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ABSTRACT Due to the development of internet technology and computer science, data is exploding at an
exponential rate. Big data brings us new opportunities and challenges. On the one hand, we can analyze
and mine big data to discover hidden information and get more potential value. On the other hand, the 5V
characteristic of big data, especially Volume which means large amount of data, brings challenges to storage
and processing. For some traditional data mining algorithms, machine learning algorithms and data profiling
tasks, it is very difficult to handle such a large amount of data. The large amount of data is highly demanding
hardware resources and time consuming. Sampling methods can effectively reduce the amount of data
and help speed up data processing. Sampling technology has been widely used in big data context. Data
profiling is the activity that finds metadata of data set and has many use cases, e.g., performing data profiling
tasks on relational data, graph data, and time series data for anomaly detection and data repair. However,
data profiling is computationally expensive, especially for large data sets. Hence this article focuses on
researching sampling for data profiling tasks in big data context and investigates the application of sampling
in different categories of data profiling. From the experimental results of these studies, the results got from
the sampled data are close to or even exceed the results of the full amount of data. Therefore, sampling
technology plays an important role in the era of big data, and we also have reason to believe that sampling
technology will become an indispensable step in big data processing in the future.

INDEX TERMS Big data, large amount, sampling, data profiling.

I. INTRODUCTION
We are in the era of big data. With the development of com-
puter science and internet technology, data is exploding at
an exponential rate. According to statistics, Google processes
more than hundreds of PB data per day, Facebook generates
more than 10 PB of log data per month, Baidu processes
nearly 100 PB of data per day, and Taobao generates dozens of
terabytes online transaction data every day [1]. In May 2011,
the McKinsey Global Institution (MGI) released the report1

which said that big data has great potential in the European
Public Sector, US Health Care, Manufacturing, US Retail
Industry and Location-based Services. MGI estimates in the
report that the mining and analysis of big data will generate
300 billion in potential value per year in theUSmedical sector
and more than 149 billion in the European public sector [2].
It can be seen that there is great value behind big data.
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Therefore, mining the hidden value under big data makes a
lot of sense.

Big data is something so huge and complex that it is
difficult or impossible for traditional systems and tools to
process and work on it [3]. In the latest development, IBM
uses ‘‘5Vs’’ model to depict big data. In the ‘‘5Vs’’ model,
Volume means the amount of data and it is the most direct
difficulty faced by traditional systems; Velocity means that
data is generated quickly; Variety means that data sources and
data types are diverse including structural, semi-structured,
and unstructured data; Value is the most important feature of
big data, although the value density of data is low; Veracity
refers to that data quality of big data where there is dirty data.
Because big data is so large that data analysis and data mining
based on big data require high computing power and storage
capacity. In addition, some classical mining algorithms that
require several passes over the whole dataset may take hours
or even days to get result [4].

A. DATA SAMPLING
At present, there are two major strategies for data mining
and data analysis: sampling and using distributed systems [5].
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The existing big data processing framework includes batch
processing framework like Apache Hadoop, streaming data
processing framework like Apache Storm, hybrid processing
framework like Apache Spark and Apache Flink. Sampling
is a scientific method of selecting representative sample data
from target data. Designing a big data sampling mechanism
is to reduce the amount of data to a manageable size for pro-
cessing [6]. Even if computer clusters are available, we can
use sampling such as block-level sampling to speed up big
data analysis [7].

Different from distributed systems, sampling is a kind
of data reduction method like filtering. Distributed systems
increase computing power by adding hardware resources.
However, a huge computing cost is not always affordable
in practice. It is highly demanded to perform the computing
under limited resources. In this sense, sampling is very useful.
Since the full amount of data is not used, the approximate
result is obtained from the sample data. Such approximate
result is quite useful in the context of big data. The computa-
tional challenge of big data means that sampling is essential
and the sampling methods chosen by researchers is also
important [8]. Besides, the biases caused by sampling are also
something need to be considered.

Sampling or re-sampling is to use less data to get the overall
characteristics of the whole dataset. Albattah [9] studies the
role of sampling in big data analysis. He believes that even if
we can handle the full amount of data, we don’t have to do
this. They focus on how sampling will play its role in specific
fields of Artificial Intelligence and verify it by doing experi-
ments. The experimental results show that sampling not only
reduces the data processing time, but also get better results
in some cases. Even though some examples of sampling are
not as effective as the original dataset, they are obviously
negligible compared to the greatly reduced processing time.
As stated in [9], we believe that sampling can improve big
data analysis and will become a preprocessing step in big data
processing in the future.

B. DATA PROFILING
Data mining is an emerging research area, whose goal is
to extract significant patterns or interesting rules from large
data sets [10]. Data profiling gathers metadata of data that
can be used to find data to be mined and import data into
various tools for analysis, which is an important preparatory
task [11]. There is currently no formal, universal or widely
accepted definition of distinction between data profiling and
data mining. Abedjan et al. [12] think data profiling is used
to generate metadata for data sets that are used to help under-
stand data sets and manage data sets. However, data mining
is used to mine the hidden knowledge behind the data, which
is not so obvious. Of course, data profiling and data mining
also have some overlapping tasks, such as association rule
mining and clustering. In summary, the goal of data profiling
is to generate summary information about the data to help
understand the data, and the goal of data mining is to mine
the new insights of the data.

There are many use cases of data profiling, such as data
profiling for missing data imputation [13] or erroneous data
repairing in relational database [14]. However, data profiling
itself has to face computational challenges, especially when
it comes to large data sets. Hence how to alleviate the com-
putational challenges of data profiling is very significant in
era of big data. As mentioned above, sampling for big data
profiling is very valuable and meaningful.

