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ABSTRACT This study investigates the accuracy of quantization cell approximation (QCA) in a multiple-
input multiple-output (MIMO) broadcast channel. QCA is an analytical quantization model used to approx-
imate the quantized channel state information (CSI) in limited-feedback-based MIMO systems. It has been
widely used in important studies for analytical tractability because it approximates the quantized CSI as
a simple beta random variable multiplied by a deterministic value. Moreover, the effect of quantization
is solely concentrated on the deterministic value such that the corresponding performance analysis is
stochastically independent of the quantization process. Nevertheless, the accuracy of QCA has not been
carefully demonstrated in previous studies. In this study, a generalized version of QCA is proposed with a
complete analysis. Because the proposed QCA requires the use of a specific distance measure, the validity
of the distance measure is first investigated. Based on the proposed distance measure, the accuracy of QCA
is estimated by analyzing the difference between the spectral efficiencies achieved using QCA and random
matrix quantization (RMQ). The corresponding results show that the difference gradually decreases and
converges to zero as the number of feedback bits increases. As QCA and RMQ provide performance upper
and lower bounds, respectively, in terms of codebook construction, these results prove the asymptotic validity
of QCA with respect to the number of feedback bits. Both analysis and simulation results demonstrate that
the difference in spectral efficiencies is also small for a moderate number of feedback bits. In addition, this
study also demonstrates an asymptotic difference in spectral efficiencies with respect to the signal-to-noise-
ratio (SNR). The difference increases with the SNR, but it is bounded by a finite value. Thus, the difference
in the worst case SNR can also be suppressed by increasing the number of feedback bits.

INDEX TERMS Precoding, limited feedback, multiple-input multiple-output (MIMO), quantized feedback,
spatial-division multiplexing.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) systems have been
studied as promising technologies to meet the consistently
increasing demand for higher-speed wireless communica-
tion [1], [2]. In particular, to achieve spatial multiplexing
gain without increasing the number of antennas for mobile
users, multiuserMIMO (MU-MIMO) systems have been pro-
posed. InMU-MIMO systems, an access point or base station
(BS) with multiple antennas simultaneously communicates
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with multiple users (i.e., with the group of their antennas
[2]–[4]). The multiple data streams prepared for multiple
antennas belonging to different users are guided to the asso-
ciated antennas using transmit and receive techniques called
spatial-divisionmultiplexing (SDM). Accordingly, the capac-
ity of MU-MIMO systems increases linearly with the mini-
mum value between the numbers of BS antennas and total
antennas of the associated user group. Various SDM schemes
and corresponding theoretical results have been presented to
exploit the inherent gains in MU-MIMO channels [5]–[8].

For downlink transmission in MU-MIMO channels, differ-
ent users in the same communication group are not generally
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allowed to perform joint signal processing. Thus, an SDM
scheme is necessary at the transmitter to obtain a cer-
tain amount of multiplexing gain by appropriately guiding
the data streams to their associated users. To achieve this,
the transmitter requires a form of channel state information
(CSI). The accuracy of the CSI at the transmitter (CSIT)
generally determines the performance of downlink commu-
nication in MU-MIMO systems [9]. However, in practical
systems, obtaining a precise CSIT is quite challenging, par-
ticularly when a frequency-division duplex (FDD) is used.
This is because a transmitter operating in FDD mode cannot
directly track the downlink channels. A popular solution in
this type of case is limited feedback, in which each user
estimates, quantizes, and feeds back the CSI to its associated
transmitter [10]–[17]. Because limited feedback uses finite
rate quantization, inevitable multiuser interference occurs in
the received signal of each user.

In limited-feedback-based MU-MIMO systems, the down-
link spectral efficiency is significantly affected by the amount
of multiuser interference, and the amount of multiuser inter-
ference is determined by the number of feedback (or quanti-
zation) bits. In particular, the available multiplexing gain is
directly related to the number of feedback bits. Specifically,
in [9], assuming that each user has a single receive antenna,
the authors showed that the number of feedback bits should
be increased with respect to the signal-to-noise ratio (SNR)
at a rate of

B = (Nt − 1) log2 P (1)

to achieve the full multiplexing gain using zero-forcing beam-
forming (ZFBF) based on limited feedback in MIMO broad-
cast channels,1 where, B, Nt , and P denote the number of
feedback bits, number of transmit antennas, and SNR, respec-
tively. In [18], the corresponding results were generalized to a
case where each user has multiple receive antennas. By using
the chordal distance as a distance measure for quantization
and the block diagonalization (BD) (based on limited feed-
back) as an SDM scheme, it was shown that the bit scaling,

B = Nr (Nt − Nr ) log2 P, (2)

is sufficient to achieve the full multiplexing gain, where Nr
denotes the number of receive antennas. This scaling rate
implies that the required number of feedback bits per data
stream can be reduced using multiple receive antennas by
quantizing the matrix channel with an appropriate distance
measure. The amount of reduction corresponds to the pre-
log coefficient (Nt − Nr ) for each receive antenna, which is
induced from the reduction in dimensionality for the quan-
tization per data stream [18]. An optimal distance measure
in terms of the achievable multiplexing gain was proposed
in [19], and it was shown that the optimal distance measure
achieves a higher multiplexing gain than the chordal distance
when the bit scaling rate is insufficient to achieve the full

1In this study, aMIMObroadcast channel refers to a downlinkMU-MIMO
channel as denoted in [9].

multiplexing gain. However, it was empirically shown that
the bit scaling in (2) is also necessary for the optimal distance
measure in order to achieve the full multiplexing gain.

For analytical tractability, the aforementioned studies on
limited feedback used a random matrix (or vector, if Nr = 1)
quantization (RMQ) to obtain the quantized CSI. With RMQ,
each codeword is an independent and isotropically distributed
unitary matrix. RMQ has been widely used in important
studies on limited feedback because it is intuitive in terms
of codebook construction, and the mathematical analysis is
tractable when the communication performance is averaged
over random codebooks [9], [18]. However, the mathematical
analysis with RMQ remains complicated because the quanti-
zation error is distributed based on the minimum order statis-
tics of 2B independent and identically distributed (i.i.d.) ran-
dom components. Thus, obtaining an explicit distribution or a
statistic for a performance metric in wireless communication
is difficult with RMQ.

As an alternative to RMQ, quantization-cell approximation
(QCA) was considered to approximate the distribution of the
quantized CSI [13], [20]–[22]. Based on QCA, the quantized
CSI is approximated as a simple beta-type random variable
multiplied by a deterministic value, which decreases as B
increases [13]. Thus, the corresponding analysis is stochas-
tically independent of B, which considerably simplifies the
mathematical analysis. Accordingly, more sophisticated anal-
yses can be performed with QCA with respect to various
performance metrics, as has been done in previous studies
[13], [19], [20], [23], [24]. Specifically, in [13], the distri-
bution of the approximated signal-to-interference-plus-noise
ratio (SINR) of each user was derived using QCA. Then,
based on the distribution, an asymptotic spectral efficiency
achieved by ZFBF with an appropriate scheduling was ana-
lyzed with respect to the number of users. The authors in [24]
proposed an extended version of QCA applicable for Nr > 1,
to investigate the scaling law of the spectral efficiency with
respect to the number of users when each user uses multiple
antennas for SDM. Using QCA is much more advantageous
in complicated wireless communication systems such asMU-
MIMO in dense cellular networks because it considerably
simplifies the distribution of quantization errors. For exam-
ple, the authors in [23] analyzed various performance metrics
based on QCA, including the outage probability, network
throughput, and multi-stream transmission capacities in a
stochastic network. In [20], the SINR distribution, downlink
ergodic spectral efficiency, and optimal number of feedback
bits were additionally analyzed in a stochastic network.

As previously mentioned, several important studies on
FDD-based MU-MIMO systems have used QCA for ana-
lytical tractability. Nevertheless, the accuracy of QCA has
not been carefully considered and only a few simulation
results were provided in corresponding studies. In particular,
the extended version proposed in [24] requires additional
assumptions as compared with the conventional QCA derived
for Nr = 1. However, the reliability of the approximation
was not carefully discussed. Because the concept of QCA
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is similar to that of a sphere-packing argument, one may
intuitively expect that QCA will closely capture the per-
formance of a well-designed quantization codebook if B is
sufficiently large. However, an analytical result supporting
this expectation does not exist. It is known only that QCA
achieves a performance upper bound in terms of codebook
construction. In recent wireless communications, the number
of transmit antennas at the BS has increased and the networks
consisting of these BSs are becoming denser [25]–[31]. The
corresponding performance analysis will be far more com-
plicated than those of existing MU-MIMO systems, and the
necessity of QCA will increase as the system becomes more
complicated owing to analytical tractability. Thus, we require
a mathematical basis on the reliability of QCA for further
applications, and this is the main subject of this study.

In this study, the accuracy of QCA in MIMO broadcast
channels is considered. Because mobile devices use multiple
receive antennas for SDM in recent wireless communication
[32], [33], the extended version of QCA proposed in [24]
is revisited in this study. The mathematical formulation and
corresponding bases are provided to validate further the use of
QCA for all Nr ≥ 1. Specifically, the generalized version of
QCA requires the use of a specific distance measure. Thus,
the performance of the corresponding distance measure is
first investigated. A sub-optimality of the distance measure
is analyzed in terms of the sufficient number of feedback bits
to achieve the full multiplexing gain. Then, the accuracy of
QCA is analyzed using the proposed distance measure. For
the accuracy, since the use of QCA and RMQ respectively
correspond to the upper- and lower-bound performances in
terms of codebook construction, the gap between the spectral
efficiencies achieved using QCA and RMQ is considered. It
is shown that they are asymptotically equivalent with respect
to B, implying that the error of using QCA can be arbitrarily
small for a sufficiently large B. Moreover, the spectral effi-
ciency gap is shown to increase with P and is bounded by a
finite value as P approaches infinity. During investigations,
matrix-variate distributions that are essential for analyzing
limited-feedback-basedMU-MIMO systems are summarized
and are newly derived in this study. Moreover, a simulation
guideline is presented to help readers understand how to
construct a quantized channel matrix based on QCA. Because
QCA is an analytical method that does not construct an
explicit codebook, a realization of the quantized CSI should
be obtained based on matrix-variate distributions of the cor-
responding channel matrices. Both simulation and analysis
results demonstrate the accuracy of QCA. The error induced
from using QCA is generally small for moderate values of B
and P, and it gradually decreases and converges to zero as B
increases. The contributions of this paper can be summarized
as follows:
• The accuracy of the generalized QCA, applicable for all
Nr ≥ 1, is analyzed with various performance metrics
including, B, Nr , Nt , and P.

• The generalized QCA is composed of two basic
steps: 1) using a specific distance measure and then

2) approximating the quantization region based on ideal
sphere-packing logic under the use of the distance mea-
sure. This paper provides the asymptotic optimality of
both steps.

