
Received March 12, 2020, accepted March 30, 2020, date of publication April 15, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988085

Optimization of Dynamic Dispatch for Multiarea
Integrated Energy System Based on
Hierarchical Learning Method
YIJIN LI1, HAO TANG 1, (Member, IEEE), KAI LV1, (Graduate Student Member, IEEE),
KE WANG2, AND GANG WANG2
1School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
2China Electric Power Research Institute (Nanjing), Nanjing 210003, China

Corresponding author: Hao Tang (htang@hfut.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2017YFB0902600, in part by the National
Natural Science Foundation of China under Grant 51807181, and in part by the Science and Technology Project of SGCC under
Grant SGTYHT/18-JS-206 and Grant SGTYHT/19-JS-215.

ABSTRACT The integrated energy system (IES) with various energy demands and distributed energy
resources has been a significant approach to improve the efficiency of energy utilization. Considering the
uncertainties of renewable energy sources and loads, the energy dispatch optimization for multiarea IESs
is studied in this paper. Different from the most current studies, not only the electrical power and heat
distribution in each area is optimized, but also the coordination power dispatch between areas. A hierarchical
learning method is proposed inhere to improve the operation performance of the multiarea IESs. The
proposed method with data-driven way is a model-free method which has no requirement for the accurate
mathematical model. With the hierarchical structure, the electrical power dispatched between areas is
optimized in upper layer, together with the dispatching optimization in each area at lower layer, to decrease
the operation cost for the system and power demand from the power grid. Finite horizon discrete dynamic
process model is adopted to simulate the data for learning. The simulation results show the effectiveness of
the optimization policy can achieve an economic and stable operation for the multiarea IES.

INDEX TERMS Integrated energy system, dispatch optimization, stochastic process, hierarchical learning,
dynamic programming.

NOMENCLATURE
A. PARAMETERS
P Power, kW
M Total number of areas
cop Efficiency coefficient
E Capacity of energy storage
N Maximum discrete level
1 Random numbers in (0,1) interval
agt0/agt1/agt2 Coefficient of the cost for gas turbine
T/K Decision period and number of decision

cycles per day
αrl Learning rate

B. VARIABLES
t Time, h
k Index of decision epoch

The associate editor coordinating the review of this manuscript and

approving it for publication was Behnam Mohammadi-Ivatloo .

n Index of discretization level
a/D Action and action set
s/8 State and state set
c/V Cost and performance criteria
π Policy

C. SUBSCRIPT AND INDICES
cool/h/ele Cooling load, heat load and electrical load
pv/gt/es/ths Photovoltaic, gas turbine, electrical storage

and thermal storage
exp/stc Expected value and standard condition
−/_ Maximum/minimum limit
ch/disch Charge or discharge action of storage

I. INTRODUCTION
Increasing energy consumption is inevitable with the devel-
opment of society. Integrated energy system (IES) can
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produce onsite electricity and the byproduct heat to satisfy
heat, cooling and electrical demands with high efficiency and
increase the renewable energy penetration level, which has
been rapid developed in recent years [1], [2]. The develop-
ment and studies of IES have received widespread attention
in different countries [3], [4]. In China, many projects of
IESs have been successfully established in recent years, and
many researchers focus on the construction and operation
of the IES [5], [6]. Compared with traditional individual
energy system, cascade utilization of energy in IES could
improve the energy efficiency and decrease the operation cost
to meet the demand of different types of energy [7]. Together
with the development of renewable energy and distributed
energy technologies, the energy efficiency and benefit for
environment can be further improved [8]. References [9]
and [10] investigate the energy performance of distributed
energy systems and renewable energy source integrated with
IES and indicate that the energy saving is efficiently improved
and the fossil fuels is decreased.

In order to facilitate energy sharing and improve system
flexibility, the coordinated operation of multiple IESs has
received more and more attentions by combining the comple-
mentarity of energy and load stochastic characteristic in dif-
ferent areas [11]. Interaction mechanism of district electricity
and heating systems is analyzed in [12], and [13] proposes
a technique to dispatch simultaneously energy and reserve
to improve the efficiency of the interconnected multi-area
system. Considering traditional generation of interconnected
power grid, [14] develops a real-time coordinated energy
control of the multiarea. As the power system is still the main
structure for supplying energy and its stable operation is of
great significance for the whole society, we study a multi-
area IES with electrical power cooperation evaluation in this
paper. And the optimization of the dynamic energy dispatch
is studied to decrease the daily operation cost. The multiarea
IES is operating in the power grid connected mode that each
area is connecting to the power grid. And the power coordi-
nated between areas which can further improve the overall
performance of the multiarea IES and reduce the random
mismatch of renewable sources and loads. While for the joint
operation for the multiarea IES, there are some difficulties
to obtain the optimal energy dispatch policy. First, compared
with the individual IES, the composition and energy cou-
pling of the multiarea IES is more complicated. Second, the
state dimension and control variables are several times than
that of the independent IES, which leads to an exponential
growth in computation scale. Third, the randomness of the
renewable energy sources and loads in different areas fur-
ther increase the difficulty of energy dispatch optimization.
Finally, the optimization for the energy dispatch and opera-
tion of both the overall multiarea IES and each area are need
to be considered simultaneously, which is rarely mentioned
in many related studies.

