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ABSTRACT The performance of the ASR system is unsatisfactory in a low-resource environment. In this
paper, we investigated the effectiveness of three approaches to improve the performance of the acoustic
models in low-resource environments. They are Mono-and-triphone Learning, Soft One-hot Label and
Feature Combinations. We applied these three methods to the network architecture and compared their
results with baselines. Our proposal has achieved remarkable improvement in the task of mandarin speech
recognition in the hybrid hidden Markov model - neural network approach on phoneme level. In order to
verify the generalization ability of our proposed method, we conducted many comparative experiments
on DNN, RNN, LSTM and other network structures. The experimental results show that our method is
applicable to almost all currently widely used network structures. Compared to baselines, our proposals
achieved an average relative Character Error Rate (CER) reduction of 8.0%. In our experiments, the size of
training data is∼10 hours, and we did not use data augmentation or transfer learning methods, which means
that we did not use any additional data.

INDEX TERMS Low-resource, speech recognition, multitask learning, acoustic modeling, feature combi-
nations.

I. INTRODUCTION
A. BACKGROUND
Speech is the most important means for humans to transmit
information to each other. A voice carries rich information
such as the speaker’s intention, identity, and emotion. This
makes automatic speech recognition with the goal of human-
computer interaction popular, and it has been a research
hotspot in recent decades [1]. Automatic Speech Recogni-
tion (ASR) refers to the task of an automatic conversion from
speech to text by computer. In real life, speech recognition can
provide a natural and smooth human-computer interaction
method. ASR has many applications, such as Apple’s Siri,
Microsoft’s Cortana, and Xiaomi’s Xiao Ai. In recent years,
with the improvement of computer hardware capability and
the development of neural network theory, deep learning has
been applied to Automatic Speech Recognition.
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Speech recognition systems based on phoneme level are
currently mainly composed of acoustic models (AM), lan-
guage models (LM) and Pronunciation models (PM). The
acoustic model maps the acoustic features of each frames
to the modeling unit, which is the phoneme. The language
model corresponds the phoneme sequence obtained from the
acoustic model to the sentence with the highest probability.
The acoustic model is a kind of neural network structure, and
it is also the main research point. Acoustic models are mainly
divided into two types, one is the Neural Network Hidden
Markov Models (NN-HMMs), and the other is the End-to-
end models, such as Encoder-decoder structure [2]–[4] and
Neural Network structure with Connectionist temporal classi-
fication (CTC) loss [5], [6]. The hybrid hiddenMarkovmodel
(HMM) - neural network (NN) approach on phoneme level
always need to take time to train GMM to align data before
network training, and it can get better results in many tasks.
Although the End-to-end models are currently developing
rapidly, they always need a large amount of data to make the
network convergence and their performance has not exceeded
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the NN-HMM structure, especially in low-resource speech
recognition tasks, the models based HMM are much ahead.

B. RELATED WORK
As we all know, deep-learning [7] relies on a large amount of
data, so the performance of the ASR system will be unsatis-
factory in a low-resource environment. Therefore, improving
the ASR under the condition of low resource has become a
research hotspot because the acquisition of labeled speech
data is usually difficult [8]. A common problem in low-
resource environments is that the lack of training data often
leads to overfitting of the neural network, which makes the
model’s performance on the test set worse. To prevent this
problem, methods such as transfer learning, data augmenta-
tion, and unsupervised pre-training were born.

Transfer learning has been proposed for a long time, and
SJ Pan et al. made a complete summary of it [9]. It can make
full use of the data in the non-target domain to train a better
initial model. It has shown promising results in many tasks
such as image recognition [10], speech recognition [11], etc.
Unsupervised pre-training also uses additional data to train a
better initial model, but unlike transfer learning, transcribed
data is not necessary. Those data without label helps net-
works to and capture more intricate dependencies between
parameters and get a good initial marginal distribution. It has
shown promising results in several areas, including Computer
Vision (CV) [12], [41]–[44], Natural Language Processing
(NLP) [13], [14] and so on [15]–[17].