• A simulation guideline is presented to help readers
understand how to construct the quantized channel
matrix when we use the generalized QCA for Nr ≥ 1.
Because QCA is an analytical method that does not
construct an explicit codebook, a realization of the quan-
tized CSI should be obtained based on matrix-variate
distributions of the corresponding channel matrices.

The remainder of this paper is organized as follows.
Section II introduces the system model and preliminaries,
and Section III introduces the principles of QCA and RMQ.
Section IV provides the mathematical formulation of QCA
that is applicable for all Nr ≥ 1. In addition, the accuracy
of QCA is analyzed based on the formulation. Section V
presents a guideline for performing a simulation with QCA
and RMQ. Section VI concludes the paper by discussing the
applications of QCA.
Notations: Matrices and column vectors are denoted by

upper- and lower-case boldface letters, respectively. The
superscripts (·)T and (·)H indicate the transpose and complex
conjugate transpose of a matrix, respectively, and tr(·) and
det(·) indicate the trace and determinant of a matrix, respec-
tively. In addition, etr(·) indicates etr(·), 0 is a zero matrix, and
Im is an m×m identity matrix. The partial ordering B � C
for two arbitrary square matrices indicates the positive defi-
niteness of B− C. The sets R and C represent the set of real
and complex numbers, respectively, andCm×n denotes the set
of all m × n complex matrices. Pr(·) denotes the probability
of an event, E(·) denotes the expectation, and d

= denotes
the equality in distribution. For a matrix A, [A]i,j indicates
the (i, j)-th element of A; moreover, vec(A) represents the
vectorization ofA that converts them×nmatrix into anmn×1
column vector when the columns of A are stacked as follows:

vec(A) = [aT1 , a
T
2 , · · · , a

T
n ]
T , (3)

where ai is the ith column ofA. The operator⊗ represents the
Kronecker product. A random variable X is denoted as X ∼
Beta(a, b) if it follows a beta distribution with parameters a
and b.

II. SYSTEM MODEL
In this paper, a MIMO broadcast channel in which a single
base station (BS) communicates with K users is considered.
The BS hasNt transmit antennas, and each user hasNr receive
antennas. EachMIMO channel between the BS and a user k ∈
{1, . . . ,K } is given by a random channel matrixHk ∈ CNt×Nr

whose entries are i.i.d. complex Gaussian random variables
with zero mean and unit variance. The received signal of user
k is then given by

yk = HH
k x+ nk , (4)

where x is the transmit vector and nk is a complex Gaussian
noise vector with independently distributed entries of zero
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mean and unit variance. The transmit vector is given by x =∑K
l=1 Vlsl , where Vl ∈ CNt×Nr is the precoding matrix and

sl ∈ CNr×1 is the information symbol vector consisting of Nr
independent data symbols for user l. Each user is fully served
with an Nr degree of SDM. Thus, the transmitter broadcasts
a total of KNr independent data streams simultaneously. The
total transmit power is P at the BS, and equal power allo-
cation is considered across users and data streams, such that
E[slsHl ] =

P
Nt
IN . Because the noise variance is normalized to

1, the transmit power P also corresponds to the average SNR.
To focus mainly on the effect of quantization, a specific user
scheduling algorithm is not considered (i.e., all K users are
simultaneously served by the BS, and their channel matrices
are i.i.d). All data streams are multiplexed based on SDM,
and the total number of data streams is equal to the number
of transmit antennas (i.e., it is assumed that K = Nt

Nr
).

Because of the symmetry, the distribution of the received
signal is equivalent for all k = 1, · · · ,K . Thus, without loss
of generality, we can focus on analyzing the spectral effi-
ciency of user 1, and this corresponds to the average spectral
efficiency achieved by each user. From (4), the received signal
of user 1 can be represented as

y1 = HH
1 V1s1 +

K∑
k=2

HH
1 Vksk + n1. (5)

For simplicity, subscript index 1 indicating user 1 is omitted,
such that y = y1, H = H1, s = s1, and V = V1.

A. LIMITED FEEDBACK MODEL AND DISTANCE MEASURE
The performance of the multiple-antenna transmission in
MIMO broadcast (downlink) channels can be improved by
using an appropriate precoding strategy [11]. The extent of
the performance improvement largely depends on the amount
of available CSI at the transmitter. To construct appropriate
precoding matrices, directional information of the channel is
required, which corresponds to the left unitary matrix of the
singular value decomposition (SVD) of the channel matrix
[18]. In this study, the compact SVD of the channel matrixH
is denoted as

H = H̃6
1
2UH , (6)

such that the columns of H̃ ∈ CNt×Nr span the column space
of H, the columns of U ∈ CNr×Nr span the row space of H,
and the diagonal matrix 6 ∈ CNr×Nr consists of Nr nonzero
eigenvalues of HHH.
To provide CSI to the transmitter, user 1 quantizes H̃

and feeds back the quantized CSI to the transmitter. To
accomplish this, user 1 uses a finite-length codebook C ={
W1, . . . ,W2B

}
, which is fixed beforehand and is also known

to the BS; B indicates the number of feedback bits allocated
to each user, and different codebooks are used for different
users. Each codeword Wj is given by a semi-unitary2 matrix

2In this study, a non-square matrixA ∈ Cm×n is semi-unitary if it satisfies
either AHA = In or AAH = Im.

in CNt×Nr (i.e.,WH
j Wj = INr ), and is different from all other

codewords. Let J = {1, . . . , 2B} be the index set for the
codewords. Then, assuming perfect channel estimation at the
receiver side, the quantization process can be described as

n̂ = argmin
j∈J

d
(
Wj,H

)
, (7)

where d(·, ·) is a distancemeasure. Because all entries of each
channel matrix are i.i.d. complex Gaussian random variables,
H̃ is isotropically (or uniformly) distributed in CNt×Nr . User
1 feeds back index n̂ to the transmitter, and the transmitter can
obtain the quantized CSI Ĥ as

Ĥ =Wn̂, (8)

from codebook C.
For each codeword Wj ∈ C, channel subspace matrix H̃

can be decomposed into the components that lie in the column
space ofWj and in the left null space of Wj as follows:

H̃ =WjWH
j H̃+ (INt −WjWH

j )H̃. (9)

Let the compact SVD of (INt −WjWH
j )H̃ be

(INt −WjWH
j )H̃ = Sj3

1
2
j E

H
j , (10)

where the columns of Sj ∈ CNt×Nr span an Nr -dimensional
subspace isotropically distributed in the left null space ofWj.
The diagonal matrix3j ∈ CNr×Nr consists of the eigenvalues
of H̃H (INt −WjWH

j )H̃, and Ej ∈ CNr×Nr is an isotropically
distributed unitary matrix. Moreover, Sj,3j, andEj are mutu-
ally independent [34]. Because the matrix 3j measures the
quantization error, it is referred to as the quantization error
matrix in this study. Furthermore, the largest eigenvalue of
H̃H (INt −WjWH

j )H̃ is denoted as λj, i.e.,

λj , max
i=1,··· ,Nr

(
[3j]i,i

)
, (11)

for j = 1, · · · , 2B, and the normalized matrix 9j is defined
as

9j , 3j/λj, (12)

for j = 1, · · · , 2B.
From (10), for each j = 1, · · · , 2B, we have

H̃H (INt −WjWH
j )H̃

= {(INt −WjWH
j )H̃}

H (INt −WjWH
j )H̃

= Ej3jEHj . (13)

From (8)–(13), the channel matrix can be represented using
the quantized channel matrix as

H̃ = ĤĤH H̃+ (INt − ĤĤH )H̃

= ĤĤH H̃+ (INt −Wn̂W
H
n̂ )H̃

= ĤĤH H̃+ Sn̂3
1
2
n̂ E

H
n̂ . (14)
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B. PRECODING MODEL
In this study, BD is considered for the transmit precoding.
BD is a simple linear precoding method and is widely used
because it achieves a comparatively high spectral efficiency
using a relatively low-complexity algorithm for eliminating
multiuser interference between different users. The BD pre-
coder tries to make V as the matrix that satisfies VHHl = 0
for all l = 2, · · · ,K . However, with limited feedback,
the BS only knows the quantized channel matrices {Ĥl :

l = 1, · · · ,K } that are fed back from the associated users.
Thus, the precoding matrix V of limited-feedback-based BD
is chosen to satisfy VH Ĥl = 0 for all l = 2, · · · ,K such that
the columns of V form an orthonormal basis of the left null
space of the following matrix:

G = [Ĥ2 · · · ĤK ]. (15)

C. NOTATIONS: MATRIX VARIATE DISTRIBUTIONS
The achievable rate in a MIMO channel is generally repre-
sented by a log-determinant of a random matrix [2]. Thus,
the spectral efficiency of the system is dependent on the statis-
tics of such a matrix. This study defines the following matrix-
variate distributions based on previous studies onmultivariate
statistical analysis [34]–[36].
Definition 1: A random matrix A ∈ Cm×n is said to

have a complex matrix variate normal distribution with mean
matrix M and covariance matrix �1 ⊗ �2, and is denoted
as A ∼ CNm,n(M, �1 ⊗ �2), if vec(AT ) follows a complex
multivariate normal distribution with mean vector vec(MT )
and covariance matrix �1 ⊗�2, where �1 ∈ Cm×m

� 0 and
�2 ∈ Cn×n

� 0.
This definition is the complex counterpart of DEFINITION

2.2.1 in [34]. One may be more familiar with the special case
of �2 = In [35], [36].
Definition 2: An m × m random Hermitian positive defi-

nite matrix A is said to have a complex Wishart distribution
with parameters m, a > m − 1, and � ∈ Cm×m

� 0, and
is denoted as A ∼ CWm(a, �), if its probability density
function (PDF) is given by

fA(B) =
1

0̃m(a)det(�)a
det(B)a−metr(−�−1B), (16)

for B � 0, and 0 otherwise, where 0̃m(a) is the complex
multivariate gamma function defined as [36]

0̃m(a) ,
∫
∞

BH=B�0
det(B)a−metr(−B)dB

= π
1
2m(m−1)

m∏
i=1

0(a− i+ 1). (17)

Definition 3: An m × m random Hermitian positive defi-
nite matrix A is said to have a complex matrix variate beta
distribution with parameters m, a, and b, and is denoted as

A ∼ CBm(a, b), if its PDF is given by

fA(B) =
0̃m(a+ b)

0̃m(a)0̃m(b)
det(B)a−mdet(Im − B)b−m, (18)

for 0 ≺ B ≺ Im, and 0 otherwise.
If A ∼ CWm(a, Im), then the expected value of A is given

by [37]

E[A] = aIm. (19)

If A ∼ CBm(a, b), then the expected value of A can be
calculated using the methods in [38] as

E[A] =
a

a+ b
Im. (20)

D. PRELIMINARIES: MATRIX VARIATE DISTRIBUTIONS
In this section, some essential matrix-variate distributions in
MIMObroadcast channels are derived and summarized based
on the notations previously given. As a direct extension of
Theorems 3.2.5 and 5.2.4 in [34] to the domain of complex
numbers, we have the following lemmas.
Lemma 1: Let X ∼ CNm,n(0, �⊗ In) and P ∈ Cn×n be a

Hermitian idempotent matrix of rank r ≥ m. Then XPXH
∼

CWm(r, �).
Proof: The proof follows the same argument used to

prove Theorem 3.2.5 in [34].
Lemma 2: Let Y ∼ CNm,n1 (0, � ⊗ In1 ) and S ∼

CWm(n2, �) be independent. If n1 ≥ m, then (S +
YYH )−

1
2YYH ((S+ YYH )−

1
2 )H ∼ CBm(n1, n2).

