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ABSTRACT Forest change in the Korean Peninsula related to different socioeconomic developments in
North and South Korea and impacted on the regional environment. However, there was a lack of consistent
information about forest changes, especially comparative knowledge of North and South Korea that support
management and policymaking. We used the change object update method to generate the first object-based
30m land cover set for the peninsula and analyzed new observations of forest changes in North and South
Korea from 1990-2000 to 2000-2015. Results showed that, in North Korea, annual forest loss increased from
142 km2

·yr−1 to 257 km2
·yr−1, and the total loss increased from 1,407 km2 to 3,769 km2. The elevation range

where forest loss concentrated shifted from 100-300 m to 300-1,000 m. The conversion of forest to cropland
increased from 1,256 km2 to 3,910 km2, indicating North Korea’s forest eroded by agriculture expansion to
ensure food security. By contrast, in SouthKorea, despite forest total loss increased from 338 km2 to 513 km2,
annual loss remained at 34 km2

· yr−1. The forest loss was concentrated at the elevation range of 0-300 m,
which linked with built-up land expansion. Different public income and social developments drove distinct
magnitude of forest loss in the two countries. Follow the Global Forest Observations Initiative, although
forest loss might be underestimated for North Korea and overestimated for South Korea, our land change
information equipped good overall accuracy (> 0.94± 0.031). This study could provide useful implications
for forest management and regional sustainable development.

INDEX TERMS Remote sensing, North Korea, South Korea, forest, sustainability.

I. INTRODUCTION
Forest ecosystems play a crucial role in soil formation, water
regulation, climate control, etc. [1], [2] and provide vital habi-
tat services for humans, animals, plants, and insects [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefania Bonafoni .

Continued loss of forest cover may lead to the intensification
of various disasters such as floods [5], bio-sequestration loss
[6], displaced wildlife [7], and financial loss [8], [9]. Reli-
able information on forest changes is thus of great help to
international agencies, governments, and non-governmental
organizations when making policies and investment deci-
sions, and to scientists who provide decision support [10].
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Although consensus on drivers of forest changes, accurate
monitoring forest remains a challenge for further actions in
some countries, obstructing global efforts on forest ecosys-
tem protection [11], [12].

Socioeconomic development and human activities for sub-
sistence are the main drivers for changing the forest. Socioe-
conomic development tends to recover forest [12], such as
planting for environmental and commercial purpose, and
spontaneous regeneration on abandoned agriculture land due
to rural-to-urban migration. For example, thanks to China’s
massive forestation plan and economic development, the for-
est area in East Asia grown the fastest globally, although
world forests lost 1.29 million hectares in 1990-2015 [13],
[14]. However, in tropics that concentrates the underde-
veloped countries [15], forest losses were too high to be
offset by forest gains in other climate areas [16]. Timber
harvesting and agricultural development were the primary
drivers, resulting from financial purpose or lack of food and
energy [17], [18]. Meanwhile, deforestation ultimately led to
a loss of essential supplies of timber and medicines on which
poor residents largely depend, as well as soil erosion and
habitat degradation. Wealthy societies, however, could afford
to renovate landscapes to improve ecological conservation.
For example, China’s forestation program not only improved
soil erosion and wildlife habitat domestically [19] but also
contributed greatly to forest C sequestration in East Asia [6].
For achieving more human well-being, local socioeconomic
status should be taken into account to seek pathways for
sustainable forest management, especially under the Reduced
Emissions from Deforestation and Degradation (REDD+)
scheme by the U.N. Framework Convention on Climate
Change (UNFCCC).

After the Korean War ended in 1952, North and South
Korea experienced different socioeconomic development.
For eradicating poverty and ending hunger, increasing agri-
cultural production has been one of the main tasks in North
Korea [8]. Although North Korea has been attaching great
importance to land protection since the 1990s [20], defor-
estation was still severe in the 2000s [21]. By contrast,
South Korea was one of the largest economies worldwide
and played a crucial role in trade globalization [22]. Despite
years of efforts in forest restoration [6], [23]–[25], there were
still some ecological problems such as biodiversity loss and
non-native species invasion triggered by forestation activ-
ity in South Korea [22]. Therefore, the Korean Peninsula
as the only place worldwide where hosts an underdevel-
oped country and a wealthy country [15], [22] is a study
area of value to comprehend more about links between for-
est change and socioeconomic development. Besides, the
peninsula forest ecosystem in the center of Northeast Asia
is an irreplaceable ecological barrier between China, Rus-
sia, and Japan. However, there is lacking consensus on
the trend of forest changes in the Korean Peninsula and
differences between North Korea and South Korea, which
cannot support eliminating potential challenges for local
sustainability.