Data augmentation [18]–[20] has been proposed for the
purpose of studying low-resource language speech recogni-
tion for a long time. Kanda et al. investigated three distortion
methods – vocal tract length distortion, speech rate distortion
and frequency-axis random distortion. They evaluated those
methods with Japanese lecture recordings and get lower word
error. [21]. Jaitly et al. used Vocal Tract Length Perturba-
tion (VTLP) to expand training data. When this technique is
applied to TIMIT using Deep Neural Networks of different
depths, the Phone Error Rate (PER) improved by an average
of 0.65% on the test set [22]. Ko et al. proposed a method that
changing the speed of the audio signal, producing 3 versions
of the original signal with speed factors of 0.9, 1.0 and
1.1. They present results on 4 different LVCSR tasks with
training data ranging from 100 hours to 960 hours, to examine
the effectiveness of audio augmentation in a variety of data
scenarios. An average relative improvement of 4.3% was
observed across the 4 tasks. As far, the method of changing
speed has the lowest implementation cost and achieve state-
of-the-art performance [23]. In [24], A new method called
SpecAugment is proposed and it consists of warping the
features, masking blocks of frequency channels, and masking
blocks of time steps. Data augmentation has been proved
to be a simple and effective technique, not only in speech
recognition but also in other fields such as image recognition
[25] and keyword search [26], [27]. However, these methods
are equivalent to adding training data, and do not solve the
problem of overfitting.

Regularization is a technique to discourage the complexity
of the model. It does this by penalizing the loss function. This
helps to solve the overfitting problem. L1 and L2 are the most
common types of regularization. These update the general
cost function by adding another term known as the regular-
ization term. Due to the addition of this regularization term,
the values of weight matrices decrease because it assumes
that a neural network with smaller weight matrices leads to
simpler models. Therefore, it will also reduce overfitting to
quite an extent. In many tasks, L2 has proved to achieve better
results than L1, so the L2 regularization is widely used.

Inspired by the above research results, we adjusted the NN
model structures and investigated the effectiveness of three
approaches to improve the performance of the acoustic mod-
els in low-resource environments. The Mono-and-Triphone
learning (MAT) is based on multitask learning. Multitask
learning is an approach to inductive transfer that improves
generalization by using the domain information contained
in the training signals of related tasks as an inductive bias.
It does this by learning tasks in parallel while using a shared
representation; what is learned for each task can help other
tasks be learned better [30]. We set up a second task to make
both context-dependent (CD) and context-independent (CI)
targets the learning goals of the network. Besides, we also
investigated the effectiveness of the Soft One-hot Label
(SOL).We used a new label encoding method based on Gaus-
sian distribution to prevent the over-confidence of themodels.
We also compared the effect of different acoustic features on
the acoustic model. At last, we applied all the three methods
on the AMs based on HMM and achieve a remarkable result
on the tasks ofMandarin speech recognition in a low-resource
environment.

C. OVERVIEW
This paper is organized as follows: In Sect. 2, we will intro-
duce the Mono-and-Triphone learning method (MAT) based
on multitask learning. In Sect. 3, we will introduce our new
label encoding method named Soft One-hot label (SOL).
In Sect 4, the result of our choice of feature combinations
is be shown and discussed. In Sect. 5, we will present our
experimental setup, behaviors of the method and results of
the experiments. In Sect. 6, we will list the contributions of
the proposed method explicitly and summarize this paper.

II. MONO-AND-TRIPHONE LEARNING BASED ON
MULTITASK LEARNING
In this subsection, we compare the Monophone (Context-
Independent) target and Triphone. (Context-Dependent) tar-
get. Besides, we introduce the Mono-and-triphone learning
method based on multitask learning.