Proof: The proof follows the same argument used to
prove Theorem 5.2.4 in [34].

Lemma 1 implies that

HHH ∼ CWNr (Nt , INr ), (21)

HHWjWH
j H ∼ CWNr (Nr , INr ), (22)

HH (INt −WjWH
j )H ∼ CWNr (Nt − Nr , INr ), (23)

for arbitrarily chosen j ∈ J . Furthermore, the following
lemma can be obtained from Lemmas 1 and 2.
Lemma 3: For n > m, let Z ∈ Cn×m be an orthonormal

basis for an m dimensional plane isotropically distributed in
Cn×m, and P ∈ Cn×n be a Hermitian idempotent matrix of
rank r ≥ m. Then, ZHPZ ∼ CBm(r, n− r).

Proof: See Appendix A.
From this lemma, we have

H̃H (INt −WjWH
j )H̃

= Ej3jEHj ∼ CBNr (Nt − Nr ,Nr ). (24)

Moreover, (19) and (21) implies that

E[HHH] = E[U6UH ] = NtINr , (25)

and (20) and (24) imply that

E[Ej3jEHj ] =
Nt − Nr
Nt

INr . (26)
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E. PERFORMANCE METRIC
For notational simplicity, the term including the multiuser
interference is denoted as

IU ,
K∑
k=2

HHVkVH
k H. (27)

By (6), IU is represented as

IU ,
K∑
k=2

HHVkVH
k H

= U6
1
2

( K∑
k=2

H̃HVkVH
k H̃

)
6

1
2UH . (28)

In addition, from (14),

H̃HVk = (ĤĤH H̃+ Sn̂3
1
2
n̂ E

H
n̂ )

HVk

(a)
= En̂3

1
2
n̂ S

H
n̂ Vk , (29)

where (a) follows because ĤHVk = 0 for all k = 2 · · · ,K
(Section II-B). Then, by combining (28) and (29), IU is
reformulated as

IU = U6
1
2

( K∑
k=2

En̂3
1
2
n̂ S

H
n̂ VkVH

k Sn̂3
1
2
n̂ E

H
n̂

)
6

1
2UH

= λn̂U6
1
2

( K∑
k=2

En̂9
1
2
n̂ S

H
n̂ VkVH

k Sn̂9
1
2
n̂ E

H
n̂

)
6

1
2UH . (30)

By defining

Rj,k , U6
1
2Ej9

1
2
j S

H
j VkVH

k Sj9
1
2
j E

H
j 6

1
2UH , (31)

for k = 2, · · · ,K and j = 1, · · · , 2B, IU is represented as a
multi-variable function as follows:

IU (λn̂, {Rn̂,k}
K
k=2) =

K∑
k=2

λn̂Rn̂,k . (32)

Based on a sphere-packing argument [1], the achievable
rate in a MIMO channel is given by the ratio of the volume
(or, correspondingly, the power) of the total received signal
space to that of the noise-plus-interference space [18]. Thus,
from (5) and (27), the downlink instantaneous rate of user 1
can be represented by the following function R:

R(λn̂, {Rn̂,k}
K
k=2,T)

= log2
det( PNt H

HVVHH+ P
Nt
IU (λn̂, {Rn̂,k})+ INr )

det( PNt IU (λn̂, {Rn̂,k})+ INr )

= log2
det
[
T+ IU (λn̂, {Rn̂,k})+

Nt
P INr

]
det
[
IU (λn̂, {Rn̂,k})+

Nt
P INr

] , (33)

where

T , HHVVHH

= U6
1
2 H̃HVVH H̃6

1
2UH . (34)

For convenience of analytical description, the instantaneous
rate R is represented as a multi-variable function of random
matrices. In (33), IU is the only term dependent on the quan-
tization error.

The downlink spectral efficiency of each user is defined as
the ergodic downlink rate:

T , E[R(λn̂, {Rn̂,k},T)] [bps/Hz], (35)

where the expectation is taken over all the random compo-
nents in R.

III. ANALYTICALLY TRACTABLE MODELS FOR
QUANTIZATION
A. RMQ
For analytical tractability, two quantization models have
been widely used in previous studies for analyzing achiev-
able performance in MIMO broadcast channels based on
limited feedback. The first model uses randomly generated
codewords. It is well-known as random vector quantization
because it was first considered for vector quantization prob-
lems assuming Nr = 1 in early studies of MIMO broadcast
channels [9]. Because each channel between a user and the
BS is given by a matrix, this type of quantization based on
random codewords is denoted as the previously defined RMQ
in this study. Assuming RMQ, each codeword Wj ∈ C is a
random unitary matrix uniformly distributed in CNt×Nr and
is independent of all other codewords. Then, the spectral
efficiency T is obtained by averaging over random codewords
as well as over other random components such as fading
channels. Because the performance of the system is averaged
over random codewords if we use RMQ, we can argue that
at least one realization of codewords always exists whose
performance is equal to or better than the ensemble average
[9]. This is a similar approach to the random coding argument
used to prove Shannon’s channel coding theorem. In this
context, the performance achieved using RMQ is considered
as the lower bound performance in terms of codebook con-
struction.

RMQ is easy to implement in a simulation, is intuitive in
terms of codebook construction, and is tractable for math-
ematical analysis. Thus, it has been consistently used to
analyze the communication performance in MIMO broadcast
channels based on limited feedback [9], [18]. In particular,
RMQ simplifies the analysis of quantization error matrix
3j (e.g., a significant amount of analysis was performed on
quantization errors when Nr = 1 in [9]). However, commu-
nication systems are becoming increasingly complicated in
recent wireless communication standards (e.g., the number
of antennas is increasing, and the network is becoming denser
[25]–[31]). In these complicated systems, analyzing the quan-
tization error is considerably difficult based on RMQ because
the distribution of the quantization errors is still given by the
minimum-order statistics of 2B independent random variables
[9]. Moreover, obtaining simulation results with RMQ for a
large B is difficult when Nr > 1 [18] (see Section V). QCA

VOLUME 8, 2020 73437



T.-K. Kim, M. Min: On the Accuracy of QCA in MIMO Broadcast Systems Based on Limited Feedback

as described in the following section is an alternative solution
to further simplify the corresponding analysis.

B. QCA
As an alternative to RMQ, QCA has been considered for vec-
tor quantization problems when Nr = 1 [13], [20], [21], [39].
It is also known as the quantization cell upper bound model
[13] or spherical-cap approximation for vector quantization
[20].

If Nr = 1, QCA for vector quantization (QCAVQ) approx-
imates the true quantization area Ri of each codeword wi,

Ri = {x ∈ CNt×1 : |xHwi|
2
≥ |xHwj|

2,∀j 6= i}, (36)

as

Ri ≈ R̂i =

{
x ∈ CNt×1 : |xHwi|

2/‖x‖2 ≥ 1− κ
}
, (37)

for some κ invariant with respect to i [13], where wi denotes
the vector version (when Nr = 1) of Wi. Then, it further
assumes that R̂i and R̂j are disjoint if i 6= j and

∑2B
i=1 Pr(h̃ ∈

R̂i) = 1, where h̃ denotes the vector version (when Nr = 1)
of H̃. This is an ideal condition for the quantization region,
and thus QCAVQ is known to achieve a performance upper
bound in terms of codebook construction. Based on these
assumptions, we have [13]

Fζn̂ (x) =

{
2BxNt−1, 0 ≤ x ≤ κ,
1, κ ≤ x,

(38)

where κ(B) = 2−
B

Nt−1 , and ζn̂ is the scalar version of 3n̂
such that from (13), ζn̂ , 1− |h̃H ĥ|2. It is shown that Fζn̂ (x)
with the QCAVQ is greater than any CDF of the quantization
error obtained from any codebook C [13]. This is the reason
QCAVQ is known to achieve performance upper bound. From
the CDF, we know that

ζn̂

κ
∼ Beta(Nt − 1, 1). (39)

In other words, with QCAVQ, the quantization error can be
represented by κ multiplied by an ordinary beta random vari-
able. Thus, the entire effect of quantization is compressed into
the deterministic variable κ(B) such that the mathematical
analysis becomes much simpler than using RMQ because
we do not need to take expectation over random codewords.
However, (39) is applicable only when Nr = 1. Moreover,
QCAVQ has been implicitly assumed to provide tight approx-
imation by providing only certain simulation results in the
literature. Similar to the sphere-packing argument [1], one
may intuit that QCAVQ provides close approximation for
a large B. However, the lack of an analytical basis remains
regarding the accuracy of using QCAVQ.

The extended version of QCA for matrix quantization
was first proposed in [24] for analytical tractability, but
the detailed logic behind and corresponding accuracy of
the approximation were not carefully investigated. Thus,
the main subject of this study is to reformulate QCA to be
applicable for all Nr ≥ 1 and to carefully investigate the

reliability of QCA. Because QCA and RMQ provide the
performance upper and lower bounds in terms of codebook
construction, respectively, the gap between the spectral effi-
ciencies obtained by using QCA and RMQ is the primary
focus of the analysis. The accuracy of QCA is investigated
with respect to various system parameters including Nt , Nr ,
B, and P.

IV. QCA FOR MATRIX QUANTIZATION
A. FORMULATION
In this section, QCA as proposed in [24], which is applicable
for all Nr ≥ 1, is reformulated. As described in Section II-
A, each codeword Wj is a candidate for the quantized CSI,
and the quantization error is represented by3j. Consequently,
in quantization (7), a distance measure d should be carefully
determined to reduce the eigenvalues listed in diagonal matrix
3j effectively. One famous example is the chordal distance,
where the quantization performance of the chordal distance
was discussed in previous studies [18], [40]. In terms of the
achievable multiplexing gain, an optimal distance measure
was also proposed in [19].

