IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 26, 2020, accepted April 10, 2020, date of publication April 15, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988160

KeySplitWatermark: Zero Watermarking
Algorithm for Software Protection

Against Cyber-Attacks

CELESTINE IWENDI“, (Senior Member, IEEE), ZUNERA JALIL"2, (Member, IEEE),
ABDUL REHMAN JAVED 3, THIPPA REDDY G.4, RAJESH KALURI 4,
GAUTAM SRIVASTAVA 56, (Senior Member, IEEE), AND OHYUN JO“7, (Member, IEEE)

! Department of Electronics BCC, Central South University of Forestry and Technology, Changsha 410004, China

2Department of Cyber Security, Air University, Islamabad 44000, Pakistan
3National Center for Cyber Security, Air University, Islamabad 44000, Pakistan
4School of Information Technology and Engineering, VIT, Vellore 632014, India

5Depar[ment of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada

SResearch Center for Interneural Computing, China Medical University, Taichung 40402, Taiwan

"Department of Computer Science, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, South Korea

Corresponding authors: Gautam Srivastava (srivastavag@brandonu.ca) and Ohyun Jo (ohyunjo@chungbuk.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) under

Grant NRF-2018R1C1B5045013.

ABSTRACT Cyber-attacks are evolving at a disturbing rate. Data breaches, ransomware attacks, crypto-
jacking, malware and phishing attacks are now rampant. In this era of cyber warfare, the software industry
is also growing with an increasing number of software being used in all domains of life. This evolution has
added to the problems of software vendors and users where they have to prevent a wide range of attacks.
Existing watermark detection solutions have a low detection rate in the software. In order to address this issue,
this paper proposes a novel blind Zero code based Watermark detection approach named KeySplitWatermark,
for the protection of software against cyber-attacks. The algorithm adds watermark logically into the code
utilizing the inherent properties of code and gives a robust solution. The embedding algorithm uses keywords
to make segments of the code to produce a key-dependent on the watermark. The extraction algorithms use
this key to remove watermark and detect tampering. When tampering increases to a certain user-defined
threshold, the original software code is restored making it resilient against attacks. KeySplitWatermark is
evaluated on tampering attacks on three unique samples with two distinct watermarks. The outcomes show
that the proposed approach reports promising results against cyber-attacks that are powerful and viable.
We compared the performance of our proposal with state-of-the-art works using two different software
codes. Our results depict that KeySplitWatermark correctly detects watermarks, resulting in up to 15.95 and
17.43 percent reduction in execution time on given code samples with no increase in program size and
independent of watermark size.

INDEX TERMS Cyber-attacks, watermarking, software, algorithm, blind detection, attack models, security.

I. INTRODUCTION

In the 21st century, with enormous computational power,
high-speed internet, Internet of Things and Blockchain tech-
nology, business can be done using Bitcoins. It shows that
digital contents are widespread on a wide range of con-
nected devices. Individuals of the current electronic era are
sharing information in real-time but at the same time face

The associate editor coordinating the review of this manuscript and

approving it for publication was Luca Ardito

72650

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the problems of evolving cyber-attacks on their data, soft-
ware, systems, devices, and services. Digital forgeries, cyber
frauds, malware, smart bot (DDoS) attacks, software and data
breaches are quite common [1].

Digital objects such as software, databases, images, audio,
videos, and webpages get created and widely distributed over
the internet in no time. Hackers try to break the security layer
of the system by exploiting the known software vulnerabil-
ities and then attack using viruses, malware, Trojan horses,
logic bombs, backdoors, etc. Software codes are modified by

VOLUME 8, 2020

https://orcid.org/0000-0003-4350-3911
https://orcid.org/0000-0003-2531-2564
https://orcid.org/0000-0002-0570-1813
https://orcid.org/0000-0003-0097-801X
https://orcid.org/0000-0003-2073-9833
https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0001-8444-2786
https://orcid.org/0000-0002-0501-7886

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

IEEE Access

@ — / e

\
1

1
1

1
1

1
: i

1
1

1
! i
1 = 1
1 Claimer {
! [
1

|}
. IIIIIII ol ,
1

1
! EEpgENENEpERE .
|

|}
; EEpEEEEpEE '
1

1
1

|}
! EEEEEEEEER .
1

1
' EEjEEEEpEE :
!

|
1

1
! EEpEEEEpENE -
1

1
1

|}
: IIIIIII HE .
1

1
; EEEEEEEEEN -
1

|}

FIGURE 1. Graphical representation of conventional watermarking.

malicious attackers to create malware and cause harm to the
software systems. According to Symantec’s Internet Security
Threat Report, 2018 [2], 99.9% of applications on third-party
App stores are malware. Software protection and increasing
its resilience is crucial for prevention against cyber-attacks.