The pronunciation of a word can be given as a series
symbols that correspond to the individual units of sound that
make up a word. These are called ’phonemes’ or ’phones ’.
A monophone refers to a single phone. A triphone is simply
a group of 3 phones in the form ‘‘L − X + R’’, where the
‘‘L’’ phone (i.e. the left-hand phone) precedes ‘‘X’’ phone

73006 VOLUME 8, 2020



X. Sun et al.: Improving Low-Resource Speech Recognition Based on Improved NN-HMM Structures

TABLE 1. Comparison of the monophone declaration and triphone
declaration of the sentence ‘‘i like dog’’.

and the ‘‘R’’ phone (i.e. the right-hand phone) follows it.
Table 1 shows an example of the conversion of a monophone
declaration of the sentence ‘I LIKE DOG.’ to a triphone dec-
laration. Sil denotes Silence, which means that this phoneme
no left or right context phone. Lexical stress is indicated by
means of a numeral {0,1,2} attached to a vowel.

Because triphone can better represent contextual informa-
tion, when the triphone was proposed, it replaced the mono-
phone and became the mainstream modeling method [28],
[29]. It has also been shown to achieve better results than
the monophone. However, there is a disadvantage to using
triphones as DNN targets: there is no distinction between
discrimination between different phones, and between differ-
ent contexts of the same phone. The latter discrimination has
a much more limited benefit to producing a more accurate
phone hypothesis at test time, because our ultimate goal is
just to get the correct phone, not the correct contextual infor-
mation. However, the two discriminations are both treated
equally in cross-entropy DNN training.

In addition, the number of modeling units of the triphone
model is several times greater than that of the monophone
model. In the CMU English dictionary, which has close to
130,000 word pronunciations, there are only 43 monophones,
but there are close to 6000 triphones. This is also the case
in Mandarin and any other language. Therefore, a second
problem with triphone compared to monophone being the
inherent data sparsity issue in having a large output layer.
Increasing the number of output units obviously increases the
number of weights to be trained between the output layer and
final hidden layer, with fewer samples with fewer samples
available to train each weight. Therefore, too many triphone
modeling units and very little training data can easily lead to
overfitting of the neural network.

To solve these problems, we investigated a new network
structure based on multitask learning [30]. Our proposed
structure is not only trained to optimize a triphone cross-
entropy (CE) based loss and we give the network a second
optimization task, which is the CE of monophone. The first
task ‘‘Tri-task’’ is effectively a mapping from a set of T
training frames to a set of Tri-labels, that is:

Tri-task : {t : 1 ≤ t ≤ T } ⇒ {Tri-labels}

t ⇒ LBTrit (1)

where t denotes one frame, LBTrit denotes its label under
Tri-task.

The second task ‘‘Mono-task’’ is similar, except that the
set of labels is different, and replaced with Mono-labels
LBMonot . These two tasks are combined by a hyper-parameter
α, sharing the hidden layer of the neural network, and jointly
optimizing the parameters of the neural network. Therefore,
the final loss function as follow.

Loss = −
T∑
t

log p(LBTrit |xt ; θ
Tri)

−α

T∑
t

log p(LBMonot |xt ; θMono) (2)

where xt denotes the acoustic features of each frame, θTriand
θMonodenote the parameters of the networks with different
out layer. α denotes the weight of monophone loss. The loss
function is minimized with respect to parameters θ when
learning.

Although we have two output layers during training,
we still use the triphone output layer as the final prediction
result during prediction, which mainly considers that the tri-
phone has a great advantage over monophone. The purposes
of the monophone task are to effectively limit the complexity
of the natural network and improve the generalization of it.
Figure 1 shows our network structure.

FIGURE 1. The mono-and-triphone learning framework which is similar
to multitask learning.

A shared representation between tri-task and mono-task is
central to the MAT approach. When computing the gradients,
the forward pass can be shared between both tasks, up to
the two output layers. We think a single mono-task or a
single tri-task is not sufficient. Mono-task is well-defined
but not informative enough to guide to the model to a good
hidden representation. Tri-task is high-dimensional and can
provide more details about the contexts, but a high degree
of contexts noise is there especially in a low-resource envi-
ronment. Therefore, optimizing the two tasks together is a
good option. Due to the addition of mono task, compared
with the traditional structure, MAT attaches more importance
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to the correctness of intermediate phonemes. Although the
correctness of context is also important, the correctness of
intermediate phonemes is what wewant. Besides, the addition
of a second task also limits the complexity and improves the
generalization of the acoustic model.

