [7] only use channel ampli-
tude. To exploit the phase information, the phase distortions
should be compensated. In [4], a phase correction algorithm
is proposed to estimate and compensate the phase distortions.
For the CSI fingerprinting problem, however, we find that
the impact of phase distortions can be eliminated without
estimating the distortions, which motivates us to propose a
novel low-complexity phase compensation algorithm.

C. FINGERPRINT GRANULARITY
The granularity of the fingerprint dataset restricts the
positioning accuracy. Apparently, in order to achieve
the centimeter-level accuracy, a fingerprint dataset with
centimeter-level granularity is generally necessary. In [4] the
fingerprint dataset has the granularity of 5 cm, while in [6]
the fingerprint granularity is 0.5 m and in [7] the granularity
is 1.2 m and 5 m in indoor and outdoor cases, respectively.

To explore the potential of LTE-CSI fingerprinting, we need
to build a centimeter-level fingerprint dataset.

D. EVALUATION APPROACH
Given the fingerprint dataset and positioning algorithm,
the positioning accuracy depends on how to select the testing
points, specifically whether the testing points are selected
from the reference points or not. The testing and reference
points are identical in [4] but different in [6], [7]. This will
degrade the accuracy of latter to a certain extent. From the
perspective of practical applications, it is more reasonable to
consider different reference and testing points because a user
can be arbitrarily located in practice. We will evaluate the
impact of different evaluation approaches on the positioning
accuracy.

III. LTE-CSI FINGERPRINTING SYSTEM
In this section we first propose a phase compensation method
to eliminate the impact of CSI phase distortions, and then
describe the implementation of a high-accuracy LTE-CSI
fingerprinting system.

A. CSI PHASE COMPENSATION
1) NECESSITY OF PHASE COMPENSATION
We use the downlink CSI from a single base station (BS)
to a mobile station (MS) for positioning, where the BS has
Nb antennas and the MS has Nr antennas. For LTE system,
the cell-specific reference signals (CRSs) are employed for
CSI estimation. It should be highlighted that different from
Wi-Fi signals that are transmitted in burst mode, the LTE
CRSs are transmitted continuously, which are always acces-
sible for positioning service without the need of network
authentication. In each LTE subframe with the duration of
1 ms, there are four orthogonal frequency division multiplex-
ing (OFDM) symbols containing CRSs, which are evenly
spaced in the frequency domain of each OFDM symbol.
The total number of CRSs, denoted by Nc, depends on the
bandwidth of the system. For instance, Nc = 100 and 200 for
the bandwidth of 10 MHz and 20 MHz, respectively.

To build the fingerprint dataset, the experimental area is
mapped by Np predetermined reference points. The MS is
placed on the reference points one by one, and the corre-
sponding downlink CSI is estimated. The frequency channel
response over the k-th CRS from the b-th transmit antenna
to the r-th receive antenna at the p-th reference point can be
expressed as

hp,b,r,k =
Lp,b,r∑
l=1

ap,b,r,le−jwcτp,b,r,l e−jk1f τp,b,r,l , (1)

where Lp,b,r is the number of multipath components (MPCs),
ap,b,r,l and τp,b,r,l are the gain and propagation delay of
the l-th MPC, respectively, wc is the carrier frequency, and
1f is the frequency spacing between adjacent CRSs. The
parameters Lp,b,r , ap,b,r,l and τp,b,r,l may differ for dif-
ferent reference points p and antennas b, r . For notational
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simplicity, we omit the subscripts p, b and r for these param-
eters in the sequel.

The channel estimation in a practical receiver may suffer
from synchronization error, sampling clock drift, frequency
offset, phase noise, and received noise [9], [10]. Taking these
impairments into account, the estimate of hp,b,r,k at time t can
be expressed as

ĥp,b,r,k (t)

= ej(wd t+φ(t))
∑L

l=1ale
−jwc(τl+δ(t))e−jk1f (τl+δ(t))+nr,k (t)

= ej(wd t+φ(t)−wcδ(t))e−jk1f δ(t)︸ ︷︷ ︸
Phase distortion

hp,b,r,k + nr,k (t), (2)

where wd is the carrier frequency offset, φ(t) is the
time-varying phase noise, δ(t) combines the time-varying
synchronization error and sampling clock drift, and nr,k (t) is
the received noise.