To develop QCA applicable for all Nr ≥ 1, the com-
mon random variable intrinsic in 3j is considered. Because
H̃H (INt −WjWH

j )H̃ ∼ BNr (Nt − Nr ,Nr ) (23), the PDF of
the largest eigenvalue λj follows a beta distribution with the
parameters Nr (Nt − Nr ) and 1, which is given by [41]

fλj (x) = Nr (Nt − Nr )xNr (Nt−Nr )−1, x ∈ [0, 1], (40)

for arbitrarily chosen j ∈ J .
Lemma 4: The largest eigenvalue λj and normalized

matrix 9j = 3j/λj are mutually independent.
Proof: See the proof of Lemma 1 in [24].

This means that all entries of the quantization error matrix
3j equally contain λj as an independent component, implying
that reducing λj can reduce all the entries of 3j. In other
words, we have an option to suppress the quantization error
matrix by solely minimizing single random variable λj. In this
context, the distance measure

d1(Wj,H) , λj, (41)

is considered for each j ∈ J , where λj is defined in (11).
If we apply d = d1 to (7), the quantization process

minimizes the largest eigenvalue of the quantization error
matrix to obtain the quantized CSI Ĥ. Because λj follows a
beta distribution with parameters Nr (Nt − Nr ) and 1 (40),
the quantization process obtains the minimum of 2B beta
random variables, which is mathematically equivalent to the
vector quantization problem as described in [9], [13]. Thus,
we can equally apply the QCA argument used for vector
quantization such that the true quantization area Ti of each
codeword Wi,

Ti = {X ∈ CNt×Nr : d1(Wi,X) ≤ d1(Wj,X),∀j 6= i}, (42)

is approximated as

Ti ≈ T̂i = {X ∈ CNt×Nr : d1(Wi,X) ≤ δ}, (43)
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for some δ invariant with respect to i. Note that d1(Wi,H) is
a beta random variable with parameters Nr (Nt − Nr ) and 1
(40), and it is equally likely for all i that a realization of H
belongs to Ti. Thus, (43) corresponds to

F
λ
QCA
n̂

(x) = Pr
(
d1(Wi,H) ≤ x

∣∣ H ∈ T̂i
)

(a)
=

{
(x/δ)Nr (Nt−Nr ), 0 ≤ x ≤ δ,
1, δ ≤ x,

(44)

where (a) follows from (40) and (41). The original quantiza-
tion regions are disjoint (Ti ∩ Tj = ∅, if i 6= j) and the union⋃2B

i=1 Ti covers the entire quantization space (
∑2B

i=1 Pr(H ∈
Ti) = 1). By inheriting these properties, δ is chosen to satisfy
Pr(H ∈ T̂i) = 2−B such that

δ(B) = 2−
B

Nr (Nt−Nr ) . (45)

In (44), the superscript QCA in λQCAn̂ is used to indicate
that it is obtained using QCA. Applying the union bound
of probability, it can be easily shown that the CDF in (44)
provides an upper bound for any CDF of λn̂ obtained by
minimizing λj with any codebook C. This implies that QCA
in (44) provides a performance upper bound in terms of
codebook construction, given that d1 is used as the distance
measure.

In summary, by combining the use of d = d1 and the
approximation Ti ≈ T̂i in (43), we can obtain QCA applicable
for matrix quantization problems. That is, the CDF (44)
implies that

λ
QCA
n̂

δ
∼ Beta(Nr (Nt − Nr ), 1). (46)

Furthermore, Lemma 4 implies that

En̂3
QCA
n̂ EHn̂
δ

d
= Ej3jEHj ∼ CBNr (Nt − Nr ,Nr ), (47)

for arbitrarily chosen j. If Nr = 1, then the quantization error
matrix 3QCA

n̂ corresponds to ζn̂ in (38) and (39). Thus, (47)
is the extended version of QCAVQ described in Section III-
B. It is obtained by additionally assuming d = d1, and is
applicable for all Nr ≥ 1. If a distinction is required, then this
extended version is hereafter referred to as QCA for matrix
quantization (QCAMQ). If not, it is simply called QCA for
all Nr ≥ 1.

B. PERFORMANCE OF DISTANCE MEASURE
To generalize QCAVQ to QCAMQ, the largest eigenvalue
of the quantization error matrix is considered as the distance
measure for quantization (i.e., d = d1 in (7)). Thus, to verify
the validity of QCAMQ, we should first verify the validity
of using d1 for quantization. In fact, obtaining an explicit
optimal solution for the quantization measure that maximizes
the spectral efficiency is barely possible. The chordal dis-
tance has been widely used for matrix quantization [18], [40]
because it corresponds to the sumof all eigenvalues in3j such
that minimizing the chordal distance can intuitively suppress

the quantization matrix 3j, and because the corresponding
quantization performance of the chordal distance was exten-
sively investigated in the literature [11], [40]. Denoting the
chordal distance as dc, it is represented as

dc(Wj,H) , tr[H̃H (INt −WjWH
j )H̃]

= tr[Ej3jEHj ]. (48)

A distance measure that maximizes the multiplexing gain is
an alternative choice, and is defined as [19]:

dm
(
Wj,H

)
, log2 det

[
INr +

P
Nt

Ej3jEHj 6
]
. (49)

Because a spectral efficiency cannot be explicitly solved
with respect to B, the quantization performance in wireless
communication has commonly been analyzed in terms of the
number of feedback bits required to maintain the constant
spectral efficiency gap when compared with the optimal per-
formance [9], [18], where the optimal performance is the
achievable spectral efficiency with perfect CSIT. In matrix
quantization, both dc and dm are empirically known to require
the following scaling rate for B to achieve a constant spectral
efficiency gap with respect to the SNR from the spectral
efficiency obtained with the perfect CSIT:

B = Nr (Nt − Nr ) log2 P+ C, (50)

for some constant C . To validate the use of d1, the sub-
optimality of d1 is presented by showing that the scaling rate
in (50) is also sufficient for d1 to maintain the constant gap
from the optimal performance.
Lemma 5: Suppose that d1(Wj,H) = λj is used as the

distance measure (i.e., d = d1 in (7)). Then,

Rn̂,k
d
= Rj,k , (51)

for arbitrarily chosen j from J = {1, · · · , 2B}. Moreover, for
each k = 2, · · · ,K ,

E[Rj,k ] =
Nr (Nt − Nr )+ 1

Nt − Nr
. (52)

Proof: By definition (12), 9j =
3j
λj

for each j ∈ J .
Because d1(Wj,H) = λj is used as the distance measure,
and the random matrices 9j and Ej are independent of λj
(Lemma 4), it follows that 9n̂

d
= 9j and En̂

d
= Ej for arbi-

trarily chosen j from J . Thus, the proof of (51) is completed.
For (52), see Appendix B.

We intend to derive a sufficient condition for B given that
d = d1 to maintain a constant rate gap from the spectral
efficiency achieved with perfect CSIT. To achieve this, it suf-
fices to use RMQ for the quantization codebook because it
provides the performance lower bound in terms of codebook
construction.
Theorem 1: Let TPCSI be the spectral efficiency achieved

with the perfect CSIT and TRMQ be the spectral efficiency
achieved using limited feedback with RMQ.
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FIGURE 1. Spectral efficiency T , obtained by simulating (35), is depicted
with respect to P . Nt = 6, Nr = 2, and B is scaled as (53).

Then, if d = d1, it suffices to scale the number of feedback
bits as

B = N0 log2 P+ N0 log2
(N0 + 1
NrNt

)
− N0 log2(r1 − 1) (53)

to obtain

TPCSI − TRMQ ≤ Nr log2 r1, (54)

where r1 is any constant larger than 1 and N0 is defined as
N0 , Nr (Nt − Nr ).

Proof: See Appendix C.
This theorem implies the following. To maintain a rate gap no
greater than Nr log2 r1 from the optimal spectral efficiency
achieved with the perfect CSIT, with respect to P, it suffices
to scale the number of feedback bits linearly with dB-scaled
transmit power given that d = d1 for quantization. This
theorem demonstrates a suboptimality in terms of achieving
the full multiplexing gain with respect to P, as this scaling
rate of B is equivalent to that empirically obtained with the
optimal distance measure that maximizes the multiplexing
gain [19]. It is also equivalent to that obtained with the
chordal distance [18]; the only difference is the amount of
constant termN0 log2

(
N0+1
NrNt

)
−N0 log2(r1−1). Fig. 1 verifies

this theorem, and it also compares the performance achieved
using d1 with that achieved using the chordal distance (dc).
With bit scaling in (53), the difference in spectral efficiency
is negligible between using d1 and dc, which demonstrates
the asymptotic sub-optimality of d1.
Based on the suboptimality discussed in Theorem 1, unless

otherwise specified, it is hereafter assumed that the measure
d1 is consistently used as the distance measure for quantiza-
tion.

C. ACCURACY OF QCA
As described in Section IV-A, QCAMQ consists of the fol-
lowing two essentials:

1) The use of d1 as distance measure for quantization.

2) Approximating the quantization cell of each codeword
as Ti ≈ T̂i (43).

Because the validity of using d1 was discussed in the previ-
ous section, the accuracy of the approximation Ti ≈ T̂i is
investigated in this section. As QCA and RMQ provide the
performance upper and lower bounds in terms of codebook
construction (Section III), respectively, the gap of spectral
efficiencies achieved using QCA and RMQ is analyzed.

Let λQCA be the largest eigenvalue of 3n̂ obtained using
QCA, and let λRMQ be the largest eigenvalue of 3n̂ obtained
by minimizing d1 (d = d1 in (7)) with RMQ; the subscript
index n̂ is omitted for simplicity. Applying Lemma 5 to (35),
the spectral efficiency obtained using QCA and RMQ are
respectively given by

TQCA = E[R(λQCA, {Rj,k},T)]

= E
[
log2

det
(
T+ IU (λQCA, {Rj,k})+

Nt
P INr

)
det
(
IU (λQCA, {Rj,k})+

Nt
P INr

) ]
,

TRMQ = E[R(λRMQ, {Rj,k},T)]

= E
[
log2

det
(
T+ IU (λRMQ, {Rj,k})+

Nt
P INr

)
det
(
IU (λRMQ, {Rj,k})+

Nt
P INr

) ]
.

(55)

If we have an infinite number of feedback bits, then the
quantized CSI Ĥ obtained using a well-designed distance
measure and a quantization codebook will be arbitrarily close
to the true quantized CSI H̃ (i.e., limB→∞ Ĥ = H̃). In this
context, the following theorem proves an asymptotic validity
of QCA and RMQ with d = d1 for quantization.
Theorem 2: Let TPCSI be the spectral efficiency achieved

with the perfect CSIT as in Theorem 1. Then, with d = d1 in
(7), we have

lim
B→∞

TQCA = lim
B→∞

TRMQ = TPCSI. (56)

Proof: See Appendix D.
As both the lower (RMQ) and upper (QCA) bounds of

the spectral efficiency converge to the same value, they are
asymptotically equivalent assuming d = d1 with respect to
B. This implies that QCA can precisely model the quantized
CSI obtained from anywell-designed codebook that performs
better than RMQ if B is sufficiently large provided that d =
d1 is used as a distance measure. This theorem also provides
an asymptotic optimality of the distance measure d1. How-
ever, we still do not know the number of feedback bits that
corresponds to a sufficiently large number of feedback bits.
Thus, having information regarding the accuracy of QCA for
moderate values of B is desirable.