Software is an important digital component as it is the
foundation of a computer, internet, and all communication
infrastructures. Software applications are being developed
with a rapid rate for communication, education, commerce,
health care, cloud, and many other domains. At the same
time software can be attacked and used for totally different
or malicious purposes in no time. Common Vulnerabilities
and Exposures database [3], [4] shows that more and more
new vulnerabilities are getting disclosed with each passing
day and today’s software is more vulnerable to cyber-attacks.
Exploiting vulnerabilities in software code can make it serve
a totally different purpose and can be exploited by cybercrim-
inals to perform an attack.

The existing traditional watermarking extraction needs to
provide real watermark locations. It poses a great threat to the
security of watermarks because it cannot ensure whether the
watermark locations will be leaked as shown in Figure 1.

Figure 2 explains the process of watermarking the original
source code using a blind Code based Zero Watermark algo-
rithm. The claimer firstly scrambles the source code and the
watermark positions are sent to the verifier, who will perform
the watermark detection. If the scrambling parameters are
not public, the verifier cannot derive the original watermark
positions.

The zero watermarking embedding algorithm utilizes [5]
the software code’s structure and watermark to construct a
key. This key must be registered with Certification Author-
ity (CA) along with the original watermark. In case an attack
is suspected as per user settings, the extraction algorithm
extracts the key from tampered software source code and
can identify tampering by matching this key with the CA.
In the case of tampering, if the payload is greater than a
threshold then the original software code will get restored.

VOLUME 8, 2020

Claimer's Origional Key

Buyer's Scrambled Key

~
: (
Origional ‘\ Embeclided
4’” \

Y
59|60 53| 54|55)|5|57|58|59)|6 59|60 (53| 54|55(5|57(58|5(6
o n|a|a|s|s|[a|ec|e[n o n|e|a|s|s|o|a|le|n
|8 |B|M|5|6|77|8|®| 0 ™| 80 M| | 77|78 || 80
8 | 9 |8 |8 |8 |8 |8 |8 || % o | %0 & 8 | 87| 8| ®| %
99 [100 93| 04 [05 [o6 | o7 | 58 | o9 | 200 [[Blind Algorithm| o | 155 [g5 | g 96 |97 [98| |00
59| 6 53| 54|5|5|57|58|»)|6 ” % | & 54|5|5|57|58|»|a
@ |7 (63| 64(65|66 (67|68 (6|7 ® | 64 | 65|66 | 67| 68| 6@ | T
™| | B|H|5|6|(77T|(8B|®| D | 80 M| 5|77 ||| 80
o0 |56 [8s|ss |5 |s|m|o ®| o o 6|5 |s|o|0
9 (100 | 93 94 (95| 96 | 97 | 98 | 9 | 100 9 | 100 (93 | 94 9 | 97 | 98 | 9 | 100

FIGURE 2. Process of zero blind watermarking.

The KeySplitWatermark is evaluated on three different soft-
ware samples and two different watermarks. Experimen-
tal results prove the robustness of the algorithm under
attacks.

We propose KeySplitWatermark, a novel approach based
on blind zero watermarking to protect software source code
against cyber-attack. The algorithm is blind and adds water-
mark logically into the code using the inherent properties of
code and provides a robust solution. The algorithm is made
up of two constituents: embedding algorithm and extraction
algorithm. The algorithm creates a key using a watermark
and can retrieve the key of the software even after it gets
attacked or tampered. In case software undergoes an attack
and tampering is detected, the original code can be restored
causing attack effects to get nullified. Specifically, this work
makes the following contributions to the cybersecurity and
software watermarking community in the following ways:

1) A novel approach based on watermarking to protect
software code against the attack that does not alter the
software code to embed watermark.

2) No assumption about software code, programming lan-
guage or length is made.

3) A novel reactive approach to cyber-attacks to increase
software resilience.

4) Cyber-attacks on software code can be detected and
the original software code can be restored if tampering
increases to a user-defined threshold.