Reliable observations of forest changes are challenging in
secretive societies such as North Korea. North Korea seldom
disclosed forest and agriculture records [8]. Although South
Korea officially released inventory data, it lacked statistics
on conversions of forests with other land covers [26]. In this
case, to break through the land boundary and observe the
forest change, satellite remote sensing is the ideal choice.
Among various remote sensing data, Landsat imagery with
a spatial resolution of 30m and the longest record of the
Earth’s surface was frequently employed in mapping land
cover [27], [28] and observing forest loss [17], [29]. Yet,
few studies observed the forest loss in North Korea using
the Landsat data, indicating discrepant results that loss of
forest cover ranged from 0 to 12.8% during the 1990s [21],
[30]. Findings on forest change for the entire peninsula were
even rarer, which based on different data inputs and could
thus be inaccurate [24], [31]. Because different data inputs
were inconsistent in the mapping method and forest defini-
tion, the ‘‘real’’ forest extent and change cannot be captured.
For example, [24] extracted tree cover in North and South
Korea from AVHRR and MODIS tree cover maps. As the
two satellites provided much coarser images, details of land
changes were very likely to be neglected. Besides, consistent
observations of forest changes throughout the peninsula from
the 1990s to the mid-2010s have not yet taken place, and
this gap needs to fill. Landsat data could gain more accurate
observation and thus provide reliable forest information for
the whole peninsula [10], [11].

In this study, we aim to generate consistent observations
about forest changes in the Korean Peninsula using long-
term Landsat images. Our specific objects are to (1) generate
land cover maps for 1990, 2000, and 2015 using a change
object updating approach, and (2) quantify spatiotemporal
forest changes in North Korea and South Korea during 1990-
2015. Besides, socioeconomic drivers of forest change have
discussed qualitatively. For the first time, this study reports
consistent and coherent information on forest changes for
North and South Korea, shedding light on environmental
management and policymaking for the Korean Peninsula.

II. MATERIALS AND METHODS
A. STUDY AREA
The Korean Peninsula locates in temperate East Asia, borders
China and Russia, and is close to Japan (Figure 1). The land
extent of the peninsula is about 225×103 km2 and is covered
mostly by forest and cropland. There is a mountain chain
that continues from the north to the south in the peninsula,
where the altitude and slope ranged from 0-2727 m and 0-
78◦, respectively. Two countries, North and South Korea,
occupied the northern and southern parts, separated by the
Demilitarized Zone (DMZ) in the central peninsula [22].
According to the Food and Agricultural Organization (FAO),
there were 25 × 106 and 51 × 106 inhabitants in North and
South Korea in 2015, respectively. About 82% of the South
Korean population was living in urban areas compared to
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FIGURE 1. The location and topography of the Korean Peninsula.

61% in North Korea. South Korea as a high-income country,
its Gross National Income (GNI) per capita was $27,405 in
2015 [15]. In contrast, North Korea was the only low-income
country in East Asia with a GNI per capita of $652 in 2015.

B. LANDSAT AND REFERENCE DATA
A total of 96 Landsat Thematic Mapper (TM) and Oper-
ational Land Imager (OLI) images from the year or near
years of 1990, 2000, and 2015 were collected from
https://glovis.usgs.gov. All images equipped good observa-
tions with cloud cover < 5%. Among them, 72 growing sea-
son images for mapping in the software and 24 multi-season
images for phenological reference to differentiate vegetation
(Figure S1-S3). In the software ENVI 5.1, they were all geo-
rectified to Universal TransverseMercator (UTM) coordinate
system using the World Geodetic System 1984 (WGS84)
datum.

The 30m digital elevation model (DEM) was downloaded
from http://www.gscloud.cn to classify the elevation and
slope for observing forest change at different landforms.
High-resolution images from Google Earth were visu-
ally referenced when mapping land cover for 2000 and
2015 (Table S1). Besides, five 30m land cover or for-
est products were compared with our forest maps
(Table 1) [21], [32]–[35].