There have been many studies related to the optimization
for the configuration and operation of IES with distributed
energy resources. For the multiple IESs, the structure and

operation constraints are more complicated with energy inter-
action. However, for the multiarea IES, most studies focus
on the overall economic operation of the multiarea IES with
coordinated energy scheduling, while ignoring the perfor-
mances of each area. Due to the multiple energy coupling and
the uncertainties of resources and loads, the simplified math-
ematic model is used in many related optimization problems
for IES. For example, a coordinated dispatching method for
IESs is proposed in [15] in order to improve the consumption
rate of renewable energy with considering the differences
of multiple functional areas. Reference [16] establishes a
gas-electricity joint operation model and finds an optimal
scheduling method for integrated energy systems. In [17],
a mixed integer linear programming model of multi-district
IES is established to achieve the optimal operation. Refer-
ence [18] describes the modeling method of the IES with
a generalized network flow model of IES incorporates the
production, storage, and transportation of energy in a single
mathematical framework, and [19] summarizes the modeling
tools and simplifications of the IES including the operation
constraints and transmission networks. As far as the authors
knowledge, mixed integer linear or nonlinear programming
model and corresponding optimization method is the most
widely used for the optimal operation or design of the IES.
For example, the pipeline flow equation is linearized in [20]
and the optimization model is transformed into mixed linear
programming formulation to achieve the optimal dispatch
strategy for IES, and refer to the mixed integer nonlinear pro-
gramming model, [21] proposes an optimization procedure
for the optimal design of a trigenerative system to satisfy
the energy needs. The structure and configuration of the IES
is closely related to its operation efficiency and economic.
Combining with the mixed integer linear and nonlinear pro-
gramming method, [22] and [23] adopt a two-stage optimiza-
tion algorithm to optimize the capacity design, energy pro-
duction and distribution of the IES. The two-stage algorithm
is widely applied in the optimization problem of the IES
with different optimization methods for the complexity of the
IES [24], [25]. For example, dominance based evolutionary
algorithm and fuzzy c-means clustering method are used
in [26] with two-stage algorithm to find the best compromise
solutions for the economic emission dispatch of the IES.
However, most of these studies are for the single IES, and
the optimization in each stage are concerning about different
aspects of structure and operation. Based on these, a hier-
archical optimization structure is proposed in this paper for
the operation optimization of the multiarea IES considering
the uncertainties and power interactions. The uncertainties
and randomness of the renewable resources and loads further
improve the complexity for optimization of the IES and have
many corresponding studies. For example, the optimization
for the IES with wind power and stochastic demands is
studied in [27] and [28] to enhance the absorption and eco-
nomic dispatch. And many algorithms have been applied to
the optimization for the IES. In [29], three different control
approaches for integrated energy system is compared with
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renewable uncertainty. Particle swarm optimization algo-
rithm and generation algorithm are used in the optimization
problems of the IES in [30] and [31]. The improved particle
swarm optimization algorithms are studied in [32] and [33],
and [34] developed a multi-objective group search optimizer
with adaptive covariance and Lévy flights to optimize the
power dispatch of the large-scale IES.

These algorithms above are all applied to the operation
optimization of the IES with simplified mathematic model
or scenario, while it can be hardly achieved in practical
precisely. Besides, the constraints and criterions of power
connection between areas, such as interactive power, climb-
ing constraints and the peak-valley difference, are impor-
tant criterion to evaluate the stability of the system under
grid-connected mode, but are considered rarely in previously
studies. The main limitation of static optimization is that
static values are not the best option due to the changing
environment. Therefore, the best option for the optimiza-
tion for the real operation process is to obtain the opti-
mum values for the decision variables in each time-step.
One of the effective methods for dealing with the dynamic
programming problem is reinforcement learning, which is
a model-free optimization method by interaction with the
environment and achieve many successful results [35]–[37].
For the IES, the model-free optimization methods are also
applied in recent years. A comprehensive review of the appli-
cation of reinforcement learning to developing autonomous
building energy management systems is studied in [38], [39],
and [39] reported that energy savings are of greater than
20% for complex building energy management problems
when implementing reinforcement learning. Considering the
system operator’s operating cost, Reference [40] proposes a
dynamic energy conversion strategy for the energy manage-
ment of an IES with renewable energy. However, the mul-
tiarea IES problems with both energy dispatching in areas
and collaboration optimization between areas are rarely men-
tioned with learning methods together with the impact for
the power grid. Thus, in this paper, we propose a model-free
hierarchical learning method based on the reinforcement
learning for the dynamic dispatch optimization of the mul-
tiarea IESs with considering the uncertainties of both the
loads and the renewable energy sources to decrease the daily
operational cost. The heat and power dispatch of areas are
optimized simultaneously in the lower layer, and the power
dispatch areas is optimized at the upper layer. The informa-
tion between the upper layer and the lower layer is interacting
in the whole learning process, that the operation cost of the
overall system and each area can be both decreased. In this
study, we simulated a multiarea IES to generate the samples
for learning. Both simulation and real-world data can be avail-
able and applicable for the learning method. The information
interactions between the upper layer and the lower layer
occur in the whole learning process, which lead the agents
to achieve the optimal goal of the system.