The remainder of the paper is structured as follows: Section I1
provides an overview of the previous efforts done in the
software watermarking domain and for the cybersecurity of
software. The proposed embedding and extraction algorithms
are stated in detail in Section III. Section IV presents exper-
imental results under tampering attacks with three distinct
samples and two watermarks. We evaluate the performance
of the proposed approach on a total of nine attacked sam-
ples. Section V presents a comparative analysis with state-
of-the-art works. Section VI concludes this paper along with
the directions for the future works.

72651

IEEE Access

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

II. LITERATURE REVIEW

Software watermarking is an evolving research area and sev-
eral competitive software companies are claiming to be cre-
ating secure software codes. A robust, efficient and resilient
software watermarking solution can be a game-changer for
the information security [6]-[9] and software development
community. Cyber-attacks on software are very common
these days as more and more software vulnerabilities are
being disclosed. Digital watermarking can provide solutions
that can be helpful for software protection, content authenti-
cation, integrity checking, and fingerprinting. Several guide-
lines and approaches do exist for secure software develop-
ment [3].

Davis [5] provided an overview of existing processes,
standards, life-cycle models, frameworks, and methodologies
that support or could support secure software development.
McGraw [10] suggested 7 touchpoint activity areas, connect-
ing to software development artifacts to build secure software.

Vulnerability scanning approach [11] based on an auto-
mated pattern-matching tool has also been used to iden-
tify vulnerabilities in software code. OWASP [12] provides
a standard Secure Software Development Life Cycle and
helps developers to know what should be considered or best
practices at each phase of a development Life Cycle and
has recently suggested the top 10 security controls for web
application developers. Figure 3 gives a brief overview of
currently available software protection tools.

Many software watermarking methodologies have been
proposed in the last several decades [12]-[14]. The exist-
ing approaches towards software security are proactive
approaches where the focus is on developing secure soft-
ware following all stages of secure software development life
cycle.

Software watermarking has been done in several ways dur-
ing the last two decades, which includes static and dynamic
software watermarking techniques. These techniques are
based on software code, FP tree, registration allocation,
graph-based, dynamic path, and many others. Some of the
major techniques are grouped as follows:

A. RE-ORDERING ALGORITHMS

Re-ordering algorithms are static software watermarking
algorithms that use semantics-preserving transformations to
place a watermark in a permutation of the existing code.
Davidson and Myhrvold proposed the first block reordering
algorithm in 1996 [13]. Later, Myles et al. evaluated the
effectiveness of this algorithm on Java byte code using Sand-
mark [14]. Gong et al. proposed a watermarking method for
Java that analyzes the format of the Java class file and then
re-order the indexes to embed watermark [15].

B. REGISTER ALLOCATION ALGORITHMS

Register allocation is considered as constraint-based static
software watermarking technique. Based on this con-
cept, Qu and Potkonjak suggested a QP algorithm for

72652

watermarking the graph coloring problem through register
allocation [16]. After this, Myles and Collberg implemented
this algorithm in Sand Mark, named as QPS algorithm
and performed its empirical evaluation [17]. Later, Zhu and
Thomborson proposed a further improvement which they call
the QPI algorithm [18].

C. SPREAD-SPECTRUM ALGORITHMS
These methods utilize ideas from spread spectrum radio com-
munications. Cox et al. proposed the idea to insert watermark
in spectral components of data [19]. Later, Stern et al. intro-
duced a robust object watermarking scheme which was more
resilient against collusion attacks [20].

D. OPAQUE PREDICATE ALGORITHMS

Collberg et. al proposed the idea of opaque constructs
in 1998 [21]. Arboit et. al proposed two methods for water-
marking Java programs that use opaque predicates [22]. Later,
this method was assessed by Myles and Collberg who imple-
mented both static and dynamic versions within the Sand-
Mark framework [23].

E. ABSTRACT INTERPRETATION ALGORITHMS

Abstract interpretation is a static analysis technique used
for, among other things, the verification of software. Cousot
and Cousot presented an abstract interpretation algorithm
that embedded the watermark in values assigned to selected
integer local variables at run time [24]. Preda and Pasqua
proposed a semantic approach to software watermarking
where they modeled the ability of the attacker to identify
the signature in the framework of abstract interpretation as
a completeness property [25].