In order to prove the effectiveness of MAT in preventing
neural networks from overfitting, we have conducted several
comparative experiments on various network structures, such
as DNN, BiRNN, BiGRU, and BiLSTM (hereinafter referred
to as RNN, GRU and LSTM). Experiments show that the
method achieves better results than baselines on the low-
resource Mandarin recognition task. The details and results
will be given in Sect. 5.

III. SOFT ONE-HOT LABEL
Here we propose a mechanism based on Gaussian distribu-
tion to regularize the classifier layer of the network during
training.

In classification tasks, one-hot is the most commonly used
label encoding method. One-hot encoding can be defined as a
process of converting categorical variables into a distribution
that could be provided to ML algorithms to do a better job
in prediction. The encoded label method and its distribution
shows in Formula. 3.

class(k)(one− hot)=

{
1, (kislabel)
0, (kisnotlabel)

(0 ≤ k ≤ K )

Distribution(one− hot)

= [class(0), . . . , class(k), . . . , class(K )]

= [0, . . . , 0, 1, 0, . . . 0] (3)

whereK denotes the number of the classes and k denotes each
category of all.

For each training example, our model uses the Softmax
layer to compute the probability of each label k ∈ {0 . . .K }

p(k|x) =
exp(zk )
K∑
i=0

exp(zi)

(4)

here, zi are the logits or unnormalized log probabilities.
Then we will get a predicted probability distribution. Our

optimization goal is to minimize the cross-entropy (CE) loss
between the predicted distribution and the ground-truth label
distribution.

Model over-confidence is promoted by the CE training
criterion. For the baseline network, the training loss is min-
imized when the model concentrates all of its output dis-
tribution on the correct ground-truth category. This leads to
very peaked probability distributions, effectively preventing
the model from indicating sensible alternatives to a given
triphone or monophone. Therefore, one-hot encoding labels
often also leads to over-confidence and overfitting of the AM.

In addition, in speech recognition tasks, language mod-
els (LM) are often needed to re-score the probability scores
derived from acoustic models by fusion as Formula. 5.
The language model can linguistically correct the phoneme

sequences generated by the acoustic model, and finally get
better results.

y∗ = argmax
y

log p(y|x)+ λ logPLM (y) (5)

where PLM (y) is provided by the LM, y∗ denotes the final
score, λ denotes the proportion of language score in the final
score, x denotes the training example.

However, the ability to language model rescoring is lim-
ited. Sometimes, the model-confidence and overfitting can
cause the acoustic model (AM) scores of some wrong
sequences too high, which may impact the ability of language
model to find good solutions and to recover from errors.

In [40], the authors consider a simple technique of adding
time-dependent Gaussian noise to the gradient at every train-
ing step. The added Gaussian noise improves the generaliza-
tion of complicated neural networks because it can prevent
the model from falling into the local minima during training.
However, adding Gaussian noise to the gradient can not solve
the problem of over-confidence.

Inspired by [40], we investigated a new label encoding
method named ‘‘Soft One-hot Label (SOL)’’. It is a regular-
ization mechanism to prevent the acoustic model to making
over-confident predictions. The goal of our proposal is to
reduce the gap between the probability of the correct cat-
egory and the wrong categories. SOL can prevent peaked
probability distributions and improve the generalization of
the acoustic models. Besides, since we reduced the gap of
correct and wrong categories, this reduces the AM score and
enhances the ability to languagemodel rescoring. Because we
have very little audio data, the language model plays a very
important role in correct the phoneme sequences.

In SOL, we don’t use directly 0 and 1 to encode our
labels into vectors. We give it more randomness. For the
true classification, we still assign it a high probability, but
for other classifications, we will not make them 0. Instead,
they are assigned a small random variable that obeys the
Gaussian distribution. We don’t think it’s a good idea to have
a constant value for each category. This will make the neural
network try to fit this invariant distribution and impact the
adaptability, so the Gaussian distribution which increases the
diversity of label vectors is a good choice. Formula. 6 shows
the bottom of the next page, our label encoding method and
one example of the label vector. where the hyper-parameter
δdenotes the value of a high probability, the parameterµ is the
mean or expectation of the distribution (and also its median
and mode); and σ is its standard deviation,xdenotes a random
value in a range and is used to calculate a random number
that obeys the Gaussian distribution, Kdenotes the number of
categories.