C. SAMPLING FOR DATA PROFILING
In this paper, we focus on the sampling techniques used for
big data profiling. Certainly, we will first introduce data pro-
filing and sampling technology separately. Among them, data
profiling has been associated with outstanding survey papers
such as [12]. Finally, our core content is to introduce the
application of sampling in data profiling tasks when facing
large data sets.

In [12], the research on data profiling around the relational
database is fully investigated and introduced. The classifica-
tion of data profiling (see Figure 1) is given in [12]. We will
investigate the sampling techniques for important data profil-
ing tasks in single column, multiple columns and dependency
according to the classification of data profiling in [12]. Some
traditional sampling methods are introduced in [15], and
methods of determining the sample size are mainly intro-
duced, but less attention is paid to sampling in big data
context. Therefore, when discussing the sampling technology
below, we will supplement some applications and informa-
tion of sampling in the big data scenario, e.g., block-based
sampling.

Specifically, in order to ensure the comprehensiveness of
the survey, we follow the systematic search method provided
in [12], a comprehensive summary of data profiling tech-
niques. As also illustrated in Figure 1 of our manuscript,
Abedjan et al. [12] categorize the data profiling approaches
into three aspects, from the elementary columns to the com-
plex ones, i.e., (1) data profiling for single columns, (2) data
profiling for multiple columns, and (3) data profiling for
dependencies. While the sampling techniques for data pro-
filing are not emphasized in [12], in our paper, we exten-
sively select the studies on sampling for data profiling in
the aforesaid categories, respectively. Figure 2 presents the
systematic search method for selecting studies, following the
categorization in [13]. Following this method, we summarize
the typical methods selected in each category in Table 3.

The remaining of this paper is organized as follows.
In Section II, we introduce the relevant knowledge of data
profiling. Besides, we introduce sampling techniques and
some important factors in sampling techniques. Next we
introduce the application of sampling for single-column data
profiling tasks in Section III, multi-column data profiling
tasks in Section IV and dependencies in Section V based
on the classification of data profiling tasks in [12]. Finally,
in Section VI, we summarize the content of the article and
propose some future works. The organizational structure of
this article is shown in Figure 2.
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FIGURE 1. A classification of typical data profiling tasks [12].

II. PRELIMINARIES
In this section, we introduce data profiling and sampling.
For data profiling, we introduce its definition, classification
and application. For sampling technology, we introduce some
common sampling techniques, how to determine the sample
size and how to solve the sampling bias.

A. DATA PROFILING
Before using or processing data, it is very important to
have a general understanding of the data. Data profiling is
the activity that finds metadata of data set [12], [16], [17],
therefore it can provide basic information about data to help
people understand the data. Data profiling is an important
area of research for many IT experts and scholars. Data
profiling has many classic use cases, such as data integration,
data quality, data cleansing, big data analysis, database man-
agement, query optimization [12], [16]. Abedjan et al. [12]
mainly investigates data profiling for relational data. How-
ever, in addition to relational databases, many non-relational
databases need data profiling [16], such as time series
data [18]–[20], graph data [21]–[23], or heterogeneous data
in dataspaces [24]–[26].

Data profiling tasks are classified in [12] and [16].
Abedjan et al. [12] classify the data profiling tasks of single
data source, and divides the tasks of data profiling into single
column data profiling, multiple columns data profiling and
dependency (see Figure 1). In fact, dependencies belong to

FIGURE 2. A systematic search method for selecting studies, following
the categorization in Figure 1 by [12].

multiple columns data profiling tasks. Abedjan et al. [12] put
dependencies separately into a large category and discuss it
in detail. Naumann [16] classifies data profiling from single
data source to multiple data sources.

There are three challenges for data profiling: managing
the input, performing the computation and managing the out-
put [12], [16], [27]. In this article we focus on the second chal-
lenge, performing the computation, i.e., the computational
complexity of data profiling. The computational complexity
of data profiling depends on the number of rows and columns
of data. When the data set is very large, the calculation of
data profiling can be very expensive. This is why we care
about sampling for big data profiling, in order to reduce
the computational pressure and speed up the process of data
profiling.

B. SAMPLING TECHNIQUES
In this section, we introduce common sampling techniques,
application of sampling technology in big data context, meth-
ods of determining sample size, sampling error and sampling
bias.

Sampling refers to estimating the characteristics of the
entire population through the representative subsets within
the population [15]. From a big perspective, sampling
involves probability and non-probability sampling. Probabil-
ity sampling means that every unit in a finite population has
a certain probability to be selected, and it does not neces-
sarily require equality. Non-probability sampling is generally
based on subjective ideas and inferences, e.g., common web
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TABLE 1. Common sampling methods.

FIGURE 3. I-sampling workflow [41].

questionnaires [28], [29]. The sampling methods mentioned
below are all probability sampling methods. Sampling is
often used in data profiling [12], data analysis [30], data
mining [6], data visualization [31], machine learning [32]
etc. The advantage of sampling is that algorithms or models
can be conducted using subset instead of the whole data set.
There are some commonly used sampling techniques includ-
ing simple random sampling [33], stratified sampling [34],
systematic sampling [35], cluster sampling [36], oversam-
pling and undersampling [37], [38], reservoir sampling [39],
etc. Table 1 gives an overview of these common sampling
methods.

In the era of big data, the application of sampling is par-
ticularly important due to the large amount of big data. And
sampling can be performed with the help of big data com-
puting framework. For example, He et al. [40] use MapRe-
duce to sample from the data which contains uncertainty.
He et al. [41] propose a block-based sampling (I-sampling)
method for large-scale dataset when the whole dataset is
already assigned on a distributed system. The processing flow
of I-sampling is shown in Figure 3.