F. DYNAMIC PATH AND GRAPH-BASED ALGORITHMS
Collberg et al. proposed a dynamic path algorithm that
inserts a watermark in the runtime branch structure of a
program [26]. Graph-based watermarking algorithms rely
on the fact that graph-generating code is difficult to ana-
lyze. Collberg and Thomborson proposed the first dynamic
graph-based software watermarking algorithm [27], [28].

G. CODE REPLACEMENT ALGORITHMS

First patented software watermarking efforts used the idea
of code replacement; that is, the watermark value replaced
the pre-decided part of code [29], [30]. Monden et al. have
explored watermarking of java programs and proposed sev-
eral techniques by swapping byte code within dummy meth-
ods (implemented as jmark) [31], [32].

Yu et al. proposed an algorithm for software protection
in cloud [33]. Guang et. al then recently proposed an algo-
rithm for the protection of software in the cloud by rigorous
theoretic treatment [34]. Hayoma et al. proposed a dynamic
software watermarking approach using return-oriented pro-
gramming [35]. Owned et al. shed light on the importance of
security against malware and hijacking techniques [36]-[38].

VOLUME 8, 2020

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

IEEE Access

£
2 Watermarking Java programs.
Z
.
> Encoding/decoding digital watermark.
2
watermarking, Tamper proofing and obfuscation. B UWStego
W Tigress
Removes unused data or code, obfuscates symbolic constants.
® Sandmark
Reduces program size along with obfuscation, and watermarking functionality. M Jshrink
Z
g B Jobfuscate
Obfuscate Java Class files to protect them from Java decompiler.
W Jmark Jdecode
: . ® Jbirth
Extract birthmarks from Java Class files and compare them.
M JavaWiz
Experiment and testing. HYDAN
= = DYKIS-PD
il Dynamic birthmark based software plagiarism tool.
ol ® DashO
Diversifying virtualizer and obfuscator that is resilient to both static and dynamic reverse m Allatori

ct+t

engineering and de-virtualisation attacks.

BYTE

Android
and
JAVA Codes

FIGURE 3. Tools for software watermarking used in literature.

Protecting software against cyber-attacks is crucial and
software watermarking is one of the solutions which can be
used to protect it after the attack on it happens and it can pre-
vent damages. The existing approaches to software security
are proactive and focus more on writing secure codes but none
of the approaches focuses on making software resilient once
the attack has already happened.

Ill. PROPOSED WORK

Protecting software against cyber-attacks is one of the most
important concerns in the digital community. Watermarking
which was initially used for copyright protection can now be
used for software protection. The process of incorporation of
a watermark into software that can uniquely identify the copy-
right owner of the software is called software watermarking.
Software watermarking proves ownership but besides this,
it also identifies tampering. If tampering increases to a certain
threshold or follows a certain pattern, it may be a clear indica-
tor for an upcoming cyber-attack. The upcoming cyber-attack
can make that software a malware or a bot used for the next
attack. In case tampering gets detected in real-time, the tam-
pered version of the software can be replaced with the original
version (registered with CA in the name of the copyright
owner). In this way, an attacker won’t be able to launch
an attack. Many programming languages for software, its
existence in executable form and dynamic interpretation and
storage are some of the challenges and properties that need
to be considered by any software watermarking technique.

VOLUME 8, 2020

Exploiting redundancy in X86 assembly.

Obfuscating, watermarking and encrypting.

The integral requirements of a standard watermarking tech-
nique like robustness, imperceptibility, capacity, and security
also need to be addressed.

We propose novel watermarking based algorithms for the
protection of computer software against attacks. KeySplit-
Watermark first analyzes software code to identify the key-
words then make the partitions of the code on the basis of
the selected keyword. The algorithm generates a unique key
using the keywords and software code itself. If any copyright
concern is raised in the future, this key can be used to demon-
strate ownership. The embedding algorithm does not perform
any tampering in software code to watermark it and extraction
algorithms do not require watermark as input which makes it
blind.

Figure 4 explains the KeySplitWatermark where embed-
ding algorithm takes the following inputs:

1) Original code: Original software code which is to be
watermarked.
2) Cipher: A digital value to be used in the key generation
process.
3) Watermark: A group of ASCII characters.
The embedding algorithm generates the owner key as an
output. That key is recorded with the CA and then further used
to extract watermark (if needed). The extraction algorithm
takes the following inputs:
1) Attacked code file: A software code file that is tam-
pered with and or used illegally as copyright infringe-
ment.