In this case, if we use the traditional Gaussian distribution,
some generated random numbers Ran will be

Ran < −
1− δ
K − 1

(7)

and this causes some of the values in the label vector to
be negative. As we all know, negative numbers will lead to
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logarithmic errors, so we add some restrictions to the random
number that obeys the Gaussian distribution. To ensure that
all values in the SOL vector are positive, we limit the gener-
ated Gaussian random numbers Ran in a range:

−
1− δ
K − 1

< Ran <
1− δ
K − 1

(8)

In order to implement this limitation, we need to determine
whether the random number meets the requirement every
time it is generated. If it does not meet the requirement, it will
be dropped and regenerated.

The encoding result of SOL for the same label is also
different because we add Gaussian perturbation. Without the
SOL and MAT, the loss function is:

loss = −
T∑
t

log(ce(p(t), q(t)))

= −

T∑
t

log
n∑
i=1

(p(ti) log q(ti)) (9)

where ce() denotes the cross-entropy function, p(t) denotes
the predicted probability distribution calculated by the neural
network for the input x, q(t) denotes represents the Vector
0,1 encoded on the label by one-hot. t represents each frame
in the training set. T denotes all the frames. n denotes the
dimensions of the p(t) and q(t) distribution.

We can get the gradient of backpropagation by calculating
the partial derivative of the loss function. Then, we apply SOL
and MAT to the final loss function and make some changes
to Formula. 9. Therefore, we firstly define the predicted
probability distribution,

p(t)Tri = θTri(xt ) (10)

p(t)Mono = θMono(xt ) (11)

where θ triand θmono denote the parameters of the networks.
They share all the hidden and input layers of the network

but have a different output layer. BiLSTM, for example, they
can also be represented as follows,

p(t)Tri

= (soft max Tri ◦ dropout4 ◦ batchnorm4 ◦ tanh ◦BiLSTM4

◦ · · · ◦dropout1 ◦ batchnorm1 ◦ tanh ◦BiLSTM1)(xt )

(12)

p(t)Mono

= (soft maxMono ◦ dropout4 ◦ batchnorm4 ◦ tanh ◦

BiLSTM4 ◦ · · · ◦ dropout1 ◦ batchnorm1 ◦ tanh ◦

BiLSTM1)(xt ) (13)

where,

BiLSTM = linear ◦ concat(LSTMforward ,LSTMbackward )

(14)

Then we define the ground-truth label vector,

q(t)Tri = SOL(LBTrit ) (15)

q(t)Mono = SOL(LBMonot ) (16)

where SOL function denotes the Formula. 6.
Finally, the loss function with SOL andMAT can be got by

modifying the Formula. 9:

loss = −
T∑
t

log(ce(p(t)Tri, q(t)TriSOL))

−α

T∑
t

log(ce(p(t)Mono, q(t)MonoSOL ))

= −

T∑
t

log
n∑
i=1

(p(ti)Tri log q(ti)TriSOL)

−α

T∑
t

log
n∑
i=1

(p(ti)Mono log q(ti)MonoSOL ) (17)

We apply SOL and MAT to the final loss function. The
Gaussian perturbation in SOL changes the final loss function
and makes the networks inclined to fit a more flexible and
less peaked probability distribution. This perturbation can
make the network not lead to overconfidence during training,
so that the network has a better generalization. This method
will increase our final loss but improve the performance of
the AM.

We apply SOL to the baselines and the multitask learning
mentioned in the Sect. 2. Experimental results will be present
in Section. 5.

IV. FEATURE COMBINATIONS
In this subsection we explore the effects of different features
and combinations of features on the performance of AM.