It is very important to select effective samples [42]. If the
sample size is too small, it may get an incorrect conclusion.
If the sample size is too large, the calculation time is too
long. Singh and Masuku [15] have summarized some tradi-
tional methods for determining sample size in detail. When
sampling is used in machine learning, the most appropriate
number of samples is to make the accuracy rate reach the
maximum value and increasing the number of samples can
no longer improve the accuracy of the learning algorithm. The
corresponding figure is Figure 4, where nmin is the minimum
sample size. In this case, John and Langley [43] propose a

FIGURE 4. Learning curves [44].

sequential sampling method called Arithmetic Sampling to
find the minimum sample size.

Sampling error is when a randomly chosen sample does
not reflect the underlying population purely by chance and
sampling bias is when the sample is not randomly chosen at
all [45]. Sampling bias is one of the causes of sampling error.
These two are often confused by some scholars. Sampling
bias is caused by the failure of the sampling design, which
cannot truly extract the sample randomly from the popula-
tion [46]. And big data is susceptible to selection bias, thereby
many scholars study how to solve selection bias in sampling
process [47]–[50].

III. SAMPLING FOR SINGLE COLUMN DATA PROFILING
Single column data profiling tasks are divided into car-
dinalities, value distributions, patterns, data types, and
domains [71]. Table 2 [12] lists typical metadata that
may result from single-column data profiling. For some
single-column data profiling tasks, such as decimals which
calculates maximum number of decimals in numeric values,
simple sampling methods cannot guarantee reliable results.
And for identifying a domain of one column, it is often more
difficult and not fully automated [72]. Among them, cardinal-
ity, histograms and quantiles are often used for query optimiz-
ers, therefore sampling techniques are more commonly used
in these tasks. Specifically, in Section III-A, we introduce
sampling for cardinality estimation. Section III-B presents
sampling for value distribution. More advanced statistics
include the probabilistic correlations on text attributes [73].

72716 VOLUME 8, 2020



Z. Liu, A. Zhang: Sampling for Big Data Profiling: Survey

TABLE 2. Overview of single-column profiling tasks [12].

TABLE 3. Summary of sampling for big data profiling tasks.

A. SAMPLING FOR CARDINALITY ESTIMATION
Cardinalities or counts of values in a column are the most
basic form of metadata [12]. Cardinalities usually include
number of rows, number of null values and number of distinct
values, which is the most important type of metadata [74].
For some tasks, such as number of rows and number of null
values, a single pass over a column can get the exact result.
However, finding the number of distinct valuesmay require to
sort or hash the value of column [72]. Similarly, when facing
large data sets, statistics of the number of distinct values of an
attribute have to face the pressure of memory and calculation.
Therefore, the estimation of the number of distinct values
based on sampling have been studied [51]–[53].

Haas et al. [51] propose several sampling-based estimators
to estimate the number of different values of an attribute in
a relational database. They use a large number of attribute
value distributions from various actual databases to compare
these new estimators with those in databases and statistical
literature. Their experimental results prove that no estima-
tor is optimal for all attribute value distributions. And from
their experimental results, it can be seen that the larger the
sampling fraction, the smaller the estimated mean absolute
deviation will be. They therefore propose a sampling-based
hybrid estimator D̂hybrid and get the highest precision on
average at a given sampling fraction.

Similar to Haas et al., Charikar et al. [52] also obtain a
negative result in the experiment that no estimator based
on sampling can guarantee small errors on the input data
of different distributions, unless a larger sampling fraction
is performed on the input data. They therefore propose a
new estimator Guaranteed-Error Estimator (GEE), which is
provably optimal. Although its error on the input of different
distributions is small, it does not make use of the knowl-
edge of different distributions. For example, in the case of
low-skew data with a large number of distinct values, GEE
performs not very well in practice. They further propose
a new heuristic version of GEE called Adaptive Estimator
(AE), which avoids the problems encountered by GEE.

Different from the previous research using random sam-
pling, Gibbons [53] proposes distinct sampling to accurately
estimate the number of distinct values. Distinct sampling can
collect distinct samples in a single scan of the data, and the
samples can be kept up to date in the state of data deletions
and insertions. On a truly confidential data set Call-center,
distinct sampling uses only 1% of the data, and can achieve
a relative error of 1% -10%, while increasing the speed of
report generation by 2-4 orders of magnitude. They compare
distinct sampling with GEE, AE in the experiment and prove
that in real-world data sets, distinct sampling performs much
better than GEE and AE.
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It is worth noting that Harmouch and Naumann [74] con-
duct an experimental survey on cardinality estimation. In the
experiment, they use the GEE [52] as an example of evalua-
tion. They perform experiments on synthetic and real-world
data sets. It can be seen from the experimental results that
the larger the sampling fraction, the smaller the average
estimation relative error. And when GEE wants to reach 1%
relative error, it needs to collect more than 90% of the data.
In conclusion, when faced with large data sets, cardinality
estimation requires high memory, and sampling can reduce
memory consumption, but cannot guarantee reasonable accu-
racy all input distributions.

B. SAMPLING FOR VALUE DISTRIBUTION
Value distribution is a very important part of single-column
data profiling. Histogram and quantile are two typical forms
used to represent value distribution. The histogram is used
to describe the distribution of data, while quantile refers to
dividing the data into several equal parts.

1) SAMPLING FOR HISTOGRAM CONSTRUCTION
Many commercial database systems maintain histograms to
summarize the contents of large relations and permit efficient
estimation of query result sizes for use in query optimiz-
ers [55]. Histogram can be used to describe the frequency
distribution of attributes of interest, which groups attributes
values into buckets and approximates true attribute values
and their frequencies based on summary statistics maintained
in each bucket [75]. However, the database is updated fre-
quently, hence the histogram also needs to be updated accord-
ingly. Recalculating histograms is expensive and unwise for
large relations.