In order to improve the positioning accuracy, we often need
to estimate the CSI multiple times, say Ns times, for the same
reference point. Then, the acquired CSI at the p-th reference
point can be expressed as

Fp =
{
Ĥp(ts)

}
, s = 1, . . . ,Ns, (3)

where Ĥp(ts) = [ĥp,1,1(ts), . . . , ĥp,Nb,Nr (ts)] ∈ CNc×NbNr ,
which consists of the estimated channels between NbNr
antenna pairs over Nc CRSs, and ĥp,b,r (ts) = [ĥp,b,r,1(ts),
. . . , ĥp,b,r,Nc (ts)]

T
∈ CNc×1, which is the estimated channels

between a pair of antennas over Nc CRSs.
The expression of channel estimation given in (2) indi-

cates a severe problem if the channel estimate is directly
used for positioning. Specifically, it is shown that even when
the real channel hp,b,r,k is fixed over time and the noise
nb,r,k (t) is ignored, the estimated channel ĥp,b,r,k (t) is still
time varying. This leads to the mismatch between the chan-
nels for building the offline fingerprint dataset and for online
positioning.

2) PHASE COMPENSATION METHOD
One way to circumvent the phase distortion problem is to
only use the amplitude information, noting that |ĥp,b,r,k (t)| =
|hp,b,r,k | is time invariant as shown in (2). However, this
approach discards the phase information, which may degrade
the performance.

In order to exploit the phase information, phase compen-
sation is generally indispensable. In OFDM-based communi-
cation systems, phase compensation has been received exten-
sive studies, where the phase distortion is first estimated and
then compensated to facilitate coherent data detection. The
CSI fingerprinting system has different task from the com-
munication system, which aims to maintain time-invariant
fingerprint rather than data detection. Such a change allows
us to design a low-complexity phase compensation method
without the need of phase distortion estimation. The basic
idea of the proposed method is to conduct a relative phase
compensation for each individual online or offline CSI. In
particular, we use the phase of ĥp,b,r,k−1(t) to compensate the

phase of ĥp,b,r,k (t). To illustrate the principle of the proposed
phase compensation method, we ignore the noise nb,r,k (t) in
the sequel of this subsection, but the proposed method can be
directly applied to the case with noise and will be used for
the experimental performance assessment in the next section,
where both noise and phase distortion are included.

Specifically, with the channel estimates ĥp,b,r,k−1(t) and
ĥp,b,r,k (t), we compensate the phase of ĥp,b,r,k (t) as

h̄p,b,r,k (t) = ĥp,b,r,k (t) ·
ĥ∗p,b,r,k−1(t)

|ĥp,b,r,k−1(t)|
, (4)

where h̄p,b,r,k (t) is the new channel estimate after phase
compensation. Upon substituting (2), we can derive h̄p,b,r,k (t)
as

h̄p,b,r,k (t) = ĥp,b,r,k (t) · e−j(wd t+φ(t)−wcδ(t))ej(k−1)1f δ(t)

· e−jθp,b,r,k−1

= e−j1f δ(t)hp,b,r,ke−jθp,b,r,k−1 , k ≥ 2, (5)

where θp,b,r,k−1 is the phase of the real channel hp,b,r,k−1.
It is shown from (5) that the compensated channel estimate

h̄p,b,r,k (t) still includes a time varying phase term e−j1f δ(t),
which, however, is a common term for all the compensated
channels over the CRSs with k ≥ 2. Thus, we can further
normalize h̄p,b,r,k (t) by the phase of the compensated channel
over an arbitrary CRS k , say h̄p,b,r,2(t), as

h̄p,b,r (ts) = e−jθ̄p,b,r,2 [h̄p,b,r,2(ts), . . . , h̄p,b,r,Nc (ts)]
T , (6)

where h̄p,b,r (ts) ∈ C(Nc−1)×1, and θ̄p,b,r,2 is the phase of
h̄p,b,r,2(t). By replacing ĥp,b,r (ts) with h̄p,b,r (ts), we can
update Ĥp(ts), as defined below (2), asHp(ts)∈C(Nc−1)×NbNr .
Then, the acquired CSI at the p-th reference point can be
updated as

Fp =

{
Hp(ts)

}
, s = 1, . . . ,Ns. (7)

Remark 1: The proposed phase compensation method
exploits the property of CSI-fingerprinting task to avoid
the estimation of phase distortion. For online positioning,
we only need to implement the proposed method once for the
online estimated CSI, whose complexity is independent of the
size of the offline fingerprint dataset. By contrast, the phase
compensation algorithm proposed in [4] requires the estima-
tion of phase distortion between the online estimated CSI and
each CSI in the offline fingerprint dataset. Thus, its online
processing complexity for phase compensation scales with
the size of the offline fingerprint dataset, which is much
higher than the proposed method.
Remark 2: It can be found from (6) that the proposed

method scarifies one dimension of CSI to realize the relative
phase compensation. Nevertheless, this has minor impact
on the positioning accuracy due to the large dimension of
LTE CSI.
Remark 3: The proposed method includes two steps of

phase compensation as given by (4) and (6), both of which
multiply the channel to be compensated with a phase of

VOLUME 8, 2020 75251



Y. Wang et al.: Is Centimeter Accuracy Achievable for LTE-CSI Fingerprint-Based Indoor Positioning?

other channel. Thus, the statistical distribution of the noise
involved in the estimated channel does not change after the
compensation. As aforementioned, the impact of noise is
taken into account in the experiments in the next section.