C. METHODOLOGY FOR LAND COVER MAPPING
Through referenced land cover products [32], [34], we found
that the peninsula shrub had a slight proportion and cannot be
effectively distinguished from trees in the peninsula. Instead,
shrubs were integrated into the forest category [30], and
the forest did not require an explicit height of more than
5m [34]. The forest was defined as trees having obvious
canopies, shadows, textures, etc., with the canopy cover of
more than 10%, including coniferous forest, deciduous forest,
and mixed forest. Forest changes include loss and gain as the

TABLE 1. Summary of six land cover or forest maps used for comparison
in this study.

results of inter-conversions between the forest and other land
covers including grassland, wetland, water body, barren land,
burned land, cropland, and built-up land [30], [31], [36].

The change object updating (COU) approach, an integra-
tion of updating approach and object-based image analysis
(OBIA), was employed to map land cover [37]. The updating
approach made multi-year land cover classification efficient
[27], [28]. Based on OBIA, our COU method used visual
interpretation to update land cover [38], which obtained com-
plete land patches and boosted efficiency. TheCOUmethod is
robust and suitable for forest change research [29] but applied
to the Korean Peninsula for the first time in this study.

We first segmented the 1990 Landsat images to generate
object layers for a basic land cover map classification (Fig-
ure 2). Because image segmentation we used, which is a built-
in function of the software eCognition Developer 8.64, was
performed based on similar spectral, texture, and topological
features of similar pixel groups [29], enabled land patches
intact. From visual inspections, a satisfactory match between
image objects and land cover features was achieved when the
scale, shape, and compactness parameter was set to 10, 0.1,
and 0.8, respectively. Hereafter, the decision rule classifier
was employed to label objects into land categories. Based
on optical characteristics of land cover, optical indices were
employed as rules, including normalized difference vegeta-
tion index (NDVI ), enhanced vegetation index (EVI ), nor-
malized difference built-up index (NDBI ), and normalized
difference water index (NDWI ).

NDVI = (NIR− RED)/(NIR+ RED) (1)

EVI = 2.5× (NIR− RED)/

(NIR+ 6× RED− 7.5× BLUE + 1) (2)

NDBI = (SWIR− NIR)/(SWIR+ NIR) (3)

NDWI = (NIR− GREED)/(NIR+ GREED) (4)

where BLUE , GREED, RED, NIR, and SWIR correspond
to bands 1 to 5 in the TM sensor and bands 2 to 6 in the
OLI sensor, respectively. The index threshold was determined
by repeated testing, and forest, built-up land, water body,
and cropland could be extracted separately. The experts then
manually modified the misclassified objects and generated a
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FIGURE 2. The flowchart shows work steps of the change object updating
approach.

map for the year 1990 as a basis (LC90) for updating multi-
year land cover.

Specifically, experts together segmented the Landsat
images with the same path/row from 1990 and 2000 and
visually searched change patches of land cover from 1990-
2000. Then, the LC90 was merged with the change patches
to map land cover for the year 2000 (LC00) [37]. Based on
LC00, land cover for the year 2015 was generated through the
same process. In the software ArcGIS 10.1, these land cover
maps (KP-LC) were used for quantifying spatiotemporal for-
est changes.

D. TWO METHODS FOR ACCURACY ASSESSMENT
For a classic accuracy assessment, we randomly collected
validation points from Landsat images (Figure S4). Each land
cover map was equipped with 700 points of all land types and
assessed by a confusion matrix (See supplemental materials
for methods) [29].

We assessed the integrity of land change informationwith a
robust statistical approach [39], following the guidance of the
Global Forest Observations Initiative (GFOI) [40]. The step
assessed the accuracy of four land strata (classes) includes
forest loss, forest gain, unchanged forest, and unchanged
other land covers during a period. First, a total of 3,000 points
by stratified random sampling of Landsat imageswere used to
compute the user’s accuracy (UA) of North and South Korea
during 1990-2000 and 2000-2015 (Figure S5). Hereafter,
the UA was used to match the areal weight of land strata
for design sampling. As a result, 1481 points were randomly
selected and statistically allocated 20 times into different
number groups of four land strata for assessing accuracy
(See supplemental materials for details). The accuracy report
includes overall accuracy (OA), UA, producer’s accuracy
(PA), and estimated area [39]. We employed GFOI estimates
for the uncertainty analysis.