Gibbons et al. [55] propose sampling-based approaches
for incremental maintenance of approximate histograms.
They use a ‘‘backing sample’’ to update histograms. Backing
sample is a random sample of the relation which is kept
up to date in the presence of databases updates, which is
generated by uniform random sampling. Therefore, random
sampling can help to speed up histogram re-computation.
For example, SQL Server recomputes histograms based on
a random sample from relations [54].

Chaudhuri et al. [54] focus on howmuch sample is enough
to construct a histogram. They propose a new error metric
called the max error metric for approximate equip-depth
histogram. The max error metric is formula (1) shown below,
where bj is number of values in bucket j, k is the number of
buckets and n is the number of records. A k-histogram is said
to be a δ-deviant histogram when 1max ≤ δ. And size of
sample r is calculated as the following formula (2), where
δ ≤ n

k and γ is predefined probability.

1max = max
1≤j≤k

|bj −
n
k
| (1)

r ≥
4n2 ln ( 2n

γ
)

kδ2
(2)

2) SAMPLING FOR QUANTILE FINDING
Quantiles can be used to represent the distribution of single
column value. Quantiles are used by query optimizers to
provide selectivity estimates for simple predicates on table
values [76]. Calculating exact quantiles on large data sets is
time consuming and requires a lot of memory. For example,
quantile finding algorithm in [77] requires to store at least
N/2 data elements to find the median, which is memory
unacceptable for large-scale data.

Therefore, Manku et al. [56] present a novel non-uniform
random sampling to find approximate quantile. They apply
non-uniform random sampling to reduce memory require-
ments. Non-uniform means that the probability of selecting
each element in the input is different. They set the earlier
elements in the input sequence with larger probability than
those arrive later. And the process of quantile finding is shown
in Figure 5. When the data arrives, they randomly select an
element in each data block and put it into buffers. Then based
on sample, deterministic algorithms are performed to find
quantiles.

FIGURE 5. Sampling for quantile finding [56].

However, simply using random sampling method and
calculating the quantiles on the sample may not be accu-
rate enough on sensor networks. Hence Huang et al. [57]
propose a new sampling-based quantile computation algo-
rithm for sensor networks to reduce the communication cost.
To improve accuracy, they augment the random sample with
additional information about the data. They analyze how to
add additional information to the random sample under the
flat model and the tree model. For example, in the flat model,
each node first samples each data value independently with
a certain probability p and computes its local rank. Then
the samples and their local ranks are sent to base station.
The base station estimates rank for any value it receives and
then quantile queries can be solved. In the end, they prove
through experiments that the quantile computation in Sensor
Networks based on this new sampling method reduces one to

72718 VOLUME 8, 2020



Z. Liu, A. Zhang: Sampling for Big Data Profiling: Survey

two orders of magnitude in terms of the total communication
cost compared with the previous method.

IV. SAMPLING FOR MULTIPLE COLUMNS
DATA PROFILING
As shown in Figure 1, the content of the multiple columns
data profiling tasks includes association rule mining [78],
clusters and outliers [79], summaries and sketches [12].
Besides, statistical methods such as regression analysis [80]
can be used to perform multiple columns analysis, analyz-
ing the relationship between these columns. Specifically,
in Section IV-A, we investigate sampling for discovering
association rules. Section IV-B presents the content of sam-
pling for clusters and outliers. And sampling for sum-
maries and sketches is introduced in Section IV-C. Then,
in Section IV-D, we introduce sampling for helping perform
regression analysis.

A. SAMPLING FOR DISCOVERING ASSOCIATION RULES
The discovery of association rules is a typical problem in data
profiling for multiple columns. The algorithm currently used
to find association rules needs to scan the database several
times. For large data sets, the time overhead of scanning
several times is hard to accept. Large amount of data leads
to input data, intermediate results and output patterns can be
too large to fit into memory and prevents many algorithms
from executing [58]. Some scholars have proposed using
parallel or distributed methods to solve the problem of data
volume [81], [82]. But it is difficult to design parallel or
distributed algorithms.

Therefore, Zaki et al. [10] use sampling to get samples
of transaction and find the association rules based on the
obtained samples. They take sequential random sampling
without replacement as their sampling method and use
Chernoff bounds to obtain sample size. Finally, they exper-
imentally prove that sampling can speed up the discovery of
association rules by more than an order of magnitude and
provide high accuracy for association rules.

Chen et al. [4] propose a two-phased sampling-based algo-
rithm to discover association rules in large databases. At the
first stage, a large initial sample of transactions is randomly
selected from databases, which is applied to calculate support
of each individual item. And these estimated supports are
used to trim the initial sample to a smaller final sample S0.
At the second stage, association-rule algorithm is performed
against the final sample S0 to get association rules according
to provided minimum support and confidence. In the experi-
ment, the authors prove 90-95% accuracy obtained using the
final sample S0 and the size of sample is only 15-33% of the
whole databases. This again proves that sampling can be used
to speed up data analysis and big data profiling.

Wu et al. [58] propose an Iterative Sampling based Fre-
quent Itemset Mining method called ISbFIM. The same
as [10], Wu et al. [58] use random sampling as the sampling
method. But the difference is that they use iterative sampling
to get multiple subsets and find frequent items from these

subsets. They can guarantee that the most frequent patterns
for the entire data set have been enumerated and implement a
Map-Reduce version of ISbFIM to demonstrate its scalability
on big data. Because the volume of input data is reduced,
the problem that input data, intermediate results, or the final
frequent items cannot be loaded into memory is solved.
And the traditional exhaustive search-based algorithms like
Apriori can be fitted for big data context.