The main contributions of this study are listed: First,
a model-free hierarchical learning method by data-driven is

proposed in order to avoid developing an accurate mathe-
matical model and handle the curse of dimensionality. The
power dispatch between areas is optimized in upper layer,
together with the dispatch optimization in each area at lower
layer. Second, the dynamic energy dispatch problem is formu-
lated as a finite dynamic programming decision process and
the stochastic and uncertainties of renewable resources and
loads are both considered in the optimization. The simulation
model to achieve data for learning is established consid-
ering operation characteristics and constraints of different
devices. Last, we systematically evaluate the performance
of the method proposed with numerical analysis. With the
optimization by hierarchical learning method, not only the
daily operation cost of the overall system and each area are
reduced, but also the policy stability in the random envi-
ronment is improved. Besides, the influence of the power
interaction between areas and the power grid is analyzed, and
the different grid-connection modes are compared to explain
the advantages of the power interconnection between areas.

The remainder of this paper is organized as follows:
Section 2 describes the multiarea IES and the simulation
models of the various components in detail. The hierarchical
learning method is described in Section 3. The results of the
simulations are presented and discussed in Section 4. Finally,
Section 5 presents the conclusions of the study.

FIGURE 1. Energy management and transfer of an IES.

II. STRUCTURE OF THE MULTIAREA IES
The structure of the IES which composed of electrical, gas,
and thermal subnetworks and an energy management cen-
ter (EMC) is described in Fig. 1. The subnetworks in the IES
transfer the energy to meet the different types of loads. In the
operation mode, the distributed energy sources, storages and
other auxiliary equipment are mapped with subnetworks.
When the IES is working in the grid connected mode, it can
trade electricity with the power grid. The EMC can monitor
and control the controllable energy resources with optimiza-
tion policy to achieve the economic and stable operation of
the IES.

VOLUME 8, 2020 72487



Y. Li et al.: Optimization of Dynamic Dispatch for Multiarea IES

FIGURE 2. Energy management for the multiarea IES with power
interaction.

In this paper, the multiarea IES studied is consisted with
multiple IECs in different areas, as shown in Fig. 2. The
UEMC is the energy management center for power dispatch
between areas. Electricity in each area can be traded not only
with the power grid, but also with other areas. The energy
coupling relationship between subnetworks in each area is
complicated. For example, the cooling load can be met with
both electricity and heat and the gas turbines can generate
available heat while produce electricity by consuming gas.
And some auxiliary equipment consumes both heat and elec-
trical power for working. Besides, the stochastic and dynamic
characteristics of distribution resources and loads can directly
influence the economic operation and power transactions for
areas.

Consider the joint dispatching optimization problem of
multiple IES in Fig. 2, three types of loads in area m at
time t are taken into account, i.e., electricity load Pele,m(t),
heat load Ph,m(t) and cooling load Pcool,m(t). Note that the
cooling load in each area can be met with both electricity
and heat, as described in (1), where Pelecool,m(t) represents the
cooling load satisfied by electricity and Pthcool,m(t) represents
that satisfied by heat.

Pcool,m(t) = Pelecool,m(t)+ P
th
cool,m(t) (1)

The real-time energy supply and demand balance in each area
are considered as shown below:

Pth,m(t)+ Pthcool,m(t)/copthc,m
= copgt,m(t)Pgt,m(t)ηth,ele + Pths,m(t) (2)

Pm(t)+ Pm,grid (t)−
∑

m,i∈{1,..,M},m 6=i

Pmi(t)+ Pes,m(t)

= Pele,m(t)+ Pelecool,m(t)/copelec,m (3)

Here ηth,ele is the thermoelectric ratio of the gas turbine, and
Pmi(t) is the power translated from area m to area i, where
Pmi(t) = −Pim(t). As discussed in Section 1, the simulation
model described in this section is used to simulate the data
for leaning, which can be replaced with practical operation
data. Since each area contains different types of equipment in
following description, the subscript of area m is omitted for
simplification.

A. PHOTOVOLTAIC POWER GENERATION (PV)
According to [41], [42], the output power of PV can be
simulated with statistic power and stochastic perturbation.
Define Pmax

pv (t) as simulated value of the statistic maximum
output of PV under clear condition (without clouds) at time t .
In practical, it can be determined by its capacity, location,
the temperature, the illumination of the sun and changes
regularly over time in a given day. Thus, Pmax

pv (t) can be
calculated by (4) in theoretical, in which fpv,Gpv, αpv and
Tpv represent the power derating factor, illuminance, temper-
ature coefficient, and panel temperature of the PV module,
respectively.