E. COMPUTATION OF FOREST CHANGE
Changed forest area (CFA) during a given period was com-
puted by subtracting forest area of the earlier date from that

of the later date, given by equation

CFA = FL (t2)− FL (t1) (5)

where FL (t2) and FL (t1) are forest areal extent (km2) at the
later year (t2) and earlier year (t1), respectively.
As lengths of two study periods were inconsistent,

the annual rate of forest change was calculated by an FAO
method for a given period between t2 and t1.

ACR = 1/(t2 − t1)× ln (FL(t2)/FL(t1))× 100 (6)

where ACR (in %·yr−1) corresponds to the annual change rate
of forest in a period. Hereafter, the computation of the annual
deforest area (ADA, in km2

·yr−1) was possible. The ADAwas
assumed to decrease at an exponential rate over a period [41].

ADA = FL (t1)×
(
1− eACR

)
(7)

where the e denotes the natural base.
In the software ArcGIS 10.1, the conversion area (Aij,

in km2) of land cover i to j in a period was spatially computed.

F. ANALYSIS DRIVERS OF FOREST CHANGE
As the core task of forest observations, we qualitatively
analyzed socioeconomic drivers of forest changes. From
http://www.fao.org, the economy, demography, and forestry
data on which the analyses rely were collected. Besides,
to link the forest change and economy, we selected low-
income (6 $1,025) and high-income (> $12,476) countries
and their forest area data from 1990-2015 in the Global Forest
Resources Assessment 2015 (FRA2015) [14], [15]. Forest
change statistics were computed by expressions (5) and (6).

III. RESULTS AND ANALYSIS
A. ACCURACY ASSESSMENT
Land cover maps of the Korean Peninsula for 1990, 2000,
and 2015 were generated by the COU approach (Figure 3).
For three maps, accuracy matrices showed that commission
error concentrated on grassland, wetland, and burned land,
reflecting by the minimal UA was 0.56, 0.69, and 0.71,
respectively (Table S2-S4). Besides, barren land, grassland,
andwetland had higher omission errors, and their minimal PA
was 0.74, 0.76, and 0.76, respectively. Nevertheless, the over-
all accuracy of these maps was greater than 0.90, laying a
good foundation for data analysis.

The GFOI assessment showed that forest changes on the
Korean Peninsula during 1990-2015 were well observed. For
1990-2000, the OA of land change in North and South Korea
was 0.96 ± 0.023 and 0.94 ± 0.032, respectively (Table S5-
S6). For 2000-2015, the OA of land change in North and
South Korea was 0.95 ± 0.03 and 0.94 ± 0.031, respectively
(Table S7-S8). There might be overestimation and underes-
timation in our observations. For example, the forest gain
in 1990-2000 was underestimated, compared with the GFOI
estimates (Figure 4). Nonetheless, because areal weight of
forest gain in the two countries during 1990-2000 was small,
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FIGURE 3. The land cover map of the Korean Peninsula generated from
the COU approach.

FIGURE 4. Comparison of the land change information in this study with
GFOI estimates. The error bar of the estimates denotes a 95% confidence
interval. Due to the large difference, the area was corrected based on the
common logarithm. See Table S9 for values.

and the mapped area of other land strata was located in con-
fidence intervals of the estimates, our maps equipped good
usability.

B. SPATIOTEMPORAL PATTERNS OF FOREST CHANGES
Forest in the peninsula distributed widely other than western
regions (Figure 3). The peninsula’s forest cover decreased
from 66.0% in 1990 to 65.2% in 2000, and then to 63.3%
in 2015 (Table 2). In 1990-2015, North Korea lost 5,176 km2

forest and far exceeded South Korea’s 851 km2. Forest loss
in North Korea was 4.2 times higher than that of South Korea
from 1990-2000, and it was 7.3 times in 2000-2015.

The forest area of North Korea changed dramatically in
1990-2015. The forest cover decreased from 67.9% in 1900 to
63.8% in 2015. The forest area decreased 1,407 km2 in 1990-
2000. In 2000-2015, 3,769 km2 of the forest was further
lost, which was 2.7 times as that of 1990-2000. Besides,
the annual deforest area (ADA) in North Korea from 2000-
2015 reached 1.8 times as that of 1990-2000. In contrast,

TABLE 2. The forest area and change in North Korea and South Korea in
1990-2015.