72653

IEEE Access

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

Inquiry Model

Cipher

ind Algorithm

Safe Software

' Verification, l

1

1

1

I e
1

1

1

FIGURE 4. Block diagram of proposed approach.

2) Owner key: It is acquired from the certification author-
ity to identify the original owner.

A trusted Certificate Authority (CA) is a requirement for
this algorithm that registers the contents in the name of
the copyright owner. Whenever an attack is suspected, this
trusted third party performs watermark extraction and in
case tampering is detected, it provides the original software
code for restoration. The tampered code gets replaced with
original code making the attacker’s actions null and void.
The watermarking algorithm is made up of two constituents;
watermark embedding and watermark extraction. Watermark
embedding is performed by the original owner of the software
and extraction is done later by a trusted third party.

The extraction algorithm takes two inputs: 1) attacked code
and 2) owner key, and then extracts the watermark. This
watermark later proves the identity of the original owner and
then to restore the original code.

A. EMBEDDING ALGORITHM
The embedding algorithm inserts the watermark in the soft-
ware code/program and generates an owner key utilizing
keywords of the programming language in the program. The
detailed watermark embedding algorithm is stated as follows:
In this algorithm, software code is first preprocessed to
identify the most occurring ten characters and the most
occurring five keywords. It is then partitioned based on the
user-selected keyword. After that, the maximum occurring
alphabetical character is identified from each partition to
populate the MOC list. This MOC list is used to create the
owner key based on the given watermark. Each letter of the
watermark is compared with each letter in the MOC list if it
is matched then the key is populated with digit O (indicating
direct method) and partition number (PN). If the letter of the
watermark is not found in the MOC list then it is populated
by using shift ciphering method (SC), but first with digit
1 indicating indicates indirect method. The keyword is then
combined with the key to generating the owner key (OK). The
original watermark (W) and owner key (OK) are registered

72654

Algorithm 1 Working of Embedding Algorithm (z2¢)
Represents the 26 Alphabets (a-Z)

Input C
Preprocess C
Count occurrences of all characters
Count occurrences of all keywords
Display top 10 character list and input W
Display top 5 keywords and input KW
Partition C based on KW
Identifying MOC from each partition and populate
MOC list

9 For each letter of W, repeat step 10
10 if w;eMOC then
11 key[i]=0;
12 where j=1,2,...wl keyi+1=PN(MOC)

13 else if w; ¢ MOC then
14 key[i]=0; where j=1,2,...wl
15 | keyi+1=PN(MOC)

RS TN= N7 S O FCR Y

16 else
17 key[1+1]=(w; + k)Mod26
18 where k is in 226

19 OK = concatenate (KW, Key)
20 Output OK

w Watermark

SC Shift Cipher

C Software source code

MOC Maximum Occurring Character

KW Keyword
OK Owner Key
PN Partition number

with a certification authority with original code, date and
time. This code would be used to replace the tampered code
at a later stage if the need arises.

B. EXTRACTION ALGORITHM

The extraction algorithm extracts the watermark from the
software code when needed. It uses the watermark key pre-
viously generated by the embedding algorithm as input and
extracts watermark from the attacked software code. This
algorithm is kept with the trusted third party i.e. Certification
Authority.

The extraction algorithm is as follows:

In this algorithm, the attacked code (C,) is partitioned
using the keyword (KW) obtained from the owner key (OK).
After this, the maximum occurring character (MOC) from
each partition is identified and the MOC list is populated.
The contents of the watermark key (WK) are later used
to attain watermark from the source code. The extracted
watermark can then be matched with the original watermark
previously registered with CA to prove ownership by using
any pattern matching metric (e.g. similarity index). In case
matching increases a user-defined threshold or in case a
certain tampering pattern is found, the original software code
replaces the tampered code.