Pmax
pv (t) = fpvPpv,cap(Gmax

pv (t)/Gpv,stc)

∗(1+ αpv(Tmax
pv (t)− Tpv,stc)) (4)

Here, we consult the output power data in a typical clear day
in summer in Anhui, China to achieve the maximum output
curve of Pmax

pv (t) in Section 4.
In this way, Ppv(t) can be achieved by Pmax

pv (t) and ran-
dom reduce caused by the environment, such as clouds or
temperature changing. We consider the randomness with the
reduction rate 1pv(t) ∈ [0, 1] as a Gaussian distribution, and
the Ppv(t) is described as (5):

Ppv(t) = (1−1pv(t))Pmax
pv_ exp(t) (5)

B. GAS TURBINE
The gas turbine can supply electricity and heat at the same
time by consuming gas. The wasted heat produced during the
power generation process can be reused with heat recovery
equipment and absorption chiller is equipped to produce
chilled water with heat for cooling load. The maximum and
minimum power constraints are to ensure the operational
stability and efficiency, and the power output must be in
keeping with the ramping constraints, which are shown in (6).

Pgt ≤ Pgt (t) ≤ P̄gt (6){
Pgt (t)− Pgt (t −1t) ≤ Pupgt ,Pgt (t) > Pgt (t −1t)
Pgt (t −1t)− Pgt (t) ≤ Pdowngt ,Pgt (t) < Pgt (t −1t)

(7)

The operating cost of the gas turbine from time t to t + 1t
can be described with the quadratic function.

cgt (t) =
∫ t+1t

t
agt2P2gt (t)+ agt1Pgt (t)+ agt0dt (8)

C. ENERGY STORAGES
The electrical storage and heat storage are applied in each
area to deal with the randomness of the load and sources.
The simulation of the electrical storage refers to the dynamic
characteristics of the vanadium redox flow battery (VRB)
in this paper. The charging and discharging power of the
VRB is limited in the range of [Pmin

es ,P
max
es ]. The charging

/discharging power constraint is described as follow:

Pmines ≤ |Pes (t) | ≤ P
max
es (9)

72488 VOLUME 8, 2020



Y. Li et al.: Optimization of Dynamic Dispatch for Multiarea IES

in which Pes(t) < 0 represents that the electrical storage is
discharging with power |Pes(t)|. The state of the electrical
storage is defined as SOCes and it represents the percentage of
the remaining energy of the electrical storage. The dynamic
charging/discharging process is described as below:

SOCes(t +1t) = SOCes(t) +
∫ t+1t

t
Pes(t)/Eesdt (10)

In the practical operation, SOCes has influence on the
operation performance of the electrical storage. In order to
avoid the damage caused by the charging/discharging power
and improve the efficiency and service time, a two-stage
charge/discharge rule is adopted to charge/discharge for the
VRB [43]. And the SOCes is used as the condition to switch
the charging/discharging mode. It is discharged/charged
within the maximum and minimum power constraint when
SOC ∈ (0.2, 0.8); otherwise, it is discharged/charged with
constant current Iconst . As the power is determined with
terminal current and voltage, we approximate the discharg-
ing/charging process with a constant minimum power Pconstes
in the simulation as the terminal voltage Ues of the VRB is
almost unchanged in this range.

Pconstes = Iconst ∗ Ues (11)

Thus, the discharging/charging power with constant power
can be approximated as a minimum value, which is defined
in (10):

Pes(t) = Pconstes , SOCes(t) /∈ (0.2, 0.8) (12)

The power loss caused by the resistance in practical is
considered with efficiency copes, and the loss cost closses (t) is
adopted to evaluate the performance of the electrical storage,
which is defined as below, in which βes is the cost coefficient
for the electrical storage.

closses (t)=

{∫ t+1t
t −βesPes(t)(1−copes)dt, charge∫ t+1t
t βesPes(t)(1−copes)/copesdt, discharge

(13)

The state of the heat storage is defined as SOCths and
it represents the percentage of the remaining heat of the
storage. The dynamic charge/discharge characteristic of the
heat storage is described as:

SOCths(t +1t) = SOCths(t)+
∫ t+1t

t
Pths(t)/Ethsdt (14)

where SOCths(t) = eths(t)/Eths, 0 < SOCths(t) ≤ 1
and eths(t) represents the remaining energy in storages and
E represents the capacity for storages. Pths represents the
charge/discharge power of the heat storage.Pths(t) > 0means
the heat storage is charging and the constraint that Pmin

ths ≤

|Pths(t)| ≤ Pmax
ths . And the cost of the heat storage is defined

as below:

clossths (t) =

{∫ t+1t
t −βthsPths(t)(1− copths)dt, charge∫ t+1t
t βthsPths(t)(1− copths)/copthsdt, dis

(15)

D. ELECTRICAL DISTRIBUTION NETWORK
Each area can exchange electricity with the other areas and
the power grid in this paper. The power exchanging between
areas is realized through inter-area power lines and must
meet the operation constraints of lines. Denote Pgrid,m(t)
and Pim(t) as the power exchanged between area m with the
power grid and area j respectively. The power exchanged
between areas should meet the constraints as follow: First,
the exchanging power Pim(t) from area i to area m need to
be within the allowable range of the power line, which is
described as Pmin

im ≤ |Pim(t)| ≤ Pmax
im . Second, area m is

not allowed to purchase power from one area and sell power
to other areas at same time. This is to avoid unnecessary
electricity loss between areas. Last, (16) are adopted as the
constraint for power charging between areas:

|Pim(t)− Pim(t −1t)| ≤ Pcim (16)

Then the total cost for the electricity trading of area m can be
expressed as Eq. (17) shows. IfPgrid,m(t) orPim(t) is negative,
it means that area m sells power to the power grid or area i

cm(t) = Pgrid,m(t)cgrid,m(t)+ Pim(t)cmi(t) (17)

Here, cgrid,m(t) and cim(t) denote the prices that area m
charges the public grid and area i, respectively. When
cm(t) < 0, area m earns a profit from the public grid or other
areas.