Note that in (55), the terms Rj,k and T are not related to
the quantization error. By replacing them with their expected
values, we can define the following estimates:

T̄QCA = E[R(λQCA, {E[Rj,k ]},E[T])]
T̄RMQ = E[R(λRMQ, {E[Rj,k ]},E[T])], (57)

where the outermost expectations are considered with respect
to all remaining random components.
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Each error for estimating TQCA using T̄QCA and estimating
TRMQ using T̄RMQ may be greater than expected. However,
the only difference in calculating TQCA and TRMQ in (55) is
the difference between λQCA and λRMQ. Thus, anticipating
that the quantization performances of QCA and RMQ are
not significantly different, we can expect that the estimation
errors TQCA − T̄QCA and TRMQ − T̄RMQ are close, although
each of them may be greater than expected. In mathematical
terms, TQCA − T̄QCA is given by

TQCA − T̄QCA
= E[R(λQCA, {E[Rj,k ]},E[T])]− E[R(λQCA, {Rj,k},T)]

=

∫ δ

0
E
[
R(x, {E[Rj,k ]},E[T])

−R(x, {Rj,k},T)
]
fλQCA (x)dx, (58)

and similarly,

TRMQ − T̄RMQ =

∫ 1

0
E
[
R(x, {E[Rj,k ]},E[T])

−R(x, {Rj,k},T)
]
fλRMQ (x)dx. (59)

Consequently, their difference is represented as

(TQCA − T̄QCA)− (TRMQ − T̄RMQ)

=

∫ 1

0
E
[
R(x, {E[Rj,k ]},E[T])− R(x, {Rj,k},T)

]
(
fλQCA (x)− fλRMQ (x)

)
dx, (60)

where fλQCA (x) = 0 for δ ≤ x ≤ 1. Thus, each of the
following can make (TQCA − T̄QCA) − (TRMQ − T̄RMQ) be
sufficiently close to zero.

1) Both TRMQ and TQCA are sufficiently close to T̄RMQ
and T̄QCA, respectively.

2) The PDFs fλQCA (x) and fλRMQ (x) are sufficiently close.
3) The absolute value of the integral in (60) integrated

only on {x ∈ [0, 1] : fλQCA (x) > fλRMQ (x)} is suffi-
ciently close to that integrated only on {x ∈ [0, 1] :
fλQCA (x) ≤ fλRMQ (x)}.

The first one depends on the distributions of Rj,k and T.
Because they consist of normal beta and Wishart matri-
ces, their variances are not significantly large such that
both TQCA − T̄QCA and TRMQ − T̄RMQ are not expected to
be very large. However, neither of them can be arbitrarily
small. By contrast, fλQCA (x) and fλRMQ (x) can be arbitrarily
close as B increases because the supports of both PDFs
approach zero. As their supports approach zero, the third
one can also be arbitrarily close as B increases. Moreover,
as the values of λQCA and λRMQ become smaller, the inte-
grand E

[
R(x, {E[Rj,k ]},E[T]) − R(x, {Rj,k},T)

]
becomes

less dependent on x; the dummy variable x corresponds to
λQCA and λRMQ. Thus, the third one is well satisfied for small
values of λQCA and λRMQ.
Based on these observations, the estimation error TQCA −

T̄QCA is expected to be sufficiently close to TQCA − T̄QCA
for moderate values of B; the corresponding closeness will

be demonstrated in the following sections. Consequently,
the following approximation is considered:

1T , TQCA − TRMQ ≈ T̄QCA − T̄RMQ , 1T̄ . (61)

In (61), 1T̄ approximates the true rate gap 1T between the
upper and lower bounds for spectral efficiency, where upper
bound TQCA is the spectral efficiency obtained using QCA
and the lower bound TRMQ is obtained using RMQ. Thus,1T̄
should be sufficiently small if we want to use QCA tomodel a
limited-feedback-based system inMIMObroadcast channels.
Obviously, if B approaches infinity, we have

lim
B→∞

[
(TQCA − T̄QCA)− (TRMQ − T̄RMQ)

]
= 0. (62)

Next, the approximated spectral efficiency gap1T̄ is ana-
lyzed to investigate the validity of QCA. It follows from (33)
and (57) that

1T̄ = E
[
log2

det(E[T]+ ĪQCAU +
Nt
P INr )

det(ĪQCAU +
Nt
P INr )

]

−E
[
log2

det(E[T]+ ĪRMQ
U +

Nt
P INr )

det(ĪRMQ
U +

Nt
P INr )

]
, (63)

where ĪQCAU is defined and evaluated from (32) as

ĪQCAU , IU
(
λQCA, {E[Rn̂,k ]}

)
= λQCA

( K∑
k=2

E[Rn̂,k ]
)

(a)
=

N0 + 1
Nr

λQCA, (64)

where (a) follows from Lemma 5 with N0 = Nr (Nt − Nr )
as defined in Theorem 1. Similarly, ĪRMQ

U is defined and
evaluated as

ĪRMQ
U , IU

(
λRMQ, {E[Rn̂,k ]}

)
=

N0 + 1
Nr

λRMQ. (65)

In (34), because V is an orthonormal basis of the left null
space of G in (15), it is independent of both H and Ĥ.
Moreover, because H̃ is a unitary matrix that is isotropically
distributed in CNt×Nr , Lemma 3 implies that H̃HVVH H̃ ∼
BNr (Nr ,Nt − Nr ). Thus, from (20), E[H̃HVVH H̃] = Nr

Nt
INr .

Consequently,

E[T] =
Nr
Nt

E[U6UH ]
(a)
= NrINr , (66)

where (a) follows from (25). By combining (63)–(66),
we obtain

1T̄ = NrE
[
log2

(
PNr + Nt + PM1λ

QCA)]
−NrE

[
log2

(
Nt + PM1λ

QCA)]
+NrE

[
log2

(
Nt + PM1λ

RMQ)]
−NrE

[
log2

(
PNr + Nt + PM1λ

RMQ)], (67)

where M1 is defined as M1 ,
N0+1
Nr

for simplicity.
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From the CDFs of λQCA/δ in (108) and λRMQ in (109),
we know that each expectation term comprising 1T̄ in (67)
is given by the common form of

NrE[log2(a+ bX )] (68)

for some constants a and b, where X is a random variable with
the CDF FX (x) = 1−

(
1− xm

)L for some constants m and L
(e.g., a = PNr + Nt , b = PM1δ, m = N0, and L = 1 for the
first expectation term of 1T̄ in (67)).
Lemma 6: Let X be a random variable distributed in [0, 1]

with the CDF FX (x) = 1 −
(
1 − xm

)L , where m and L are
positive integers. Then, we have

E[log(a+ bX )] =
∫ 1

0

(1− ym)L
a
b + y

dy+ log a, (69)

for any positive constants a > 1 and b > 0.
Furthermore,∫ 1

0

ym
a
b + y

dy =
(
−
a
b

)m
log(1+ b/a)

+

(a
b

)m m∑
i=1

(
m
i

)
(1+ b/a)i − 1
i(−1)m−i

. (70)

Proof: See Appendix E.
Using Lemma 6, we can evaluate1T̄ from (67) as follows:

1T̄ · log 2/Nr
(a)
=

∫ 1

0

1− yN0

N1/δ + y
dy−

∫ 1

0

1− yN0

N2/δ + y
dy

+

∫ 1

0

(1− yN0 )2
B

N2 + y
dy−

∫ 1

0

(1− yN0 )2
B

N1 + y
dy

=

∫ 1

0
(1− yN0 )

(
1

N1
δ
+ y
−

1
N2
δ
+ y

)
dy

+

∫ 1

0
(1− yN0 )2

B
(

1
N2 + y

−
1

N1 + y

)
dy

(b)
= δ

∫ 1

0

(1− yN0 )(N2 − N1)
(N1 + δy)(N2 + δy)

dy︸ ︷︷ ︸
,ϒ1(B,P)

+ δ

∫ 1
δ

0

(1− (δx)N0 )2
B
(N1 − N2)

(N1 + δx)(N2 + δx)
dx︸ ︷︷ ︸

,ϒ2(B,P)

, (71)

where (a) follows by applying Lemma 6 to each term in (67),
(b) follows from the variable change of y = δx for the second
term, and N1 and N2 are defined as

N1 ,
Nr (PNr + Nt )
P(N0 + 1)

, N2 ,
NtNr

P(N0 + 1)
. (72)

Alternatively, applying (70) to the first two terms on the right-

hand side (RHS) of
(a)
= in (71), we can reformulate 1T̄ in a

more explicit form:

1T̄ · log 2/Nr
= log(1+ δ/N1)− log(1+ δ/N2)

FIGURE 2. Normalized gap of downlink rates achieved by using QCA and
RMQ. 1T is obtained by simulating (35), and 1T̄ is obtained by (73) by
numerically integrating ϒ2.

FIGURE 3. Normalized gap of downlink rates achieved by using QCA and
RMQ. 1T is obtained by simulating (35), and 1T̄ is obtained by (73) by
numerically integrating ϒ2.

− (N1/δ)N0

N0∑
i=1

(
N0
i

)
(1+ δ/N1)i − 1

i(−1)N0−i

+ (N2/δ)N0

N0∑
i=1

(
N0
i

)
(1+ δ/N2)i − 1

i(−1)N0−i

− (−N1/δ)N0 log(1+ δ/N1)

+ (−N2/δ)N0 log(1+ δ/N2)+ ϒ2(B,P). (73)

D. ASYMPTOTIC ANALYSIS
1) WITH RESPECT TO B
BecauseN1−N2 > 0,ϒ1(B) is negative andϒ2(B) is positive
for B ≥ 0. Moreover, because (1−yN0 )2

B
≤ 1 is a decreasing

function of y in [0, 1], whose valid support approaches zero as
B increases, we can expect thatϒ2(B) is a positive decreasing
function that approaches zero as B increases. In addition,
because N2 + δy → N2 and N1 + δy → N1 with increasing
B, ϒ1(B) also approaches zero as B increases. Thus, unless
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the functions ϒ1(B) and ϒ2(B) rapidly fluctuate with respect
to B, we can expect that 1T̄ gradually approaches zero as
B increases, as illustrated in Fig. 2. The spectral efficiency
gap between QCA and RMQ decreases as B increases, which
implies that QCA and RMQ are asymptotically equivalent
with respect to B. In Fig. 2, both1T and1T̄ are normalized
by TRMQ to emphasize that the rate gap is much smaller than
the achievable rate. The approximation is generally tight for
moderate values of B and becomes gradually closer while
approaching zero with increasing B, as expected.