B. SAMPLING FOR CLUSTERING AND
ANOMALY DETECTION
Clustering is to segment similar records into the same group
according to certain characteristics, and those records that
cannot be classified into any group may be abnormal points.
The challenge that clustering technology encounters in the
era of big data is also the problem of data volume, and the
clustering operation itself consumes a lot of calculations.
Shirkhorshidi et al. [83] divide big data clustering into two
categories: single-machine clustering and multiple-machine
clustering. Single column reduces the amount of data by using
data reduction methods, e.g., sampling and dimensionality
reduction. Multi-machine clustering refers to the use of paral-
lel distributed computing frameworks, e.g., MapReduce and
cluster resources to increase computing power.

Kollios et al. [59] propose biased sampling to speed up
clustering and anomaly detection on big data. Unlike the pre-
vious work, they consider the data characteristics and analysis
goals during the sampling process. Based on the tasks of
clustering and anomaly detection, Kollios et al. [59] consider
the data density problem in the dataset. They propose a biased
sampling method to improve the accuracy of clustering and
anomaly detection. The biased sampling is to make the data
points in each cluster and the abnormal points have a higher
probability of being selected. In order to achieve this goal,
they use the density estimation method to estimate density
around the data points. In the experiment, they prove that
density-based sampling has a better effect on clustering than
uniform sampling.

Figure 6 shows the use of biased samples in clustering.
Figure 6(a) is the distribution of the original data and there
are three classes with higher density. Figure 6(b) is the result
of random sampling on the original data set. Figure 6(c) is
the result of applying the biased sampling to the original
data. Figure 6(d) shows 10 data points selected from each of
the three categories clustered based on the random sampling,
and Figure 6(e) shows 10 data points selected from each of
the three categories clustered based on the biased sampling
method. After comparison with the categories in the original
data, it is found that the clustering results of the biased
samples are more accurate.

C. SAMPLING FOR SUMMARIES AND SKETCHES
Summaries or sketches can be performed by sampling or
hashing data values to a smaller domain [12]. Although dif-
ferent scholars have applied different sampling algorithms,
the most commonly used sampling algorithm among data
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FIGURE 6. Application of biased sampling in clustering tasks [59].

scientists is random sampling [61]. The main reason is that
random sampling is the best and easiest to use, which is the
only technique commonly used by data scientists to quickly
gain insights from big data sets.

Rojas et al. [61] first interview 22 data scientists working
on large data sets and find that they basically use random
sampling or pseudo-random sampling. Certainly, these data
scientists believe that other sampling techniques may achieve
better results than random sampling. These scientists perform
a data exploration task that used different sampling methods
to support classification of more than 2 million generated
samples from data records ofWikipedia article edit. Research
has shown that sampling techniques other than random sam-
pling can generate insights into the data, which can help focus
on the different characteristics of the data without affecting
the quality of data exploration and helping people understand
the data. This shows that with the application of sampling,
Summaries or sketches of data can be created to help scientist
observe and understand the data.

Aggregated queries are also a way to generate summaries
of data. Aggregate queries are computationally expensive
which need to traverse the data. In the era of big data, a single
machine often cannot make such a large amount of data.
Therefore, aggregate queries for big data are often performed
on distributed systems that scales to thousands of machines.
The commonly used distributed computing frameworks are
Hadoop, spark, etc. Although distributed systems provide
tremendous parallelism to improve performance, the process-
ing cost of aggregated queries remains high [60]. Investiga-
tion in one cluster of [60] reveals that 90% of 2,000 data
mining jobs are aggregation queries. These queries consume
two-thousand machine hours on average, and some of them
take up to 10 hours.

Therefore, Yan et al. [60] use sampling technique to
reduce the amount of data. When error bounds cannot be

FIGURE 7. Sparseness of one representative production data [84].

compromised and data is sparse, they think that conventional
uniform sampling often yields high sampling rates and thus
deliver limited or no performance gains. For example, uni-
form sampling with 20% error bound and 95% confidence
needs to consume 99.91% of the data whose distribution is
shown in Figure 7. Hence they propose error-bounded strat-
ified sampling, which is a variant of stratified sampling [84]
and relies on the insight, i.e., prior knowledge of data dis-
tribution, to reduce sample size. Error bound means that the
real value has a large probability of falling within an inter-
val. Sparse data means that the data is generally limited but
wide-ranging.

Taking the data distribution in Figure 7 as an example,
error-bounded stratified sampling can divide the data into
two groups. One group covers the header data and the other
covers the tail data. Because the data range of the first group
is small, the sampling rate is also small. Although the data
range of the second group is large, the data basically falls in
the first group. Even if the data of the second group is all
taken as a sample, the overall sampling rate is still low. It is
worth mentioning that the technique has been implemented
into Microsoft internal search query platform.

D. SAMPLING FOR REGRESSION ANALYSIS
Statistical analysis such as regression analysis can be used
to analyze the relationship between multiple columns in a
relation. Sauter [85] think that statistics are learned from data.
Statistics methods are often used for data profiling, which
have encountered the problem of excessive data volume in
the era of big data. Statistical analysis of the entire big data
set requires a certain amount of calculation and time.

Under the computational pressure of large data sets,
many traditional statistical methods are no longer applicable.
Although sampling can help with data reduction, how to
avoid sampling errors caused by sampling needs to be consid-
ered. For example, [62] mention that in the context of linear
regression, traditional sub-sampling methods are prone to
introduce sampling errors and affect the covariance matrix of
the estimator. Hence, they propose information-based optimal
subdata selection method called IBOSS. The goal of IBOSS
is to select data points that are informative so that small-sized
subdata retains most of the information contained in the
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complete data. Simulation experiments prove that IBOSS is
faster and suitable for distributed parallel computing.