B. IMPLEMENTATION OF LTE-CSI FINGERPRINTING
SYSTEM
We develop a LTE-CSI fingerprinting system to assess the
positioning accuracy. It follows the same design principle
as exist fingerprinting systems, i.e., operating in two stages
including offline building of fingerprint dataset and online
positioning. But the implementation of the system incorpo-
rates the factors analyzed in Sec. II, which is described as
follows.

1) OFFLINE BUILDING OF FINGERPRINT DATASET
The employed positioning algorithm has impact on the build-
ing of fingerprint dataset. For example, if the positioning
is conducted by measuring the correlation between chan-
nels, e.g., the time reversal based algorithm in [4], then the
acquired CSI can be directly used as fingerprint dataset.
If machine learning is used for positioning, then the finger-
print dataset can be formed by the learned features or models
according to the employed methods [3], [5].

We use the Random Forest (RF) method as an exam-
ple to show the effectiveness of machine learning for
fingerprint-based positioning. RF is effective to deal with
large datasets (consider that we will create a fingerprint
dataset with centimeter-level granularity and hundreds of
dimensions for each channel) since it can work with sub-
sets of data. Meanwhile, RF does not require data pre-
processing, e.g., normalization, so that the channel amplitude
and phase information can be directly used as attributes. The
implementation of RF follows the work in [8]. Since RF
works on real-valued attributes [8], we set the amplitudes
and phases of Hp(ts) as the input attributes. Based on the
subsets created by Bootstrap Aggregation, T decision trees
are trained in parallel, and the outputs of these trees are
finally combined by the voting algorithm. The trained model
is then saved at the MSs for positioning. Since only the
learned features instead of the raw channel data Hp(ts) are
stored, the required memory size at MSs is generally not
large.

The detailed considerations regarding fingerprint granular-
ity and evaluation approach will be elaborated in the next
section.

2) ONLINE POSITIONING
When a MS conducts positioning at time t , it first esti-
mates the real-time LTE CSI Ĥp(t). Then, it can calibrate
the estimated CSI by using the proposed phase compensation
algorithm, and obtains the compensated CSI estimate Hp(t).
Finally, the amplitude and phase parts of Hp(t) are extracted
as the input attributes to the trained RF model, and the output
of the model is the final positioning result.

IV. EXPERIMENT RESULTS
We conducted the experiments in a lab office at the local
campus. A rectangular experimental area with 1 m× 0.675 m
was considered. In order to improve the fingerprint granu-
larity, we mapped the experimental area by Np = 588 uni-
formly scattered reference points with 5 cm vertical spacing
and 2.5 cm horizontal spacing. These reference points were
generated by an antenna scanner. The experiment environ-
ment, reference point layout, and system setup are shown
in Fig. 1.

We designed a prototype system equipped with Nr = 2
antennas to receive LTE signals from a public macro BS
operated by China Unicom, which is located out of the cam-
pus. According to our measurements, we find that the BSs
deployed around the campus may have one or two anten-
nas. In order to obtain a conservative positioning accuracy,
we only estimate and utilize the CSI from one antenna of
the macro BS. The radio frequency part of the prototype
system was implemented on AD-FMCOMMS2, which is
an evaluation board of the radio frequency transceiver chip
AD9361. AD9361 is a popular radio frequency chip used
in LTE BSs, which has adjustable carrier frequency from
70 MHz to 6 GHz. The baseband processing was imple-
mented on ZedBoard, an evaluation board of the Xilinx all
programmable SoC chip Zynq-7020. Zynq-7020 involves
dual-core ARM processors and programmable logics, with
which we can implement the baseband processing algo-
rithms on chip. To reduce the implementation complexity for
real-time processing, we estimated the channels only once in
each subframe, which is reasonable for positioning because
the movement of indoor users within a subframe (i.e., 1 ms)
is negligible. The considered LTE system has the bandwidth
of 20 MHz, which includes Nc = 200 CRSs. Thus, we can
obtain a channel estimate with the size of 200 × 2 every
millisecond.

To reflect the impact of the factor ‘‘evaluation approach’’
as discussed in Section II-D, we carried out two channel
measurement campaigns on different days. In the first mea-
surement, denoted by ‘‘CH-1’’, we controlled the scanner to
move the antennas to each reference point, and then estimated
the channels for 10 seconds per reference point, which cor-
responds to Ns = 10, 000 channel estimates for each refer-
ence point. In the second measurement, denoted by ‘‘CH-2’’,
we drove the scanner to generate a continuous movement of
antennas in the experimental area. The movement distance
was 16 meters, fromwhich we sampled 16, 000 testing points
with the granularity of 1 mm. Note that most of these testing
points are outside of the 588 reference points, which can
reflect the real-life positioning scenarios and is thus of prac-
tical importance.