In ASR, themost commonly used acoustic features areMel
Frequency Cepstral Coefficents (MFCC) and Filter banks
(Fbank). Almost all speech recognition tasks choose one of
these two. Although they have been shown to achieve good
results in speech recognition, these two features do not elimi-
nate the differences between different speakers and affect the
performance of the acoustic model. Therefore, we propose to
combine the traditional features with FMLLR features as the
input of the neural networks.

class(k)(SOL) =


1−

∑
i 6=label

class(i)(SOL), (k is label)

1−δ
K−1 +

1
√
2πσ

exp (x−µ)
2σ 2

2
, (k is notlabel)

(0 ≤ k ≤ K )

Distribution(SOL) = [class(0)(SOL), . . . class(k)(SOL), . . . , class(K )(SOL)]

= [0.0015, . . . , 0.0034, 0.934, 0.0019, . . . , 0.003] (6)
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Feature-space Maximum Likelihood Linear Regres-
sion (FMLLR)was explored in [32], [33] for speaker adaptive
training and it is a feature space transform where we trans-
form acoustic features for better fit to a speaker-independent
(SI) model. We can get FMLLR features vector according to
this formula:

ōt = A(n)ot + b(n) = W(n)ξ (t) (18)

whereW(n) = [A(n), b(n)] stands for the transformation matrix
and ξ (t) = [oTt , 1]

T represents the extended feature vector.
Before training the SI model, we have an initial matrix

W(n), then construct the transformed features iteratively train
the new parameters of SI model. After many iterations,
we can get a better W(n) for us to perform FMLLR feature
transformation.

The combination of different acoustic features can make
the speech signal of each frame more detailed and accurate.
In particular, the addition of FMLLR features improves the
generalization of the model to different speakers.

In Sect. 5, a lot of experiments were conducted to select
the combination of features. More details of the them will be
shown.

V. EXPERIMENT
A. BASELINE NN-HMM SYSTEM
All experiments are conducted on Pytorch-Kaldi platform
[33]. We use a single Nvidia TITAN Xp GPU to do
single running. Most of the acoustic models are trained
with 40-dimensional high resolution MFCC, 40-dimensional
Fbank and 40-dimensional FMLLR feature. Those features
were computed with a 25ms window and shifted every 10ms.
The raw features are normalized via mean subtraction and
variance normalization per speaker side.

Our baseline systems use Natural Networks (DNN, RNN,
GRU or LSTM), modelling frame posterior probabilities over
triphone units. All of our RNN structures are bidirectional.
Unidirectional Recurrent neural networks of that type has the
potential disadvantage that it can only take advantage of con-
text information in one direction (usually the past). However,
the bi-directional RNN structure makes full use of the context
information in both directions, so it is proved to achieve
better results. Figure. 2 shows our baseline framework and
its components. Dropout [34] is applied in our baselines.
Dropout is an effective way to prevent neural networks from
over-fitting. The key idea of dropout is to randomly drop units
(alongwith their connections) from the neural network during
the training process.

The standard test result in Mandarin speech recognition
tasks is Character Error Rate (CER) and Word Error Rate
(WER). CER is more convincing than WER in our task. The
details of the four different baselines are shown in Table. 2.
Splice stands for whether we splice the features of a frame
with adjacent frames, so that the model can learn more
sequence characteristics. Because of the particularity of RNN
structures, SPLICE does not need to be used on them. We set

FIGURE 2. The NN-HMM framework and its components.

TABLE 2. The details of our four baselines.

the learning rate as the number of iterations decays to ensure
that the network can reach the global minima faster.

B. THE-STATE-OF-ART
Since our proposal (MAT+ SOL) resembles a regularization
method, our experiment compares the results with L2 regu-
larization, which is the-state-of-art method. L2 regularization
[35] is a technique to discourage the complexity of the model.
It does this by penalizing the loss function and the regulariza-
tion term is the sum of the square of all feature weights like
Formula. 19.

loss_function = loss+ φ ∗
∑
‖w‖2 (19)

where φ denotes regularization parameter.
This helps to prevent the overfitting problem by forcing the

weights to be small but does not make them zero and does
non-sparse solution.