FIGURE 5. The annual deforest area (ADA) categorized by elevations and
slopes in North Korea (a, b) and South Korea (c, d).

South Korea’s forest cover decreased slightly (Table 2). The
forest lost 338 km2 in 1990-2000 and 513 km2 in 2000-
2015, respectively. However, ADA remained unchanged at
34 km2

· yr−1 during the 25 years.
At different elevations and slopes, forest changes varied

widely in North Korea and South Korea (Figure 5). In North
Korea, the lost forest largely occurred in slopes of 8-25◦ from
1990-2015. In terms of elevation, forest loss mostly took
place at altitudes of 100 to 300 m in 1990-2000. However,
in 2000-2015, altitudes of 300-1,000 m became the most
severely deforested place. Particularly, ADA at altitudes of
500-1,000 m increased sharply by 238% from 1990-2000 to
2000-2015.

By contrast, in South Korea, forest loss occurred mostly in
slopes of 3-15◦ during 1990-2015. From 1990-2000 to 2000-
2015, in slopes of 3-8◦ and 8-15◦, ADA increased by 98% and
93%, respectively. In terms of elevation, the greatest forest
loss concentrated in altitudes of 0-300 m for both periods.
However, ADA at altitudes of 0-100 m increased by 102% in
2000-2015, which replaced altitudes of 100-300 m to become
the most forest losing region.
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FIGURE 6. Spatial distribution of forest loss. Subsets A, B, and C are samples showing the conversion between the forest and
other land covers.

C. LAND COVER CONVERSION AND FOREST LOSS
Forest loss in North Korea spatially concentrated in the cen-
tral regions and northwestern borders (Figure 6). We pre-
sented land cover conversions during 1990-2015 in a dynamic
flow (Figure 7), illustrating that the conversion of for-
est to cropland in North Korea was the most significant.
Specifically, the area of forest loss to cropland increased
from 1,256 km2 in 1990-2000 to 3,910 km2 in 2000-2015
(Table S10). The area of forest to built-up land decreased from
14 km2 to 11 km2.
Forest loss in South Korea distributed mostly in the north-

western region, surrounding the capital Seoul (Figure 6). Our
results indicated that the built-up land (184 km2) encroached
the most on the forest, followed by cropland (106 km2)
in 1990-2000 (Table S10). In 2000-2015, built-up land
encroached the most on the forest with 422 km2, and the net
conversion of forest to cropland was 195 km2.

IV. DISCUSSION
A. REMOTELY SENSED FOREST CHANGE
1) COU APPROACH FOR FOREST CHANGE OBSERVATION
Some open-access land cover or forest cover products were
used to observe forest changes in the Korean Peninsula [21],
[30], [31], [42], but they have different results compared with
our observation (Table 3). GFC’s 2000 results have the most
obvious differences with others. LCMKP’s estimates of forest
change for South Korea (approximately +1.67 × 103 km2)

have the opposite trend of KP-LC. However, the South
Korean forestry agency officially reported that the forest area
decreased during the 1990s (approx. −0.54 × 103 km2),
having similar to our results [26]. Besides, KP-LC has a
smaller estimate for South Korea than LCMKP, GLCF-VCF,
and FROM-GLC. However, ‘‘most reliable’’ estimates of
FRA2015 indicated that forest in South Korea decreased from
62.88 × 103 to 61.84 × 103 km2 in 2000-2015 [10]. Such
difference could result from different forest definition, local
biomes, or mapping methods used [25], [43], [44]. The forest
definition of each remotely sensed dataset is comparable [10],
[43], and theKorean Peninsula does not have tall plants like in
tropics [8], thereby we focus discussion below on differences
of mapping methods.

Raster maps of six data mentioned were compared in three
difficult-to-map locations (Figure 8). Pixel-based forest data,
including GFC, FROM-GLC, GLCF-VCF, and LCMKP, has
obvious land patch fragments, knowing as the salt-and-
pepper noise (SPN). The SPN is usually due to classifier
selection, parameter debugging, image preprocessing, input
characteristics, etc., and causes information loss. For exam-
ple, unsupervised classifier based LCMKP map significantly
overestimates forest extent. Although the most accurate map
generated by classifiers testing, SPN still exists in FROM-
GLC [34]. In this regard, image segmentation prevented
SPN [37]. For example, in Globeland30, forest patches are
relatively complete because of the operation of image seg-
mentation [32]. Nonetheless, forest extent in Globeland30 is
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FIGURE 7. Sankey diagrams show total land cover conversions during 1990-2015 in (a) North Korea and (b) South Korea.