Jun et al. [63] propose to use sampling to divide big data
into some sub data sets in regression problem for reducing the
computing burden. The traditional statistical analysis of big
data is to sample from big data, and then perform statistical
analysis on the sample to infer the population. Jun et al. [63]
divide the big data closed to population into some sub data
sets with small size closed to sample which is proper for big
data analysis. They treat the entire data set as a population
and the sub set as a sample to reduce computing burden. And
they select regression analysis to perform experiments. The
traditional processing is shown in Figure 8, and their design
is shown in Figure 9.

FIGURE 8. Traditional big data regression analysis [63].

FIGURE 9. Sampling-based partitioning big data regression analysis [63].

Their design consists of three steps: the first step is to
first generate M sub-data sets using random samples without
replacement; the second step is to calculate the regression
parameters of each sub-data set and calculate the average
of regression parameters of the M sub-data sets; the third
step is to use the averaged parameters obtained in the sec-
ond step to estimate regression parameters on the entire
data set. This design that combines sampling and parallel
processing helps them speed up regression analysis on big
data. By experimenting with the data set from the simulation
and UCI machine learning repository, the author proves that
the regression parameters obtained by distributed calculation
on random samples are close to the regression parameters
calculated on entire data set. This provides a reference for
statistical analysis on the entire large data set.

V. SAMPLING FOR DEPENDENCIES
A dependency is a metadata that describes the relationship
between columns in relation, based on either value equality
or similarity [86]. There are many use cases for dependencies.
For example, unique column combinations are used for find-
ing key attributes in relation [64], and functional dependen-
cies can be used for schema normalization [88] or consistent
query answering [89], while inclusion dependencies can sug-
gest how to join two relations [12]. Inclusion dependencies
together with functional dependencies form the most impor-
tant data dependencies used in practice [87]. But discovery
of dependencies is time consuming and memory consuming.
Many functional dependencies discovery algorithms are not
suitable for large data sets. Sampling could be employed
to estimate the support and confidence measures of data
dependencies [91], [92]. By sampling, you can select a small
enough representative data set from the big data set. Hence
the choice of sampling method is very important, which
help to ensure that the estimated inaccuracy rate is below a
predefined bound with high confidence. Specifically, based
on the classification for dependency in [12], we investigate
sampling for unique column combinations in Section V-A,
functional dependency in Section V-B, inclusion dependency
in Section V-C.

A. SAMPLING FOR DISCOVERY OF UNIQUE
COLUMN COMBINATIONS
An important goal in data profiling is to find the right key
for the relational table, e.g., primary key. The step before
key discovery is to discover unique column combinations.
Unique column combinations are sets of columns whose
values uniquely identify rows, which is an important data
profiling task [93]. But discovery of unique column combi-
nations is computationally expensive, which is suitable for
small dataset or samples of large dataset. For large data
set, sampling is a promising method for knowledge discov-
ery [94]. Based on sampling-based knowledge discovery,
it is necessary to first select samples from the entire data
set and obtain knowledge from the samples, and then use
the entire data set to verify that the acquired knowledge is
correct.

A typical algorithm for identifying key attributes is
GORDIAN proposed by Sismanis et al. [64]. The main idea
of GORDIAN is to turn the problem of keys identifica-
tion into cube computation problem, and then find non-keys
through cube computation. Finally, GORDIAN calculates the
complement of the non-keys set to obtain the desired set of
keys. Therefore, the GORDIAN algorithm can be divided into
three steps: (i) create the prefix tree through a single pass
over the data; (ii) find maximal non-uniques by traversing
the prefix tree with prunning; (iii) get minimal keys from set
of maximal non-uniques. In order to make GORDIAN scal-
able to large datasets, Sismanis et al. combine GORDIAN
with sampling. Experiments have shown that sampling-based
GORDIAN can find all true keys and approximate keys using
only a relatively small number of samples.
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GORDIAN algorithm is further developed by Abedjan
and Naumann [65] to discover unique column combina-
tions. Since the existing algorithms are either too vio-
lent or have high memory requirements and cannot be
applied to big data sets. A hybrid solution HCA-Gordian,
which combines Gordian algorithm [64] and their new algo-
rithm the Histogram-Count-based Apriori Algorithm (HCA),
is proposed by Abedjan and Naumann [65] to discover
unique column combinations. GORDIAN algorithm is used
to find composite keys and the HCA is an optimized
bottom-up algorithm which takes efficient candidate gener-
ation and statistics-based pruning methods. HCA-Gordian
performs Gordian algorithm on a smaller sample of table
to discover non-uniques and non-uniques will be used as
pruning candidates when executing HCA on the entire
table.

In the experiment setup, the sample size for the prepro-
cessing step of non-unique discover is always 10,000 tuple
sample. Especially when the amount of data is large and
the number of unique is small, the runtime of HCA-Gordian
is lower than Gordian. For example, when using real world
tables for experiments, search speed of HCA-Gordian is four
times faster than Gordian. And as the data set grows larger,
e.g., the National file contains 1,394,725 tuples, Gordian
takes too long to run, while HCA-Gordian only takes 115 sec-
onds to complete. In addition, When the number of detected
non-uniques is high, the discovery effect of HCA-Gordian is
better than Gordian.

B. SAMPLING FOR FUNCTIONAL DEPENDENCIES
A functional dependency refers to a set of attributes in a rela-
tionship that determines another set of attributes. For exam-
ple, there is such a functional dependencyA->B, whichmeans
that any two records in the relationship, when their values on
the attribute set A are equal, the values on the attribute set
B must be equal. Bleifuß et al. [66] propose an approximate
discovery strategy AID-FD (Approximate Iterative Discov-
ery of FDs) which sacrifices a certain correct rate in exchange
for performance improvement. AID-FD uses an incremental,
focused sampling of tuple pairs to deduce non-FDs until
user-configured termination criterion is met. The authors
have demonstrated in experiments that the AID-FD method
uses only 2%-40% of the time of the exact algorithm when
processing the same data set, but finds more than 99% of the
functional dependencies.