E. LOADS
There are three types of loads in each IES: electrical load, heat
load and cooling load. The electrical load not only includes
user’s demand, but also the energy conversion equipment and
other devices. The heating load includes the heating venti-
lating in winter and hot water demands, while the cooling
load is the air conditioning demand in hot days. The cooling
load can be met with electricity by electrical chiller or with
heat by absorption chiller. The performance of the absorption
chiller and electrical chiller can be expressed using the linear
functions.

0 ≤ Pac,out (t) = copacPac,in(t) ≤ Pmax
ac,out (18)

0 ≤ Pec,out (t) = copecPec,in(t) ≤ Pmax
ec,out (19)

Assume that the statistical value of electrical load at time t
is Pele,exp(t). The value of Pele(t) at time t can be expressed
as shown below, where 1ele(t) ∈ [−1ele,1ele] represents
the random coefficient of the electrical load and the Gaussian
randomness is adopt to describe the stochastic distribution of
1ele(t). Pth(t) and Pcool(t) can be achieved similar to Pele(t).

Pele(t) = (1+1ele(t))Pele,exp(t) (20)

This study set a multiarea IES with the following three
areas (m = 1, 2, 3) for simulation: a residential area,
a commercial area and an industrial area. As the optimiza-
tion process considers both heat and power balance in each
area, the energy imbalance will not happen with all above
constraints.
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III. ENERGY DISPATCH OPTIMIZATION WITH
HIERARCHICAL LEARNING METHOD
The optimization of multiarea IES include the dispatch policy
of power and heat in each area and the coordinated power
dispatch of power between areas. The coordinated power dis-
patch policy between areas is not only related to the operation
cost of each area, but also to the overall optimization perfor-
mance. Without the optimization of coordination policy, each
area wants an interarea power dispatch policy that benefit
to itself, even it may increase the overall operation cost of
the multiarea system. Thus, we consider the energy dispatch
optimization problem of the multiarea IES as a hierarchical
stochastic dynamic programming problem with an EMC at
upper layer (UEMC) and EMCs at the lower layer. The EMCs
at lower layer decide the energy dispatch policy for electricity
and heat in each area and UEMC at upper layer decides the
coordinated power dispatch policy between areas.

A. FORMULATION OF THE ENERGY DISPATCH
OPTIMIZATION PROBLEM
The decision cycle between the upper and lower layers are
different, and it is more meticulous at lower layer. We dis-
cretize a day into Kup for upper layer and Km for lower layer,
where Km = Kup∗L,L ∈ N+. The dynamic decision process
and information exchange between layers are shown in Fig. 3.

FIGURE 3. Dynamic decision process of multiarea IES.

For the UEMC, the precise state information of each area
will cause the dimension curse of the optimization. Hence,
the comprehensive information of each area is summarized
to the UEMC at the beginning of decision epoch. Define the
state at the upper layer as supk = (kup, s1, s2, s3) ∈ 8up,
where sm is defined as the comprehensive state of loads and
PV integration information pup,m(kup). pup,m(kup) is used to
approximately estimate the average total electrical demand of
area m at kupth decision epoch, and we use a linear function

to describe pup,m(kup) as below.

pup,m(kup) = ppv,m(kup)− ηm(pele,m(kup)

+λm,coolpcool,m(kup)/copelecool,m) (21)

where λm,cool = 0.5, copelecool,m is the efficiency of electrical
chiller in area m and ηm is the discount factor for decreasing
estimation error. aup = (aup,12, aup,13, aup,23) ∈ Dup rep-
resents the transferred power level between the areas, and
aup,ij > 0 means the power is transferred from area i to j.
The information related to m in aup will be integrated in
EMC of area m and taken as a part of state information.
smkm = (km, npv,m, ngt,m, nes,m, nths,m, nele,m, nheat,m, ncool,m,
npl,m) ∈ 8m is the state for EMC m and 8m is the state
set npl,m is the state of power transaction of area m achieved
with aup.

npl,m =
M∑

j=m+1

aup,mj +
m−1∑
i=1

aup,im (22)

In Fig. 3 (b), action am = (agt,m, aes,m, aths,m) ∈ Dm at
the lower layer is for controlling the gas turbines and stor-
ages. Thus, the operation cost for area m during a decision
epoch includes the cost of the gas turbines and storages and
exchanging power with the grid and other areas.

cm(km) = cm,gt (km)+ cm,es(km)+ cm,ths(km)

+cm,grid (km)+
∑
j>m

cm,j(km)+
∑
i<m

ci,m(km) (23)

The power dispatch policy at upper layer influence the eco-
nomic operation of all areas. As the UEMC concerns about
the overall operation cost, and the power interaction cost
between areas are not included. Thus, the cost for the upper
layer in one decision epoch as below:

cup(kup) =
3∑

m=1

(kup+1)∗Lm∑
km=kup∗Lm

cgtm (km)

+cesm (km)+ c
ths
m (km)+ cgridm (km) (24)

In this study, the dynamic energy dispatch optimization
problem is a decision-making frame-work and modeled as a
discrete finite horizon dynamic programming problem. For
the EMC at lower layer, the optimal goal is to decrease the
daily operation cost for its own area with UEMC decision,
which described as below.