In mathematical terms, limB→∞ϒ1(B) = 0 is straightfor-
ward. Moreover, from (111), we have

lim
B→∞

(1− (δx)N0 )2
B
= e−x

N0
. (74)

Thus,

lim
B→∞

ϒ2(B) = lim
B→∞

(δ)
∫
∞

0
e−x

N0 N1 − N2

N1N2
dx

(a)
= lim

B→∞
(δ)

N1 − N2

N0N1N2

∫
∞

0
e−zz

1
N0
−1
dz

= lim
B→∞

(δ)
N2 − N1

N0N1N2
0

(
1
N0

)
= 0, (75)

where (a) follows from the variable change of z = xN0 and
0(·) denotes the gamma function. Therefore, the rate gap
converges to zero as follows:

lim
B→∞

1T (B)
(a)
= lim

B→∞
1T̄ (B) = 0, (76)

where (a) follows from (62). This is an equivalent result to
Theorem 2, which implies that QCA and RMQ are asymptot-
ically equivalent with respect to B.

2) WITH RESPECT TO P
From (33) and (35), the spectral efficiency can be rewritten
as

T = E
[
log2

det(T+ IU + Nt
P INr )

det(IU +
Nt
P INr )

]
= E

[
log2 det

(
INr + T

(
IU +

Nt
P
INr
)−1)]

. (77)

At the RHS of (77), IU is the only term that is related to
quantization, and Nt

P INr is the only term related to the transmit
power. Thus, the inverse matrix (IU +

Nt
P INr )

−1 is the only
term that includes the effect of the quantization error or trans-
mit power. Note that

lim
P→∞

(
IU +

Nt
P
INr
)−1
= (IU )−1, (78)

and

lim
P→0

(
IU +

Nt
P
INr
)−1
≈ lim

P→0

(Nt
P
INr
)−1

. (79)

Thus, in terms of the achievable rate, the effect of the quanti-
zation error is negligible whenP = 0, and gradually increases
as P increases; it is maximized at P → ∞. Furthermore,
we can expect that the rate gap1T = TQCA−TRMQ will also

increase as the effect of the quantization error in T increases.
Accordingly, it can be expected that

1T (P) ≈ 1T̄ (P) ≤ lim
P→∞

1T̄ (P). (80)

Fig. 3 clearly demonstrates this observation. The normalized
gap is generally small and increases with respect to P. It
is larger for the case with Nt = 4 because the number of
quantization bits is less sufficient than the case of Nt = 6.
The error reaches near 7% in the worst case of this figure,
but it is still acceptable and can be decreased by using more
feedback bits if required.

From (67), 1T̄ can be rewritten as

1T̄ = NrE
[
log2

(
Nr + Nt/P+M1λ

QCA)]
−NrE

[
log2

(
Nt/P+M1λ

QCA)]
+NrE

[
log2

(
Nt/P+M1λ

RMQ)]
−NrE

[
log2

(
Nr + Nt/P+M1λ

RMQ)], (81)

based on the properties of the logarithm. IfP→∞, it follows
that

lim
P→∞

1T̄ = NrE
[
log2

(
Nr +M1λ

QCA)]
−NrE

[
log2

(
Nr +M1λ

RMQ)]
+NrE

[
log2

(
λRMQ)]

− NrE
[
log2

(
λQCA

)]
.

(82)

Because λQCA d
= δX for a beta random variable X with

parameters N0 and 1, and λRMQ is the minimum of 2B

i.i.d. beta random variables with parameters N0 and 1,
E
[
log

(
λRMQ

)]
and E

[
log

(
λQCA

)]
can be obtained as fol-

lows by applying Lemma 3 in [9]:

E
[
log λRMQ]

= −
1
N0

2B∑
i=1

1
i
,

E
[
log λQCA

]
= E

[
logX

]
+ log δ = −

1
N0
+ log δ. (83)

The first and second terms on the RHS of (82) can be calcu-
lated using Lemma 6. Consequently, we obtain

lim
P→∞

1T̄ · log 2/Nr

=

∫ 1

0

1− yN0

Nr
M1δ
+ y

dy−
∫ 1

0

(1− yN0 )2
B

Nr
M1
+ y

dy

+
1
N0
− log δ −

1
N0

2B∑
i=1

1
i

(a)
= log

(
1+

M1δ

Nr

)
−

(
−Nr
M1δ

)N0
log

(
1+

M1δ

Nr

)
−

( Nr
M1δ

)N0
N0∑
i=1

(
N0
i

) (1+ M1δ
Nr

)i − 1

i(−1)N0−i

− δ

∫ 1
δ

0

(1− (δx)N0 )2
B

Nr
M1
+ δx

dx +
1
N0
− log δ −

1
N0

2B∑
i=1

1
i
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(b)
≤ log

(
1+

M1δ

Nr

)
−

(
−Nr
M1δ

)N0
log

(
1+

M1δ

Nr

)
−

( Nr
M1δ

)N0
N0∑
i=1

(
N0
i

) (1+ M1δ
Nr

)i − 1

i(−1)N0−i

− δ

∫ 1
δ

0

e−x
N0

Nr
M1
+ δx

dx +
1
N0
− log δ −

1
N0

2B∑
i=1

1
i

, 1T̄2, (84)

where (a) follows by applying (70) to the first integral and
the variable change of y = δx to the second integral. In
addition, (b) follows because (1 − (δx)N0 )2

B
is a decreasing

function of B, which is lower-bounded by the limiting value
(1 − (δx)N0 )2

B
= e−x

N0 given in (74). Moreover, it can be

easily shown that the integral
∫ 1
δ

0
e−x

N0

Nr
M1
+δx

dx is bounded by a

finite value. Thus, from (80) and (84), it can be concluded
that 1T̄ increases with respect to P, but is bounded by the
finite value 1T̄2 (Fig. 4). In Fig. 4, the spectral efficiency
gap achieved between QCA and RMQ are depicted without
normalization, to verify the analytical upper bound1T̄2. The
analytical approximation 1T̄ well approximates 1T and the
analytical upper bound 1T̄2 corresponds to an asymptote
with respect to P as expected. The gap obtained with Nt = 4
and Nr = 1 is considerably larger than that with Nt = 8 and
Nr = 2. However, because the achievable spectral efficiency
is also larger with Nt = 4 and Nr = 1, as shown in Fig. 5,
the normalized gap is not very different; this can be simply
verified by normalizing the rate gap in Fig. 4 by the spectral
efficiency in Fig. 5. In Fig. 5, the spectral efficiency ofNt = 4
and Nr = 1 is much larger than that of Nt = 8 and Nr = 2
for a large P because B = 30 is insufficient to perform
SDM effectively with eight transmit antennas. The potential
performance of the case of Nt = 8 and Nr = 2 with a
sufficient number of feedback bits will be greater than that
of the case of Nt = 4 and Nr = 1 as is partially shown
in Fig. 5 for a small P. In other words, because the amount of
quantization error increases with the SNR and the numbers of
antennas, it is better to use fewer antennas when the SNR is
high, and better to use more antennas when the SNR is low.

3) WITH RESPECT TO NT
From (67), 1T̄ can be rewritten as

1T̄ = NrE
[
log2

(
PNr/Nt + 1+ PM1λ

QCA/Nt
)]

−NrE
[
log2

(
1+ PM1λ

QCA/Nt
)]

+NrE
[
log2

(
1+ PM1λ

RMQ/Nt
)]

−NrE
[
log2

(
PNr/Nt + 1+ PM1λ

RMQ/Nt
)]
. (85)

If Nt approaches infinity for fixed P and B, the quantization
error unboundedly increases, and therefore, the advantage of
quantization becomes negligible for both cases of QCA and
RMQ. Specifically, because M1 =

Nr (Nt−Nr )+1
Nr

, we have

FIGURE 4. Gap of downlink rates achieved by using QCA and RMQ. 1T is
obtained by simulating (35), 1T̄ is obtained by (73) by numerically
integrating ϒ2, and 1T̄2 is obtained by (84).

FIGURE 5. Spectral efficiency achieved using RMQ (TRMQ). TRMQ is
obtained by simulating (35).

limNt→∞
M1
Nt
= 1. Thus,

lim
Nt→∞

1T̄ = NrE
[
log2

(
1+ PλQCA

)]
−NrE

[
log2

(
1+ PλQCA

)]
+NrE

[
log2

(
1+ PλRMQ)]

−NrE
[
log2

(
1+ PλRMQ)]

= 0. (86)

Although (86) implies that 1T̄ → 0 as Nt → ∞, this
result is obtained mainly because both the achievable rates
using QCA and RMQ approach zero as Nt increases for
fixed P and B. Nevertheless, the effect of the difference
in quantization schemes (QCA vs. RMQ) disappears as Nt
increases, as demonstrated in Fig. 6. In short, if Nt increases
by implementing an increasingly larger number of antennas
at the BS, such as in massive MIMO systems, the achievable
rate of limited-feedback-based SDM gradually approaches
zero given that B is fixed. Thus, a more sophisticated algo-
rithm should be prepared to suppress the quantization error
efficiently with a sufficient number of feedback bits.
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FIGURE 6. Normalized rate gap of downlink rates achieved by using QCA
and RMQ. 1T is obtained by simulating (35), and 1T̄ is obtained by (73)
by numerically integrating ϒ2.

V. SIMULATION GUIDELINE
When we use QCA, a realization of the quantized CSI is
obtained from the corresponding distributions described in
Section IV-A without constructing an explicit codebook. As
QCA is an analytically tractable model that is not based on
explicit codebook construction, it is advantageous for both
analysis and simulation. In this section, a guideline is pre-
sented to generate each realization of the quantized CSI Ĥ
for a given realization of the true CSI H̃ during simulation.
By exchanging the roles of H̃ and Ĥ in (14), H̃ can be

decomposed as

Ĥ = H̃H̃H Ĥ+ (INt − H̃H̃H )Ĥ

= H̃H̃H Ĥ+ S̆3
1
2
n̂ Ĕ

H , (87)

where the columns of S̆ ∈ CNt×Nr span an Nr -
dimensional subspace isotropically distributed in the (Nt −
Nr -dimensional) left null space of H̃, the diagonal matrix
3n̂ ∈ CNr×Nr consists of the eigenvalues of ĤH (INt −
H̃H̃H )Ĥ, and Ĕ ∈ CNr×Nr is an isotropically distributed uni-
tary matrix. Moreover, S̆, 3n̂, and Ĕ ∈ CNr×Nr are mutually
independent. It should be noted that3n̂ is invariant when the
roles of H̃ and Ĥ are exchanged.
Remark 1: An m× n, m ≥ n, isotropically (or uniformly)

distributed semi-unitary matrix can be obtained as the n
orthonormal eigenvectors of AAH corresponding to the n
non-zero eigenvalues, where A is an m × n complex matrix
whose entries are i.i.d. complex Gaussian random variables
with mean 0 and variance 1.