Papenbrock and Naumann [67] mention that today’s var-
ious functional dependencies discovery algorithms do not
have the ability to process more than 50 columns and 1 mil-
lion rows of data. Thus, they propose the sampling-based
FD discovery algorithm HYFD. And there are three proper-
ties in sampling-based FD discovery algorithms: Complete-
ness, Minimality, Proximity, which are important for HYFD.
HYFD combines column-efficient FD induction techniques
with row-efficient FD search techniques in two phases.
In Phase 1, they apply focused sampling techniques to select
samples with a possibly large impact on the result’s precision

and produce a set of FD candidates based on samples.
In Phase 2, the algorithm applies row-efficient FD search
techniques to validate the FD candidates produced in Phase 1.
The samplingmethod allows functional dependencies discov-
ery algorithms to be extended to large data sets.

In experiments, when the data set is not very large, the run-
time of HYFD is almost all lower than other algorithms.
When the data set exceeds 50 columns and 10 million rows,
HYFD can get the result through a few days of calculation.
However, other algorithms cannot complete the calculation,
because the time complexity for these algorithms is exponen-
tial. This again demonstrates that sampling is important for
data profiling, e.g., FD discovery.

In the above, we mention that using focused sampling to
find functional dependencies. In this section, we will mention
the use of random sampling to find soft functional dependen-
cies. The so-called ‘‘soft’’ functional dependency is relative
to the ‘‘hard’’ functional dependency. A ‘‘hard’’ functional
dependency means that the entire relationship satisfies the
functional dependency, while a ‘‘soft’’ functional depen-
dency means that the entire relationship is almost satisfied,
or that there is a high probability of satisfying the functional
dependency.

Ilyas et al. [68] propose sampling-based CORDS, which
means that automatic discovery of correlations and soft func-
tional dependencies between columns, to find approximate
dependencies. Among them, correlation refers to the gen-
eral statistical dependence, while soft functional dependence
refers to that value of attribute C1 determines the value of
attribute C2 with high probability. CORDS use enumeration
to generate pairs of columns that may be associated, and
heuristically cuts out those unrelated column pairs with high
probable. CORDS apply random sampling with replacement
to generate sample. In the implementation of CORDS, they
only use a few hundred rows of sample data, and the sample
size is independent of the data size. In the experiment to eval-
uate the advantages of applying CORDS, where run a work-
load of 300 queries on the Accidents database, the median
query execution time and worst query execution time with
CORDS applied were better than those without CORDS.
Hence CORDS is efficient and scalable when it encounters
large-scale dataset.

Approximate functional dependence is similar to themean-
ing of soft functional dependency. Approximate functional
dependence requires the normal functional dependency to be
satisfied by most tuples of relation R [95], [96]. Of course,
approximation functional dependencies contain exact func-
tional dependencies that are satisfied throughout the relation-
ship. As mentioned in [95], when the amount of data is large,
the time for discovery of functional dependency will increase
exponentially. Therefore, Kivinen and Mannila [95] propose
to discover approximate dependencies by random sampling.
In fact, sampling can be used not only to find approximate
functional dependencies, but also to verify exact functional
dependencies [96]. If the exact functional dependency does
not satisfy all the sample data, then the whole relationship is
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definitely not satisfied, hence such functional dependencies
can be removed.

Functional dependencies are satisfied for all tuples in the
relation, while conditional functional dependencies (CFDs)
is to hold on the subset of tuples that satisfies some pat-
terns [97]. AndCFDs can be used for data cleaning [97], [98].
Fan et al. [90] propose three methods for conditional func-
tional dependencies discovery. However, when the size
of data set is large, no dependency discovery algorithms
scale very well to discover minimal conditional functional
dependencies.

When mining CFDs on big data, the volume issue of big
data has to be solved. Li et al. [69] develop the sampling
algorithms to obtain a small representative training set from
large and low-quality datasets and discover CFDs on the
samples. They use sampling technology for two reasons. One
is that finding CFD needs to scan the data set multiple times,
and sampling helps reduce the amount of data. The second
is to use the sampling method to help them filter those dirty
items on the low-quality data set and choose clean items as the
training set. They define criteria for misleading tuples, which
are dirty, incomplete or very similar to popular tuples. And
then they design a Representative and Random Sampling for
CFDs (BRRSC), which is similar to reservoir sampling [39].
The difference is that they combine the criteria defined
above during the sampling process. Furthermore, they pro-
pose fault-tolerant CFDs discovery and conflict-resolution
algorithms to find CFDs. Finally, experimental results show
that their sampling-based CFD discovery algorithms can find
valid CFD rules for billions of data in a reasonable time.

C. SAMPLING-BASED TEST FOR INCLUSION
DEPENDENCY CANDIDATES
The definition of inclusion dependencies (INDs) is that the
combination of values that appear in a set of attribute columns
must also appear in another set of attribute columns [99].
Therefore, inclusion dependencies are often used to discover
foreign keys [87]. However, discovery of inclusion depen-
dencies is computationally expensive. One of the reasons is
that the existing algorithms need to shuffle huge amounts of
data to test inclusion dependencies candidates, which puts
pressure on both computing and memory [70].