To verify the effectiveness of our framework, we also
compared it with the-state-of-art framework in a low-resource
environment, TDNN-HMM based on Kaldi platform [39].
TDNN-HMMhas been proved toworkmuch better than other
models when there is very little data. It uses a method of

73010 VOLUME 8, 2020



X. Sun et al.: Improving Low-Resource Speech Recognition Based on Improved NN-HMM Structures

TABLE 3. Comparison results of the experiments with mono-and-triphone learning and baselines. ‘‘Mono 0.9’’ means that the weight of mono loss is 0.9.
it turn out to be baselines when the weight is 0.0.

sequence-discriminative training and the objective function
we used in the training is LF-MMI (Lattice-Free Maximum
Mutual Information) [33], [34], which aims to maximize
the probability of the target sequence, while minimizing the
probability of all other sequences:

FMMI =
U∑
u=1

log
p(ou|wu; θ )kp(w)

p(ou)

=

U∑
u=1

log
p(ou|wu; θ )kp(w)∑
w p(ou|w′u : θ )kp(w′)

(20)

where ou and wu denote the observed sequences and the
correct sequence labels. p(w) represents the prior probability
of word sequence w and p(w′) represents a feasible sequence
in the search space. θ represents the hyper-parameters of the
model.

C. DATASET
Our experiments are conducted on a ∼10 hours training set
consisting of 3000 Mandarin utterances. The training set is
a subset of THCHS-30 [36], the dev set and test set are
the same as those of THCHS-30. THCHS-30 involves more
than 30 hours of speech signals recorded by a single carbon
microphone at the condition of silent office. Most of the
participants are young colleague students, and all are fluent
in standard Mandarin. The sampling rate of the recording is
16, 000 Hz, and the sample size is 16 bits.

The language model used in our experiments involves 48k
words and is based on word 3-grams. The LM was trained
using a text collection that was randomly selected from the
corpus and Aishell-2 [37] corpus. The training text involves
772, 000 sentences, amounting to 18 million words and
115 million Chinese characters. The LMwas trained with the
SRILM tool [38].

D. RESULTS
In order to verify the effectiveness of our proposed methods,
we have done a few of comparative experiments. We divided
the experiments into three groups, each corresponding to a
method to verify the effectiveness of a single method. Finally,
we combined the three methods to calculate the best results
we achieved. Doing so not only guarantees that all three

FIGURE 3. The CER curves for the test set with different value of
mono-weight in the range [0.0, 1.0] on four baselines.

methods can achieve positive results, but also proves which
method has the greatest benefit on our baselines.

1) MAT
In this subsection, we verified the effectiveness of Mono-
And-Triphone learning (MAT). We performed comparative
implementation on all four tasks. The experimental results are
shown in Table. 3.

The CER results in the table strongly prove the effective-
ness of MAT on four different structures.

Performance of acoustic models with different values of
mono-weight (that isα, in Formula. 2) is present in Figure 3.
It shows clearly for CER curves on the test set when the value
of mono-weight is increased from 0.0 to 1.0. If mono-weight
is equal to 0.0, then it turns out to be the baselines. It can
be seen that most experiments have improvement compared
to baselines, which proves the effectiveness of MAT training.
The best acoustic model is obtained when 0.9 is provided,
with 2.6% (DNN), 3.5% (RNN), 3.7% (GRU) and 2.2%
(LSTM) relatively CER reduction over baselines. It’s easy
to understand that when the value of mono-weight is too
large, it performs worse than the baseline, which is due to
the dominance of mono-loss in training.

2) SOL
This set of experiments look at comparing the performance
of the Soft One-hot label (SOL) and One-hot label (OL) on
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TABLE 4. Comparison results of the experiments with soft one-hot label and the without. There are two groups of comparison in the table, one is on the
basis of baseline, and the other is on the structure of mat applied.

TABLE 5. Comparison results of the three experiments with different features and for experiments with different combinations of features.

the test set. In experiments with SOL, we set the value of δ
in Formula. 6 to 0.95, because it is necessary to ensure that a
high probability is assigned to the ground-truth label.