VOLUME 8, 2020

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

IEEE Access

Algorithm 2 Working of Extraction Algorithm

Input C,
Preprocess C,
Partition C based on KW (Obtained from OK)
Identify MOC from each partition and make MOC list
L1 = length (KW), keyindex = L + 1, Lr=length(W)
while keyindex < L, do

if OKit™ = 0 then

| We(D= MOC (PN)

9 else
10 L W.(I) = ReverseSC

11 Increment I

[~ RN B N I N S

12 Output W,

C, Attacked code KW Keyword

w ‘Watermark W, Extracted Watermak
OK Owner Key SC Shift Cipher

MOC Maximum Occurring Character

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed KeySplitWater-
mark, we used three different samples of software source
codes and we name these as S1, S2, and S3. These samples
are obtained from three independent sources of code written
in the C++ programming language, a bus reservation sys-
tem [39], a hospital management system [40] and a student
information system [41]. These code samples include classes,
public member functions, iteration, and decision structures.
The KeySplitWatermark does not dependent on any specific
programming language and can be executed in the same way
on codes written in other programming languages.

Two different watermark samples (WM1 and WM?2) are
used of 370 and 592 characters respectively. Details about
three software code samples (S1, S2, and S3) and two water-
mark samples (WM1 and WM?2) obtained from [42] and [43]
are mentioned in Table 6. The chosen samples vary in several
lines of words, lines of code (LOCs) and several special
characters.

Possible attacks on software source code are termed as
tampering which means random insertion and deletion of
words and lines; to and from the software source code. In code
obfuscation attacks, software codes are modified to serve
the desired purpose whether it be a malicious activity or
copyright violation or any other. Tampering can be made at
a single location in code to make it do something different
which is termed as localized tampering or it is done at mul-
tiple different points in code which is named as dispersed
tampering. The location and volume of tampering in software
code cannot be anticipated in advance by software owner as
he/she may not know the intention of the attacker. Generally,
attackers make combined insertion and deletion attack to
insert their piece of malicious code. Therefore, the KeySplit-
Watermark is evaluated against such type of attacks.

VOLUME 8, 2020

M Watermark Sample 1 & Watermark Sample 2

1

100 9362 g ¢
83.41

78.24 7637 = U=

S1A3

FIGURE 5. Accuracy of the retrieved watermark samples with both
watermarks.

78.39 7637

70
60
40
30
20
10
0 L

Percentage (%)
w
>

S1A1 S1A2

Average

The original code samples S1, S2 and S3 are given to three
different individuals (software programmers) to perform
tampering attacks independently. Three attack samples of
each sample are obtained. Details of attacked code samples
can be seen in Tables 2, 3 and 4. Table 2 shows that for S1,
attackers reduced lines of code and number of words signifi-
cantly in first and third attacked samples (SIA1 and S1A3).

Code sample S2 is also attacked significantly which
resulted in the reduction of lines of codes (LOCs) for all three
attack samples, particularly in the first sample (S2A1) more
than 80 lines of codes are removed and up to 500 characters
are removed (Table 3).

Table 4 shows the attack impact on code sample 3 where
more than 90 lines of codes got reduced for attacked sample 3
(S3A3) representing significant modification on the original
code sample.

We conduct experiments to assess the performance of
the KeySplitWatermark on all the attacked samples. The
extracted watermarks are compared with the original water-
marks generated by the embedding algorithm using original
code samples.

First, we evaluate the performance of the KeySplitWater-
mark on code sample 1 (S1) using both watermarks WM1 and
WM2 on all three attacked code samples (S1A1, S1A2, and
S1A3). Figure 5 shows the accuracy of the retrieved water-
mark samples with both watermarks. It can be observed that
watermark accuracy is more than 76% on both watermarks
for all samples and above 81% on average. This is considered
sufficient to identify the original copyright owner of the
software code. Once the original copyright owner gets iden-
tified, the original software code replaces tampered code and
cancels the attacker’s efforts of either performing attack on a
user’s system or making it perform the network-based attack.
Hence, the performance/functionality of software remains
unaltered and exploit codes make no use for attackers shown
in Figure 5.

Next, a similar experiment is performed for sam-
ple 2 (S2). Figure 6 shows the accuracy of the obtained
watermark on attacked samples (S2A1, S2A2, and S2A3).

72655

IEEE Access

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

TABLE 1. Detail of original code files and watermark samples.

Sample | Total lines of code | Total words | Total alphabets | Total special characters | Total character | Total keywords | Total digits
S1 404 365 1721 993 2791 12 77

S2 587 1059 4178 1016 5271 12 77

S3 335 459 1732 725 2497 11 40

WM1 6 67 361 9 370 0 0

WM2 8 114 563 18 592 0 11

TABLE 2. Details of three attacked samples (S1A1, S1A2, AND S1A3) obtained after attack on original code sample S1.