π∗low,m = arg min
πlow,m

Km∑
km=1

cπlow,mm (km|πup) ∗ γ km−1 (25)

Because the cost at the same state with same action can be
different for the randomness, the discount factor γ ∈ [0, 1]
is adopt to decrease the influence for a better converge, and
we set γ = 0.95 in this paper. Similar to the lower layer,
the optimal policy for UEMC is shown below.

π∗up = argmin
πup

Kup∑
kup=1

c
πup
up (kup) ∗ γ kup−1 (26)
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TABLE 1. Calculation scale of hierarchical and nonhierarchical learning method.

B. HIERARCHICAL LEARNING METHOD WITH SIMULATED
ANNEALING-BASED ALGORITHM
The hierarchical learning algorithm proposed in this paper is
based on the reinforcement learning with hierarchical frame-
work. The convergence of the reinforcement learning is based
on the theory of the Bellman equation, and for the discrete
finite horizon dynamic programming problem, there exists
a policy that achieves the optimal goal for all the initial
states [44]. State-action value function Q(s, a) is adopted
in the hierarchical model-free learning algorithm proposed
to evaluate the chosen actions for states. The basic idea
behind hierarchical reinforcement learning is to decompose
the overall task into subtasks, whose solutions can be learned
more tractably to deal with the ‘‘curse of dimensionality’’ and
the low convergence speed in reinforcement learning [45].
In [46], it proves that for the hierarchical reinforcement learn-
ing with bounded rewards, the state-action value will con-
verge to the optimal state action value with probability 1. And
the convergence of the hierarchical reinforcement learning
depends less on the environmental changing if the update
process of the policy is restricted in the its space [47]. Thus,
based on the theorical analysis, the policy will eventually con-
verge or approximately converge to the optimal or suboptimal
solution with simulation.

There is an iterative process of updating Q(s, a) by explor-
ing the environment. The exploration process is converged
by simulated annealing (SA) algorithm. The agent will
select action amin by a greedy policy based on the current
Q(s, a) and action arand with randomness. If (27) holds,
amin is chosen as the action ak for the state; otherwise, we
choose arand .

e(Q(s,agreedy)−Q(s,arand ))/Kb∗temp < random (0, 1) (27)

where Kb is the Boltzmann constant, and temp is the
simulated annealing temperature, which is updated every
Nlearning learning steps during the optimization process as
temp = γt∗temp.

As shown in Fig. 3 (a), the subsequent state sk+1 and
immediate cost ck for the episode k th of the system is achieved
after a decision epoch. The data for learning can be achieved
from this processing. Note the data as (sk , ak , ck , sk+1), and
the Q(sk , ak ) updates according to (23) with the learning
factor α if sk+1 isnottheendstate.Otherwise,updatesQ(sk , ak )

with (29).

Q(sk , ak ) = Q(sk , ak )+ α(ck − Q(sk , ak )

+min
a
Q(sk+1, a)) (28)

Q(sk , ak ) = Q(sk , ak )+ α(ck − Q(sk , ak )) (29)

The flowchart in Fig. 4 shows the hierarchical learning
applied to the energy dispatch optimization problem of the
multiarea IES. The EMCs at the lower layer learn the opti-
mized policy parallelly based on the policy of the upper layer
policy, and send the cost and state information to the UEMC
every Lm steps. With the information exchanging, which is
described in Fig. 3 (b) in detail, not only the overall opti-
mization performance of the multiarea IES, but the economic
operation of each area can also be guaranteed.

Besides, the hierarchical learning method greatly reduces
the memory space and calculation time as shown in Table 1.
Theoretically, the learning process must visit all state-action
pair multiple times to obtain enough experience for optimiza-
tion, and the learning time is proportional problem scale.
Define the total number of state and action for area are Nm
and Am, and the total number of state and action for UEMC
are Nup and Aup. For the nonhierarchical learning method,
the state in all three areas should be taken into account and the
policy is used to control both the power interaction between
areas and the energy dispatch in each area. First, the space
complexity is proportional to the policy size. It’s easy to tell
that the storage space for nonhierarchical learning method is
much huger than that of hierarchical learning from Table 1.
Second, the time complexity for one step learning is o(A),
which means the nonhierarchical learning consume longer
time for one learning step. However, it also needs much
more learning steps to converge for the scale of policy space.
Besides, the EMC in lower layer of the hierarchical learning
method can learning parallelly, which would further decrease
the calculation time.