Under these circumstances, Kruse et al. [70] propose fast
approximate discovery of inclusion dependencies (FAIDA).
FAIDA can guarantee to find all INDs and only false positives
with a low probability in order to balance efficiency and cor-
rectness. FAIDA uses algorithms [100], [101] of Apriori-style
to generate inclusion dependencies candidates. The inverted
index values and operates on a small sample of the input data.
The sampling algorithm is applied to each table to get each
sample. Rather than use random sampling to get sample, they
assure that sample table contains min {s, dA} distinct values
for each column A, where s represents sample size and dA
represents number of distinct values in column A.

In their experiments, they set sample size to a default
of 500. In order to verify the efficiency of FAIDA,

Kruse et al. [70] compare FAIDA’s runtime with the state-
of-the-art algorithm for exact IND discovery BINDER [101]
on multiple datasets. On four datasets, FAIDA is steadily
5 to 6 times faster than BINDER, and they generate and test
almost the same number of IND candidates. Especially when
one of the datasets reaches 79.4GB, BINDER takes 9 hours
and 32 minutes to complete, while FAIDA only takes 1 hour
and 47 minutes. Their evaluation shows that sampling-based
FAIDA outperforms the state-of-the-art algorithm by a factor
of up to six in terms of runtime without reporting any false
positives.

VI. SUMMARY AND FUTURE WORKS
Data in various fields are increasing on a large scale. Big
data brings us new opportunities and challenges. Through
data analysis and data mining of big data, we can get a
lot of potential value. However, due to the large amount of
data, it brings great challenges to the processing and storage.
Therefore, data analysis, data mining or data profiling on
large data sets have to face the pressure of calculation and
time. Increasing computing power by using clusters of com-
puters is one solution, but many times this is not the case, and
designing distributed computing is often difficult. Hence the
application of data reduction techniques like sampling is very
important. There are some mature research articles on data
profiling and sampling, but ‘‘sampling for big data profiling’’
does not exist, therefore this article focuses on researching
sampling for data profiling tasks in big data context. This
paper introduces the application of sampling in data profil-
ing tasks. According to the classification of data profiling
in [12], we introduce the application of sampling in single
column data profiling, multiple columns data profiling and
dependency discovery. In conclusion, Table 3 summarizes
the sampling for data profiling tasks investigated in survey,
indicating the widespread use of sampling in data profiling.

The above survey on ‘‘sampling for big data profiling’’ is
mainly about relational databases, and rarely involves graph
data or time series data. Since there is less research on
sampling-based data profiling for graph data or time series
data, we provide some future directions as follows.

A. SAMPLING FOR PROFILING TIME SERIES DATA
Many tasks on time series data need data profiling,
e.g., matching heterogeneous events in a sequence [102],
repairing timestamps according to the given temporal con-
straints [103] such as sequential dependencies [104]. All
these studies use data profiling to detect and repair erro-
neous temporal data. The computational cost and time cost
in large-scale temporal data streams can be high. There-
fore, sampling for profiling time series data is valuable and
necessary.

In the time series data stream, we do not need to get exact
results, e.g., when calculating the quantiles or probability
distributions of speeds. Approximate results are valuable in
time-series data streams, for example approximate probabil-
ity distributions of speeds can also help us perform effective
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anomaly detection. In the sampling of time series data, sta-
tistical probability distributions of speeds are different from
discovering quantiles. The speed of time series data depends
on the adjacent time-series data points, which means that
sampling for calculating speed of time series requires a set of
data points in awindow. Therefore, how to apply the sampling
technology to the aforesaid data profiling task of time series
data needs further experimental analysis and research.

B. SAMPLING FOR PROFILING GRAPH DATA
Data profiling is also heavily used in graph data,
e.g., using Petri Nets in process mining to recover missing
events [105], [106] and clean event data [107], discovering
keys for graphs and applying keys to study entity match-
ing [108], or defining functional dependencies for graphs [21]
and discovering them [109]. However, the above studies
still seem to be difficult when encountering large graphs.
Fan et al. [108] prove that entity matching is NP-complete
for graphs and recursively defined keys for graphs bring
more challenges. In this case, one has to design two paral-
lel scalable algorithms, in MapReduce and a vertex-centric
asynchronous model. In order to find Graph Functional
Dependencies, Fan et al. [109] have to deal with large-scale
graphs by designing effective pruning strategies, using paral-
lel algorithms, and adding processors. As mentioned earlier,
designing parallel algorithms is difficult.

Equivalently, profiling for graph data has to face the
pressure of computing and memory when data profiling
encounters large graphs. Therefore, it is necessary and worth
researching to sample the graph data and carry out the tasks
of data profiling based on the sample. But sampling graph
data is more difficult than sampling relational data. Leskovec
and Faloutsos [37] did practical experiments on sampling
from large graphs. They concluded that best performing
methods are the ones based on random-walks and ‘‘forest
fire’’, with sample sizes as low as 15% of the original graph.
However, how to apply these graph sampling methods to
the above-mentioned graph data-based data profiling tasks is
waiting for further experiments and exploration.

C. SAMPLING FOR PROFILING HETEROGENEOUS DATA
Data profiling is also widely used for heterogeneous data,
e.g., discovering matching dependencies (MDs) [110], [111],
reasoning about matching rules [112], [113], discovering a
concise set of matching keys [114] and conditional matching
dependencies (CMDs) [115]. However, these profiling tasks
also have to face computational pressure in a big data context.

In fact, MDs, DDs and data dependencies are all based
on differential functions. When calculating the measures for
differential dependencies, performing sampling of pairwise
comparison is more difficult. Given an instance of relation
R with N data tuples, pairwise comparison M will increase
the total number to N∗(N−1)

2 , which will greatly increase
the number of populations. However, many pairs in M are
meaningless when calculating support for DDs [116], which
means that the proportion of pairs we want is very small.

Therefore, we must increase the sampling rate to expect to
include these pairs in the sample, so as to get the approximate
results as close as possible.
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