The matrix Ĕ can be constructed according to Remark 1.
The matrix S̆ can be obtained by multiplying an indepen-
dent and isotropically distributed semi-unitary matrix in
C(Nt−Nr )×Nr to an orthonormal basis of the left null space
of H̃.
Let QY be the QR-decomposition of H̃H Ĥ. As

(H̃H Ĥ)H H̃H Ĥ = INr − (S̆3
1
2
n̂ Ĕ

H )H S̆3
1
2
n̂ Ĕ

H by definition
(87), we haveYHY = INr−Ĕ3n̂ĔH . Thus,Y can be obtained

from the Cholesky decomposition of INr − Ĕ3n̂ĔH after
realizations of Ĕ and 3n̂ are obtained. Then, it follows that

Ĥ = H̃QY+ S̆3
1
2
n̂ Ĕ

H , (88)

where Q can be obtained based on Remark 1 because it is
also an isotropically distributed unitary matrix obtained from
the QR decomposition. The procedure thus far is applicable
independent of the quantization process.We next discuss how
to construct 3n̂, which depends on the distance measure and
quantization codebook.

4) QCA
From (47), if we use QCA, then the quantization error matrix
is given by3n̂

d
= δ3j for arbitrarily chosen j ∈ J and is inde-

pendent of S̆ and Ĕ. Furthermore, because 3j for arbitrary j
consists of eigenvalues of a complex beta distributed matrix
with parametersNt−Nr andNr (24),3j can be obtained from
any independent matrix A ∼ CBNr (Nt −Nr ,Nr ). The matrix
Y is subsequently obtained using 3n̂ = δ3j as previously
mentioned in (88). Then, by substituting both Y and 3n̂ into
(88), we finally obtain Ĥ for a given H̃.

5) EMULATING A SIMULATION OF RMQ WITH D = D1
As a comparison group, RMQ with d1 and dc are consid-
ered in this study (Fig. 1). With RMQ, the quantized CSI is
generated by constructing a random codebook C of size 2B

and then choosing the minimizing index n̂ based on (7). This
is a cumbersome procedure as compared to QCA, and the
computational complexity of constructing random codebook
increases as B increases. The computational complexity of
using QCA is independent of B. Moreover, a codebook con-
struction for a large B may be impossible depending on the
device used for simulation. Because a simulation for a large B
with RMQ is included in this study, to verify the asymptotic
performance, a method that emulates the generation of the
quantized CSI with RMQ is also considered for efficiency
and feasibility. As previously discussed, it suffices to emulate
the distribution of 3n̂ for (88) to obtain a realization of the
quantized CSI based on RMQ during simulation.

If d = d1, 9n̂ = 3n̂/λn̂ is independent of both the
quantization process and quantization error λn̂ (Lemma 5).
Thus,9n̂ can be obtained from any independent complex beta
distributedmatrixwith parametersNt−Nr andNr . The largest
eigenvalue λn̂ can then be obtained using a CDF inversion
method.3 That is, λn̂ = F−1

λRMQ (U ) with a realization U of an
independent random variable uniformly distributed in (0, 1),
where F−1

λRMQ is the inverse function of FλRMQ in (109).

6) EMULATING A SIMULATION OF RMQ WITH D = DC
If d = dc, then all eigenvalues of 3n̂ are dependent on the
quantization process, where the quantization process selects

3In this study, the CDF inversion method refers to the method used to
generate a realization of any random variable with the known CDF. Let the
inverse function of the CDF be F−1(x). Then, a realization of the random
variable is obtained as F−1(U ), where U is a realization of an independent
uniform random variable [42].
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the codeword that minimizes the chordal distance between
Wj and H̃. In this case, the minimum chordal distance is
first realized, and then the entries of 3n̂ are obtained from
their joint distributions conditioned on the realization of the
chordal distance. Although the joint PDF of the eigenvalues
of a complex beta matrix is known, a marginal distribution of
each eigenvalue is not generally known in a common explicit
form. Thus, a CDF inversion method should be prepared
for each value of Nt , Nr , and B, as described in [18]. A
numerical integration may be required for a large Nr because
the marginal CDF is difficult to calculate explicitly.

The emulation of this case is well described in [18]. How-
ever, as a complement, it is revisited in this study with addi-
tional details. First, it is defined that

h(B) ,
(

2−B

cNt ,Nr ,Nr ,2

) 1
N0
, (89)

where the normalizing constant cn,p,q,β is equivalent to that
defined in [40]. By combining Corollary 1 and Lemma 3 in
[40], we can obtain the CDF of the minimum of 2B i.i.d.
chordal distances as

Fmin(x) =
{
0, x < 0,
cNt ,Nr ,Nr ,2 · 2

BxN0 , 0 ≤ x ≤ min(h(B), 1).
(90)

If h(B) > 1, then the CDF is not explicitly known for
x > 1. Thus, complete emulation is possible only when B is
sufficiently large to satisfy h(B) ≤ 1. If B is too small to guar-
antee h(B) ≤ 1, then a normal quantization with an explicit
random quantization codebook should be performed instead.
However, as the codebook is not very large, the computational
complexity is not very high in these cases.

Subsequently, the marginal distributions of the eigenvalues
of a complex beta matrix conditioned on the chordal distance
are required. They do not have a general form applicable to all
Nt and Nr , and thus they should be calculated for each case.
For example, if Nr = 2, then the joint PDF of the eigenvalues
of a complex beta matrix is given by (Definition 1.1 of [41])

fη1,η2 (x, y) = CxNt−2Nr yNt−2Nr (x − y)2, (91)

where the eigenvalues are denoted as η1 and η2, and C =
0(Nt−2Nr+3)0(Nt−2Nr+4)

0(Nt−2Nr+1)0(Nt−2Nr+2)0(3)
. The marginal PDF of η1 condi-

tioned on the chordal distance η = η1 + η2 is calculated as

fη1|η(x|y) =
fη1,η(x, y)
fη(y)

=
fη1,η2 (x, y− x)

fη(y)
. (92)

The PDF of the chordal distance fη(y) can be obtained at least
for 0 ≤ y ≤ 1 by differentiating (90) after substituting B = 0.
If B is sufficiently large to satisfy h(B) ≤ 1, then a realization
of the minimum of the chordal distances is less than 1 with
probability 1. Thus, it suffices to know fη(y) for y ≤ 1. The
marginal CDF Fη1|η(x|y) is obtained by integrating fη1|η(x|y)
with respect to x.

Now, we are prepared to generate3n̂ for this specific case.
Based on (90) and the CDF inversion, a realization D of
the minimum of 2B i.i.d. chordal distances is first obtained.
With D, a realization of η1 is subsequently obtained using

Fη1|η(x|D) and the CDF inversion. Lastly, we obtain η2 =
D − η1. Because each inverse function of the corresponding
CDFs may not have an explicit form, a numerical quantiza-
tion may be required for the CDF inversion.
As demonstrated in this section, emulating the use of RMQ

with the chordal distance is quite cumbersome as compared
to the QCA proposed in this study, and is not always feasible.
QCA is very easy to simulate; is applicable for all system
parameters including Nt , Nr , B, and P, and the computation
time is significantly shorter than that required to construct an
explicit codebook.

VI. CONCLUSION
Themain objective of this studywas to investigate the validity
of an analytical quantization model called QCA. To achieve
this, the gap between the upper and lower bounds for the
spectral efficiency was investigated, with the upper and lower
bounds being obtained using QCA and RMQ, respectively.
The analytical results demonstrated that the gap is generally
small regardless of system parameters Nt , Nr , B, and P. It
was further shown that the gap can be arbitrarily small for
a sufficiently large B. Simulation results were obtained to
demonstrate the accuracy of the analytical results. Based on
the analytical and simulation results, QCA can be regarded
as a quantization model that closely approximates the perfor-
mance achieved with a well-designed codebook. Moreover,
the analysis framework derived in this study can be applied to
various wireless networks to further validate the performance
of QCA, if required.

If QCA is used to model the quantization process, then
the primary advantage is that the stochastic analysis is con-
siderably simplified as compared to the case when using an
explicit codebook. If an explicit codebook is used, then the
quantized channel is given by the minimum order statistics
of 2B random variables, which may also exhibit certain cor-
relations depending on the codebook design. Thus, the corre-
sponding distribution of the quantized CSI is very difficult to
analyze. By contrast, if QCA is applied, then the quantized
CSI is given by a simple random beta matrix multiplied
by a deterministic value, which is a decreasing function of
B as described in (47). Most important, the effect of the
quantization is concentrated solely on the deterministic value
such that the corresponding stochastic analysis is independent
of B. For example, the instantaneous achievable rate is given
in (33) as

R(λn̂) = log2
det(HHVVHH+ IU (λn̂)+

Nt
P INr )

det(IU (λn̂)+
Nt
P INr )

, (93)

where only the first argument λn̂ is represented in functions
R and IU for simplicity. From (46), we have λQCAn̂

d
= δX for

any independent beta random variable X with parameters N0
and 1. Thus, assuming the use of QCA, (93) can be rewritten
as

R(λQCAn̂ ) = log2
det(HHVVHH+ δIU (X )+ Nt

P INr )

det(δIU (X )+
Nt
P INr )

. (94)
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Each random matrix in (94) is given by a form of a simple
Wishart or beta matrix. Although obtaining an explicit for-
mula for the ergodic rate E[R] remains difficult, the problem
is much simpler than when using an explicit codebook. At the
very least, we have explicit distributions for random compo-
nents with QCA. Based on a simple assumption or an approx-
imation, further analysis can be performed from (94) with
QCA with respect to various performance metrics, as was
done in previous studies such as [13], [19], [20], [23]; details
of the corresponding studies are introduced in Section I. As
these studies did not give much attention to the validity of
using QCA, the analytical results in this study can support
the results therein. Furthermore, because QCA can reduce the
complexity of the analysis, the results in this study can further
encourage the use of QCA for future studies of limited-
feedback-based schemes in more complicated MIMO sys-
tems, including massive MIMO systems with FDD in dense
cellular networks.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 3
Let X ∼ CNm,n(0, Im ⊗ In), and the compact SVD of XH

be A1D
1
2AH

2 such that A1 ∈ Cn×m, A2 ∈ Cm×m, and
XXH

= A2DAH
2 . Because an idempotent matrix is always

diagonalizable and its eigenvalues are either 0 or 1 [43],
the rank of In − P is n − r . Thus, Lemma 1 implies that
XPXH

∼ CWm(r, �) and X(In − P)XH
∼ CWm(n− r, Im).