IV. SIMULATION RESULTS
The multiarea IES studied includes three areas with differ-
ent types load characteristics: a residential area, a commer-
cial area and an industrial area. And the simulation of the
loads and PV in a sunny working day in summer are shown
in Fig. 5 [48], [49]. The PV is equipped on the roof in
residential and industrial areas. The profiles of the PV in these
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FIGURE 4. Flowchart for hierarchical learning process for optimization of multiarea IES.

FIGURE 5. Statistic curves for PV and multi-type loads in various areas.

two areas have a basically consistent trend over time except
for capacity difference as they are located in the same city.
As Figure 5 shows, cooling load accounts for a large propor-
tion in each area in summer, while the heat load varies greatly
in different areas. The heat load in the resident area is only
for hot water in daily life and large heat demand is needed
in the production process in industrial area. In this paper,
the randomness of the load is described with the Gaussian
distribution within the range [−0.3, 0.5].
The time-of-use electricity prices for residential, com-

mercial, and industrial areas in Anhui, China are listed in

Table 2 and parameters setting are described in Table 3. In this
section, we described three groups of analysis to present the
effect of the hierarchical learning method. First, the optimiza-
tion process of hierarchical learning is shown with conver-
gence and effectiveness to decrease the operation costs of
the overall system and each area, and the stability of policy
is also improved with optimization. Secondly, in order to
explain the effectiveness of the optimal policy on the system,
we analyze the performance of the optimal strategy obtained
in the random environment of the multiarea IES. Finally,
the comparison with the optimization of non-interconnected
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TABLE 2. Time-of-use electricity prices in different areas.

TABLE 3. Parameter settings.

areas validates the role of interconnection in improving sys-
tem operation economics.

In the learning process, we evaluate the optimal policy dur-
ing the learning processing every 50000 learning steps. The
optimal policy is obtained by the state-action value, which
consist of the action corresponding to the minimum value for
each state. Due to the randomness of PV and loads, the policy
is evaluated with the average operation cost in 1000 days,
as shown in Fig. 6.

FIGURE 6. Optimization process of multiarea IES.

The proposed algorithm is trained for 60∗50000 epochs for
the optimal energy dispatching policy with state-action value
iterations. It can be observed that due to the initial perception
of the stochastic environment, the UEMC and EMCs have
no experience of choosing a reliable action to achieve a
low cost. However, with the continuous interaction with the
environment, the operation cost of the overall and each area

decrease and converge to the minimum values. It illustrates
that the optimum policy to minimize the operating cost of the
multiarea IES and each area has obtained with the hierarchi-
cal learning method proposed.

FIGURE 7. Operation cost under different policies.

In order to evaluate the effect of the hierarchical learning
method on the stable operation of the system, we test and
compare the performance of the policies in the random envi-
ronment, as shown in Fig. 7. We test the optimum policies
after learned for 0, 250000, 500000 and 3000000 (converged)
steps respectively. The polices are tested in the random envi-
ronment for 500 days, and the curves in Fig. 7 show that with
the learning process, not only the system operation cost is
decreased, but also the stability and robustness is improved.
Eventually, the optimal policy canmake the system run stably
at a lower operating cost in the random environment.

The specific data analysis for the comparation of policies
in Fig, 7 is shown in Table 4. It can be seen that compared
with operation by the random policy, the daily running cost of
the system is reduced by about 68.3% after optimization with
hierarchical learning method. At the same time, the stability
of the overall operation of the system is greatly improved.
In terms of variance, the fluctuation of the operating cost in a
random environment has been reduced by 80.26%.

TABLE 4. Average and variance of daily cost of different policies.

Table 5 shows the percentage of cooling load met by the
absorption chiller with heat. The cooling load in summer is
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the mainly energy consumption, which can be satisfied by
both electricity and power. The huge demand for electric-
ity also brings pressure for the power grid and may cause
the problem of stability for power supply. The optimization
for distribution of cooling load can effectively decrease the
demand of electricity for the multiarea IES and its operation
cost a lot. As Table 5 shows that the percentages of cool-
ing load satisfied with heat are all increased in three areas,
especially in area 2. It can indicate that the optimization
makes each area benefit from energy dispatch and improve
the efficiency of usage of the wasted heat from gas turbines,
which is the main heat source in areas.

TABLE 5. Percentage of cooling load satisfied with heat.

FIGURE 8. Power exchanging between areas and the public grid.

Since each area operates in the grid-connected mode, the
optimization can also have the influence on the power grid.
Excessive peak-valley difference of load will affect the stabil-
ity and economy of the power grid. At the same time, the IES
should achieve self-sufficiency in energy as far as possible
while ensuring that load demands are met. We observe the
peak-valley difference and power purchasing from the power
grid before and after optimization, which are the important
indicators for the grid. In general, decreasing of the power
purchased from the power grid and the peak-valley difference
is benefit for the economic and stable operation. As can be
seen in Fig. 8, the peak-valley difference in each area is
reduced effectively.