We apply SOL to triphone learning task and MAT.
OnMAT,We have two types of labels ‘‘mono-label’’ and ‘‘tri-
label’’, so we can apply SOL to a single task or to all tasks.
SOL(Tri) denotes that we only apply SOL method on the tri-
labels. The experimental results are shown in Table. 4.

The experimental results show that SOL can effectively
alleviate over-fitting and improve the performance of the
model, whether on MAT tasks or not. And it is better to use
SOL on both mono-task and tri-task. On the Triphone learn-
ing tasks, SOL achieved a relative 1.9% reduction in CER on
DNN-HMM, 1.8% onRNN-HMM, 0.9% onGRU-HMMand
1.1% on LSTM-HMM. On the MAT tasks, SOL(Tri+Mono)
achieved 1.3% reduction on DNN-HMM, % 0.8 on RNN-
HMM, 1.3% on GRU-HMM and 1.7% on LSTM-HMM. Not
only that, but our results go beyond the L2 regularization
method.

3) FEATURE CHOOSE
At last, we conduct experiments to compare the performance
of feature combinations and gather all experimental results.
We choose two or three of MFCC, FBANK, FMLLR to
combine and train the acoustic model, then choose the best
performing one as our final feature combination. As shown

in Table. 5, there are seven experiments, including three initial
features and four combined features. These experiments are
based on baselines, and neither MAT nor SOL is applied to
them.

It can be seen in the table that the combination of features
brings great benefits. In terms of a single feature, FMLLR
achieves the best experimental results due to speaker adap-
tation. Fbank works least, especially on RNN and its variant
structure. When the three features are combined, the model
gets the best effect because the multiple features represent a
frame of speech signal better. When we use all three features
to train the AM, 7.6% (DNN), 7.4% (RNN), 5.5% (GRU)
and 4.5% (LSTM) relative CER reduction over baselines are
obtained.

It can be seen that different features give different rep-
resentations of the same frame of speech signals. Although
this slightly increased the complexity of the model, great
gains were made. Therefore, we choose the combination of
‘‘MFCC+ FBANK+ FMLLR’’ as our model input features.

4) ALL THE METHODS
Finally, we applied all the three methods mentioned in this
paper to our acoustic model modeling. We conducted exper-
iments on all four baselines, and the experimental results
are shown in table 6. It can be seen from the table that the
three methods all can improve the hybrid hidden Markov
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TABLE 6. Comparison of the final results on four baselines. The value of
mono-weight is 0.9 and the input features are MFCC + Fbank + FMLLR.
The hyper-parameter of SOL is 0.95.

model - neural network approach on phoneme level. Com-
pared to baseline, our proposals have achieved relative CER
reductions of 7.8% (DNN), 11.0% (RNN), 8.6% (GRU) and
7.5% (LSTM) respectively. Compared with the-state-of-art
L2 regularization method, our proposal MAT+SOL has also
achieved some improvements. Compared to the result of the
TDNN-HMM framework, all the four frameworks exceed it.
The GRU-HMM framework achieves the-state-of-art result
and relative CER reductions of 11.3% compared to TDNN.

VI. CONCLUSION
In this paper, we investigated the effects of three methods on
the performance of acoustic modeling in low-resource envi-
ronments.We conducted separate comparison experiments on
each method on the Mandarin speech recognition task, and
finally combined the three methods together. Experimental
results show that all three methods can effectively improve
the recognition accuracy. MAT+SOL is a new regularization
method that can improve overfitting. It works better than
L2 regularization especially in a low-resource environments,
and our experiments prove that. SOL is a new label encoding
method with Gaussian perturbation, which can prevent over-
confidence of the model. Feature combination provides a new
feature selection scheme for acoustic modeling. We believe
they can also be applied to end-to-end models.

We only conducted experiments on the NN-HMM struc-
ture and not on the end-to-end model because the end-to-end
model performed too poorly in low-resource environments.

In future research, wewill continue to explore how to better
limit the complexity of network models.
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