We consider the following two performance metrics.
1) Mean classification accuracy (MCA): A position-

ing is called a correct classification if the clos-
est reference point to the testing point is found.
This metric measures the probability of correct
classification.
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FIGURE 1. (a) Experiment environment and reference point layout (b) Experiment system and setup.

2) Mean Absolute Error (MAE): This metric measures
the distance between the positioning estimate and the
real position.

For comparison, except the proposed positioning scheme
using RF algorithmwith T = 100 decision trees, two relevant
schemes are also considered, which employ the time-reversal
(TR) based algorithm in [4]1 and the KNN algorithm in [6]
with K = 2, respectively. For every algorithm, we consider
three kinds of CSI for positioning: 1) only use amplitude
(denoted by ‘‘AM’’), 2) use both amplitude and uncompen-
sated phase (denoted by ‘‘uCP’’), and 3) use both ampli-
tude and compensated phase with the proposed compensation
method (denoted by ‘‘CP’’).

A. EVALUATION WITH CH-1
We first evaluate the performance under CH-1. We randomly
select 60 samples from the 10, 000 channel estimates for each
of the Np = 588 reference points, where 30 samples are used
to build the fingerprint dataset for training and the remaining
30 samples are used for testing. It can be found that the testing
points are selected from the Np reference points in this setup,
which is a widely used evaluation approach, e.g., in [4].

The evaluation results are presented in Table 1, where the
MCA of KNN cannot be measured and thus is not shown
since KNN outputs K closest reference points. We consider
different numbers of adjacent CRSs to reflect the LTE sys-
tems with different bandwidths. For the proposed RF based
scheme, it can be observed that using channel amplitude

1We choose the method in [4] for comparison because it can provide a
centimeter-level accuracy, which is relevant to the focus of the paper.

can achieve comparable performance to using both ampli-
tude and compensated phase when the bandwidth is large,
while the gap between them increases with the decrease of
bandwidth. It indicates that adequate high-quality channel
features, no matter amplitude or phase, are indispensable for
accurate positioning. If the phase is not compensated, using
phase is harmful compared to only using amplitude. Compar-
ing the three schemes, we can find that the RF based scheme
has the best performance, which achieves very high posi-
tioning accuracy, for instance, MCA is 99.50% and MAE is
0.41 mmwhen Nc = 200. A reason for the good performance
is that we use CH-1 for evaluation, where the reference points
and testing points are identical, andmoreover the channels for
training and testing are measured simultaneously. To remove
the impact, we further use CH-2 to evaluate the performance
in the next subsection.

B. EVALUATION WITH CH-2
We next use the CSI in CH-2 for testing while the fingerprint
dataset is generated by CH-1 as before. Now the testing
points are sampled from a continuous movement trajectory,
the overwhelming majority of which are taken outside of the
reference points. Meanwhile, CH-1 and CH-2 are measured
on different days, which can reflect the impact of fingerprint
degradation over time. The evaluation results are presented
in Table 2 in the unit of centimeter.

By comparing Table 1 and 2, we can observe the perfor-
mance degradation caused by using CH-2 for testing. The
proposed positioning system still outperforms the other two
systems. It is shown that with the channel amplitudes and the
phases compensated by the proposed method, the developed
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TABLE 1. Positioning results under CH-1.

TABLE 2. Positioning results under CH-2.

positioning system can achieve a centimeter-level accuracy
for Nc = 200 (i.e., 20 MHz bandwidth), where the MAE is
8.71 cm.

C. COMPLEXITY COMPARISON
We finally compare the complexity of the three algorithms
in terms of mean execute time (MET) during the online
positioning stage, where the algorithmswere run inMatlab on
a computer with Intelr CoreTM i9-7900X CPU (3.30 GHz).
The MET of RF-CP, TR-CP and KNN-CP was obtained
as 6.50 ms, 1.30 s, and 2.71 s, respectively. We can find
that RF-CP has much lower complexity than others due
to both the proposed phase compensation method and the
advantage of machine learning in reducing online-processing
complexity.

V. CONCLUSION
In this paper we investigated the positioning accuracy of
the LTE-CSI fingerprinting system. By analyzing the impact
of positioning algorithm, CSI quality, fingerprint granular-
ity, and evaluation approach on the positioning accuracy,
we implemented a LTE-CSI fingerprinting system under the
guide of the four aspects, where a novel phase compensation
method was proposed. The experiment results showed that

the centimeter-level positioning accuracy is achievable for the
LTE-CSI fingerprinting system.
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