We can see form Table 6 that the overall peak-valley dif-
ference is reduced by 1.8% from 5966.2kW to 5856.6 kW
with optimization. The amount of electricity purchased
from the grid in each area has obviously decreased, and
the total amount of electricity purchased has decreased
from 52609.0 kWh to 27844.5 kWh by 47.07%. The data

TABLE 6. Peak-valley and power purchasing from grid.

in Table. 6 shows that the self-sufficiency rate of each area
and the entire system has been improved which can be benefit
for the operation of the IES and the power grid both.

TABLE 7. Partial state-action pairs in optimal upper layer policy.

The description of the power interaction between areas
by optimal policy under some random states are shown
in Table 7. The state is the comprehensive discrete level
of load and PV of each area, and the action is the interac-
tion power level between area 1 and 2, area 1 and 3, and
area 2 and 3 respectively. Take state (0, 0, 2) as example,
it means the comprehensive load level in area 1 to 3 are 0,
0 and 2 respectively. And the action (0, −4, −2) means no
power transmitted between area 1 and 2, 4∗50 kW power
is transmitted from area 3 to area 2 and 2∗50kW power is
transmitted from area 3 to area 1. This is because the load
in area 3 is at a peak level at 1:00, while in area 1 and 2 the
loads are lower than that in day time. The extra power from
area 3 can be support for the load in area 1 and 2 with a higher
efficient operation of gas turbine. Power is purchased from
area 1 and 3 to area 2 at the state (0,2,0), and the decision
time is 14:00 with sufficient PV output.

The power interaction between the areas and the gas tur-
bine output are observed under two different weather condi-
tions as shown in Fig. 9. The average output power of gas
turbine and the power interaction between areas are carried
out in different cases. The output of PV in case 1 is at high
level in all day while case 2 is the opposite. The loads are
changing randomly in both cases.

It’s obviously to see that the outputs of gas turbines of all
areas in case 1 are lower than that in case 2 for the higher
output of PV. The difference for area 3 in the two cases is
not significant because of the heat demand for area 3 is much
larger than others. The ratio of electrical load to heat load
keeps the output level of the gas turbine at the high level in
area 3.At the same time, the total amount of interaction power
between the areas in case 1 is significantly higher than that in
case 2, and the electrical power sold from area 1 and area 3 is
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FIGURE 9. Operation of multiarea IES with the optimal policy.

FIGURE 10. Optimization of multiarea IES without power interaction.

significantly higher in case 1. Fig. 9 (f) shows the statistic
power interacted between areas. The average value of power
interaction between areas is small, which indicates that the
power interaction is mainly for improving the operating effi-
ciency in random environment, rather than to obtain benefits
with selling power. Although area 2 sells more power than
others, the average interactive power is still much smaller
compared to load.

Fig.10 is the optimal profiles of multiarea IES without
electrical interaction between areas. Fig. 10 (d) shows the
optimization process of all three areas without power inter-
actions between areas by learning algorithm. In order to
describe the optimization process in detail, the daily operation
cost of each area is shown in Fig. 10(a), (b), and (c) separately.
Similar to the hierarchical learning processes, the number of

states and actions are consistent with that at the lower layer
in the power interaction mode. Evaluate the optimized policy
every 50000 learning steps using the average operation cost
for 1000 days.

TABLE 8. Comparison of daily operation costs.

It can be seen from Fig. 6 and Fig.10 that the optimization
results with power interaction are much better. Table 8 shows
the comparison of average daily operation costs for multi-
area IES with and without power interaction respectively.
Case 1 and 2 represent the daily costs of interaction system
before and after optimization respectively, and case 3 and 4
represent that without power interaction. The daily operation
cost of the system with power interaction between areas is
higher before the optimization for the uneconomic power
transmitted between areas. However, it decreases a lot and
becomes less than the operation cost for the multiarea IES
without power interaction after the optimization. The daily
operation cost for multiarea IES with power interaction has
reduced 68.3% with optimization, while it only decreases
6.55% without power interaction. In addition, the final daily
cost of the multiarea IES with power interaction is 46.9%
lower than that without power interaction with the optimiza-
tion at the upper layer.

V. CONCLUSION
This study investigated a model-free hierarchical learning
method for the dynamic energy dispatch optimization of a
multiarea IES considering the randomness of the renewable
sources and loads. The hierarchical learning method can
effectively decrease the memory space and calculation time.
The stochastic and dynamic operation characteristics of the
multiarea IES is analyzed and the corresponding simula-
tion model is established to obtain learning data. Compared
with the multiple IES without power coordination, it can
operate with better economic, flexibility and stability. With
the information exchanging and hierarchical learning, both
the economic operation of the overall areas and each area
are optimized with better performance. The numerical sim-
ulation results show that the hierarchical method proposed
can effectively improve the economic and stability for the
operation of the multiarea IES. Not only the operation cost
of the multiarea IES is decreased, but also the peak-valley
difference is reduced with the optimization.

In the future, based on the research of the structure of
the hierarchical learningmethod, the competitive relationship
between multiple areas and different markets, e.g. gas market
and electrical market, will be further considered. Besides, the
analysis and optimization of the power flow is also important
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in the dispatch of the IES, which is to be further studied.
At the same time, advanced artificial intelligence methods
should be combined with learning method to further improve
the algorithm efficiency and reduce sample requirements.
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