TABLE 3. The forest areal extent comparison between the KP-LC and reference data.

inaccurate. An assessment work suggested that Globeland30,
GFC, GLCF-VCF, and FROM-GLC have the overall accu-
racy of more than 93% in mountain forest [43]. However,
although these four products provide global forest data, they
are not accurate enough to analyze forest changes and impacts
for the Korean Peninsula. These maps thus have to be cal-
ibrated for uncertainty in a particular region otherwise may
bring erroneous forest information [44].

In contrast, KP-LC has complete forest patches (Figure 8)
and high overall accuracy (Table S2-S4), which are the basis
of reliable information on forest changes (Figure 4). The
robust of the COU approach contributed to our maps. The
application of the decision rule classifier allowed carefully
debug spectral indices for better preliminary results. On the
other hand, the image segmentation facilitated experts to
manually modify the preliminary results carefully built on
remote sensing knowledge, serving maps more accurate.
Considering the low quality of current forest information for
North Korea [10], for the first time, we mapped consistent
and coherent land cover for 1990, 2000, and 2015. Therefore,
forest changes between the two countries can be compar-
atively observed, which facilitates multilateral cooperation
in environmental management and policy formulation on a
peninsula scale.

2) UNCERTAINTIES OF LAND CHANGE INFORMATION
The GFOI method could provide reliable land change esti-
mation based on maps and validation samples [39], [40].

TABLE 4. The forest change area of this study and GFOI estimates.

In general, our observation underestimated the forest loss in
North Korea (Table S9), as the GFOI estimates were −1794
± 777 km2 and−4326± 1196 km2 for 1990-2000 and 2000-
2015, respectively (Table 4). For South Korea, although the
forest loss might be overestimated (Table S9), our observa-
tions still closed to the GFOI estimates (Table 4). Nonethe-
less, higher overall accuracy of land change encouraged us to
analyze forest change based on KP-LC. These uncertainties
could be limitations of forest definition, image quality, and
validation point collection.

3) LIMITATIONS AND FUTURE WORK
The appropriate forest definition is a critical component for
forest management [10]. For example, the official forest defi-
nition of South Korea is stricter than FRA [25], i.e., trees with
the canopy cover > 30% and the height > 5 m in places >

0.5 ha. Such a definition is formulated for a forest inventory,
and not suitable for long-term remote sensing observation
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FIGURE 8. The zoom-in comparison of six forest maps across case landscapes. Landsat images displayed with the band
combination of R = Red, G = NIR, and B = SWIR to highlight forest.

because the optical image cannot obtain the tree height infor-
mation. Therefore, we defined the forest in a general way
[10], [34] and did not classify the shrubs [30], which could
be inconsistent with some national forest inventory.

Besides, because Landsat has a revisit period of 16-day,
high-quality (or less-cloud-covered) images of the growing
season have not always been sufficient. Clean images could
only be collected from near years of the map year to ensure
good observations (Figure S1), whichmay affect the temporal
consistency of the resultant map. In this regard, data fusion
of multiple sensors (e.g. ETM+ and OLI [45]) can enhance
the temporal consistency of reliable observations. Moreover,
without field surveys, microwave data (e.g. PALSAR [43])
could obtain tree structure information to meet special forest
definitions of national or local concerns.

Although there may be some human error in the visual
interpretation, the validation points collected from satellite
images, a common practice [32], [34], are more likely to
cause uncertainty in the accuracy report. Collecting verifica-
tion points is a laborious task, and Landsat images have to
be used to collect consistent validation points in this study
[39]. If there were sufficient samples from field surveys and
high-resolution images, the integrity of KP-LC could bemore
accurately assessed.

B. FOREST CHANGES AND DRIVERS IN KOREAN
PENINSULA
Differences in spatiotemporal forest changes between North
Korea and South Korea in 1990-2015 were significant.
Although [30] reported that forest area remained almost
unchanged in North Korea in the 1990s, we were consistent
with more findings that deforestation was exacerbated in the
1990s [8], [21], [24] and encroached by cropland expansion
[31], [36]. By contrast, South Korea’s forest loss was mild
and largely converted to built-up land (Figure S6) [31].