Because XXH
= XPXH

+ X(In − P)XH , Lemma 2 further
implies that (XXH )−

1
2 [XPXH ]((XXH )−

1
2 )H ∼ CBm(r, n −

r). Moreover, because (XXH )−
1
2 = A2D−

1
2AH

2 , we have

CBm(r,m) ∼ (XXH )−
1
2 [XPXH ]((XXH )−

1
2 )H

= A2[AH
1 PA1]AH

2 . (95)

Because the Jacobian of the transformation B → HHBH
is det(H)−m−1 = 1 [34], the distribution of a matrix
B ∼ CBm(r,m) is invariant under the transformation B →
HHBH, provided that H ∈ Cm×m is a unitary matrix inde-
pendent of B. This can be directly shown by transforming the
PDF in (18) with the corresponding Jacobian. Thus, we obtain

CBm(r,m) ∼ A2[AH
1 PA1]AH

2
d
= A1PAH

1 . (96)

Because A1 is an orthonormal basis for an m dimensional
plane isotropically distributed in Cn×m, the proof is com-
pleted.

APPENDIX B
PROOF OF LEMMA 5
From (10), Sj is an orthonormal basis for an Nr -dimensional
plane isotropically distributed in the (Nt − Nr )-dimensional
left null space of Wj. Moreover, Sj is independent of Vk .

Thus, Sj
d
= XY, if X ∈ CNt×(Nt−Nr ) is an orthonormal

basis of the left null space of Wj and Y ∈ C(Nt−Nr )×Nr is
an isotropically distributed matrix independent of Sj.

Then, by applying Lemma 3 twice, we have

SHj VkVH
k Sj = YHXHVkVH

k XY

∼ CBNr (Nr ,Nt − 2Nr ). (97)

Then, from (20), E[SHj VkVH
k Sj] =

Nr
Nt−Nr

INr , for k =
2, · · · ,K . Thus,

E[Rj,k ] = E[U6
1
2Ej9

1
2
j E[S

H
j VkVH

k Sj]9
1
2
j E

H
j 6

1
2UH ]

=
Nr

Nt − Nr
E[U6

1
2E[Ej9jEHj ]6

1
2UH ]. (98)

From (26), E[Ej3jEHj ] =
Nt−Nr
Nt

INr . Moreover, from (40),
E[λj] = Nr (Nt−Nr )

Nr (Nt−Nr )+1
. Thus,

Nt − Nr
Nt

= E
(
Ej3jEHj

)
= E[λj]E

(
Ej9jEHj

)
=

Nr (Nt − Nr )
Nr (Nt − Nr )+ 1

E
(
Ej9jEHj

)
. (99)

By combining (98) and (99), we obtain

E[Rj,k ] =
Nr (Nt − Nr )+ 1
Nt (Nt − Nr )

E[U6UH ]

=
Nr (Nt − Nr )+ 1

Nt − Nr
, (100)

where the last equality follows from (25).

APPENDIX C
PROOF OF THEOREM 1
If the transmitter has perfect CSI, BD (as described in
Section II-B) completely eliminates the multiuser interfer-
ence such that IU = 0. Thus, from (33) and (35),

TPCSI = E
[
log2 det

( P
Nt

HH V̆V̆HH+ INr
)]

= E
[
log2 det

( P
Nt

T̆+ INr
)]
, (101)

where V̆ is the precoding matrix obtained with Ĥ = H̃ under
the perfect CSIT assumption, and T̆ , HH V̆V̆HH. Because
V̆ is still independent of both H and Ĥ, the distribution of T̆
is equivalent to T [18].
From (33) and (35) when Lemma 5 is applied,

TRMQ = E[R(λRMQ
n̂ , {Rj,k},T)]

≥ E log2
det
[ P
Nt
T+ INr

]
det
[
P
Nt
IU
(
λ
RMQ
n̂ , {Rj,k}

)
+ INr

] , (102)

where λRMQ
n̂ denotes the largest eigenvalue of the quantiza-

tion error matrix, with the index n̂ chosen based on RMQ
given that d = d1 in (7). With RMQ, λRMQ

n̂ corresponds to
the minimum of 2B i.i.d. beta random variables λ1, · · · , λ2B ,
with parameters Nr (Nt − Nr ) and 1. Applying Lemma 1 in
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[9], we have E[λRMQ
n̂ ] < δ = 2−

B
Nr (Nt−Nr ) . Then, from (101)

and (102),

TPCSI − TRMQ

≤ E
[
log2 det

( P
Nt

T̆+ INr
)]

−E
[
log2 det

( P
Nt

T+ INr
)]

+E
[
log2 det

( P
Nt
IU
(
λ
RMQ
n̂ , {Rj,k}

)
+ INr

)]
(a)
= E

[
log2 det

( P
Nt
IU
(
λ
RMQ
n̂ , {Rj,k}

)
+ INr

)]
(b)
≤ log2 det E

[
P
Nt
IU
(
λ
RMQ
n̂ , {Rj,k}

)
+ INr

]
, (103)

where (a) follows because T̆ andT are identically distributed,
and (b) follows from Jensen’s inequality. With (32),

E
[
IU
(
λ
RMQ
n̂ , {Rj,k}

)]
= E

[ K∑
k=2

E[λRMQ
n̂ Rj,k ]

]
(a)
= E

[Nr (Nt − Nr )+ 1
Nt − Nr

(K − 1)E(λRMQ
n̂ )

]
(b)
<

Nr (Nt − Nr )+ 1
Nr

δINr , (104)

where (a) follows from Lemma 5 and (b) follows from
E[λRMQ

n̂ ] < δ. By substituting (104) into (103), we obtain

TPCSI − TRMQ < log2 det
(Nr (Nt − Nr )+ 1

NtNr
PδINr + INr

)
= Nr log2

(Nr (Nt−Nr )+1
NtNr

Pδ+1
)
. (105)

Because this theorem is intended to specify a sufficient con-
dition on B that guarantees TPCSI − TRMQ ≤ Nr log2 r1,
it suffices to derive a sufficient condition on B that satisfies

Nr log2
(Nr (Nt − Nr )+ 1

NrNt
Pδ + 1

)
= Nr log2 r1. (106)

By solving (106) with respect to B, we obtain

B = N0 log2 P+ N0 log2
(N0 + 1
NrNt

)
− N0 log2(r1 − 1),

(107)

with the notation N0 = Nr (Nt − Nr ).

APPENDIX D
PROOF OF THEOREM 2
From (46), λQCA/δ is a beta random variable distributed in
(0, 1) following the CDF

FλQCA/δ(x) = xN0 , (108)

for 0 ≤ x ≤ 1.
The random variable λRMQ is the minimum of i.i.d.

λ1, · · · , λ2B , where each λj is distributed in [0, 1] with the

PDF in (40). Thus, λRMQ is also distributed in [0, 1] and its
CDF is given by [44]

FλRMQ (x) = 1−
(
1− xN0

)2B
, (109)

for 0 ≤ x ≤ 1. From (109), we have

FλRMQ/δ(x) = 1−
(
1− (δx)N0

)2B
, (110)

for 0 ≤ x ≤ 1/δ. Moreover,

lim
B→∞

FλRMQ/δ(x) = 1− lim
B→∞

(1− xN02−B)2
B

= 1− lim
B→∞

((
1− xN02−B

)− 2B

xN0

)−xN0
= 1− lim

u→0−

(
(1+ u)

1
u
)−xN0

= 1− e−x
N0
, (111)

for 0 ≤ x ≤ ∞.
Applying Lemma 5 to (32), we have

IU (λn̂, {Rn̂,k}
K
k=2)

d
= δ

K∑
k=2

λn̂

δ
Rj,k

d
= δIU (λn̂/δ, {Rj,k}

K
k=2). (112)

LetX be an independent random variable distributed as (108).
Then, because X d

= λQCA/δ, it follows from (55) and (112)
that

TQCA = E
[
log2

det
(
T+ δIU (X , {Rj,k})+

Nt
P INr

)
det
(
δIU (X , {Rj,k})+

Nt
P INr

) ]
. (113)

Thus, we obtain

lim
B→∞

TQCA

(a)
= E

[
lim
B→∞

log2
det
(
T+ δIU (X , {Rj,k})+

Nt
P INr

)
det
(
δIU (X , {Rj,k})+

Nt
P INr

) ]
= E

[
lim
B→∞

log2 det
( P
Nt

T+ INr
)]
= TPSCI, (114)

where (a) follows from the dominated convergence theorem
[45]. Let Y be an independent random variable distributed
with the CDF 1− e−x

N0 for x ∈ [0,∞]. Then, (111) implies
that λRMQ/δ converges to Y in distribution. Consequently,
from (55) and (112),

lim
B→∞

TRMQ

(a)
= E

[
lim
B→∞

log2
det
(
T+ δIU (λRMQ/δ, {Rj,k})+

Nt
P INr

)
det
(
δIU (λRMQ/δ, {Rj,k})+

Nt
P INr

) ]
= E

[
lim
B→∞

log2
det
(
T+ δIU (Y , {Rj,k})+

Nt
P INr

)
det
(
δIU (Y , {Rj,k})+

Nt
P INr

) ]
= E

[
lim
B→∞

log2 det
( P
Nt

T+ INr
)]
= TPSCI, (115)

where (a) follows from the dominated convergence theorem
[45].
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APPENDIX E
PROOF OF LEMMA 6
Because a > 1, b > 0, and 0 < X < 1, log(a + bX ) is a
positive random variable. Consequently,

E[log(a+ bX )] =
∫
∞

0
Pr[log(a+ bX ) > x]dx. (116)

Moreover, as a > 1, b > 0, and 0 < X < 1, we have
Pr[log(a + bX ) > log(a + b)] = 0 and Pr[log(a + bX ) >
log a] = 1. Thus,

E[log(a+ bX )]

=

∫ log(a+b)

log a
Pr[log(a+ bX ) > x]dx +

∫ log a

0
dx

=

∫ log(a+b)

log a
Pr
[
X >

ex − a
b

]
dx + log a

(a)
=

∫ log(a+b)

log a

(
1−

(ex − a
b

)m)L
dx + log a

(b)
=

∫ 1

0

(1− ym)L
a
b + y

dy+ log a. (117)

where (a) follows from the CDF of X and (b) follows from
the variable change of y = ex−a

b . Furthermore,∫ 1

0

ym
a
b + y

dy

(a)
=

∫ 1+ a
b

a
b

(z− a
b )
m

z
dz

(b)
=

(
a
b

)m ∫ b
a+1

1

(x − 1)m

x
dx

(c)
=

(
a
b

)m m∑
i=1

(
m
i

)
(−1)m−i

∫ b
a+1

1
x i−1dx

+

(
−
a
b

)m ∫ b
a+1

1
x−1dx

=

(
−
a
b

)m
log(1+b/a)+

(a
b

)m m∑
i=1

(
m
i

)
(1+ b/a)i − 1
i(−1)m−i

,

(118)

where (a) follows from the variable change of z = a
b + y, (b)

follows from the variable change of x = b
a z, and (c) follows

from the binomial theorem.
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