After the collapse of the Soviet Union, huge energy short-
ages [46] and growing agricultural populations (Figure S7)
made the forest a free source of food, new arable land, and
fuelwood [21], [36]. However, deforestation increased risks
of landslides and floods due to sediment block water flow
during the summer rain [8], [9]. Besides, the carbon sink lost
significantly [6], [31]. Negative effects of deforestation could
go beyond North Korea’s territory because of shared forest
communities of South Korea, China, and Russia. For exam-
ple, the Changbai Mountain was home to endangered species
includes Siberian tiger and Chinese merganser, but North
Korea’s deforestation significantly threatened habitat quality
there [7], [47]. Although a series of forestation policies were
formulated, results have never been reported yet [20]. This
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FIGURE 9. The annual change rate (ACR) categorized by public income. Positive and negative ACR
represent areal increase and decrease, respectively. Period 1 and period 2 denote periods of
1990-2000 and 2000-2015, respectively.

study showed that deforestation has intensified and shifted to
higher uplands, meaning the failure of forestation. In 2012,
many stunting andwasting among children confirmed that the
food shortage in North Korea remained severe [48]. Defor-
estation for cropland was inevitable.

The two-period ACR ratio suggested that North Korea’s
acceleration of deforestation was greater than 75% of low-
income countries (Figure 9c). Nonetheless, North Korea
received little attention, which may be masked by the rapid
forest regrowth in East Asia [10]. Although low-income
countries Burundi and Rwanda achieved forest regrowth [10]
and [36] also reported that North Korea’s forest started to
regrowth in 2001, our observation showed that the deforesta-
tion exacerbated after 2000. North Korea could be unable to
afford the forestation. North Korea’s GNI per capita trend has
been increasing slowly since 2000, but by 2008, it had fallen
below the average of low-income countries (Figure 9e). North
Korea enacted a 10-year reforestation plan in 2009, half of
which was estimated to cost $47 billion [49]. North Korea’s
GDP in 2015 was only $28.5 billion. In China, for example,
annual investment in all ecological projects never exceeded
0.37% of GDP after 1998 [13]. According to this standard,
North Korea cannot achieve forest regrowth in the short run
mainly due to financial constraints. Besides, whether soil
fertility and water conditions of uplands can support to grow
seedlings, due to years of tillage and deforestation, was ques-
tionable.

By contrast, SouthKorea’s forest loss was relatively promi-
nent in high-income countries (Figure 9d), which did not
appear to be limited by the economy (Figure 9f), but rather
policy-related. Numerous urban jobs created by the trans-
formation of an agricultural country to an industrial power

enabled rural people to lose at 100,840 per year (Figure
S7b). Large areas of residential, recreational, industrial, and
transport land thus were developed to meet the routine needs
of urban people, and forestland became a crucial contrib-
utor to land structural adjustment [25]. The migration not
only reduced the consumption of fuelwood significantly (Fig-
ure S7c) but made forest regrowth naturally in abandoned
cropland [25]. Besides, the state-led National Forest Devel-
opment Program (NFDP) entered the 3rd to 5th batch after
1990, aiming to maintain the national forest cover at roughly
64% and enhance ecosystem services [20], [50]. Therefore,
water yield and soil loss were improved due to sustainable
management [51], despite forest lost and timber production
boosted (Figure S7f).

V. CONCLUSION
Different magnitude of forest changes between North Korea
and South Korea were observed based on 30m land cover
maps generated by a change object updating approach. This
approach used image segmentation to avoid omission errors
and map fragments, and improved accuracy by the integra-
tion of automatic classification and visual interpretation. Our
study showed that, during 1990-2015, cropland expansion
and built-up land expansion led to forest loss in North Korea
and South Korea, respectively. Such conversions became
more intense in the two countries. Despite forestation policies
were formulated in North Korea, forest loss became sharper.
Deforestation in North Korea thus requiredmore attention but
would not be easy to mitigate due to economic constraints.
By contrast, despite the forest loss, South Korea’s forestry
policy placed emphasis on sustainable forest ecosystems.
In the peninsula, forest changes indicated the need for reliable
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forest observation to respond to the emerging negative effects
and to facilitate management. Future work should be consid-
ered conducting in a wider region, such as Northeast Asia
because the peninsula’s forest changes could bring potential
effects to neighboring countries.
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