Attributes

Original sample 1 (S1)

Attacked sample 1 (S1A1)

Attacked sample 2 (S1A2)

Attacked sample 3 (S1A3)

Total lines of code

704

310

344

358

Total words 365 290 364 331
Total Alphabets 1721 1443 1804 1626
Total special characters | 993 794 993 892
Total characters 2791 2297 2874 2586
Total Digits 77 60 77 68

TABLE 3. Details of three attacked samples (S2A1, S2A2, AND S2A3) obtained after attack on original code sample S2.

Attributes Original Sample 3 (S3) | Attacked sample 1 (S3A1) | Attacked sample 2 (S3A2) | Attacked sample 3 (S3A3)
Total lines of code 335 292 246 238

Total words 459 453 486 279

Total alphabets 1732 1691 1759 1069

Total special characters | 725 725 735 433

Total Characters 2497 2456 2532 1530

Total digits 40 40 38 28

TABLE 4. Details of three attac

ked samples (S3A1, S3A2, AND S3A3) obtained after attack on original code sample S3.

Attributes

Original Sample 2 (S2)

Attacked sample 1 (S2A1)

Attacked sample 2 (S2A2)

Attacked sample 3 (S2A3)

Total lines of code

587

499

527

501

Total words 1059 928 924 903
Total alphabets 4178 3639 3634 3588
Total special characters | 1016 903 925 853
Total characters 5271 4612 4624 4507
Total digits 77 70 65 67

TABLE 5. Comparative table of the State-of-art-work. Ke GT- Graph Theoretic, PB - Path/branch, MM - Mathematical Model, EB - Encoded Binary.

Authors Techniques | Approach | Key findings Limitations

Mpanti et al. [39] Subtractive GT Reducible permutation flow-graphs Constraints of bytecode
Chen et al. [40] Distortive GT Improved the low efficiency of PPCT dynamic graph encoding | Constraints of bytecode
Z. Chen et al. [41] | Distortive PB Construct a hidden execution path Varying Path Length
Nazir et al. [42] Subtractive MM Mathematical approach to deal with vagueness and uncertainty | Static approach

Chen et al. [43] Distortive PB Neural network for temper detection Varying Path Length
Wang et al. [44] Distortive EB Exception handling based of dynamic software Complexity

Average watermark accuracy is above 70% using both water-
marks. S2A1 is a significantly attacked sample. Accuracy of
extracted watermarks on this sample is 76.11% and 71.58%
for WM1 and WM2 respectively which shows the robustness
of KeySplitWatermark.

Then, we test our KeySplitWatermarks on the third code
sample (S3). Figure 7 shows the accuracy of the obtained
watermark on attacked samples (S3A1, S3A2, and S3A3).
The average watermark accuracy for both watermarks
remained greater than 90%. S3A3 sample is obtained after
massive tampering (reduction in 90 LoCs) but we are still able
to achieve 81.16 and 79.75% accuracy on that sample.

Experimental results show that the algorithm poses good
resistance against tampering attacks of different types and
volume as even in the worst case (S2A1) 69.56% watermark
is successfully retrieved which is sufficient to identify the
original software owner. The results prove that the proposed

72656

system is robust, practical and secure against random tamper-
ing attacks on all nine samples. Watermarks survived com-
bined insertion and deletion attack which are both localized
and dispersed. It provides better security since the attacker
won’t be aware of the existence of such an anti-malware sys-
tem. Also, the algorithm has linear complexity which makes it
computationally efficient and obtains better accuracy. Getting
user input with a watermark to produce key in embedding
algorithm makes it more robust as there are least chances of
having the same key for two different software codes even
with the same watermark.

Using Zero-watermarking of static software code and par-
ticularly to prevent against cyber-attack is a novel idea and
no such zero software watermarking algorithms are available
to make a comparison of our proposed approach. However,
it is hereby claimed that none of the previous static soft-
ware watermarking gives above 80% watermark accuracy on

VOLUME 8, 2020

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

IEEE Access

M Watermark Sample 1 EWatermark Sample 2

Y

Average

100
S0

80

70
60
50
40
30
20
10

(0]

S2A1 S2A2 S2A3

69.56
76.17
71.58
72.02
69.58

70.8

Percentage (%)

FIGURE 6. Accuracy of obtained watermark samples on three attacked
samples (S2A1, S2A2, and S2A3) obtained after the attack on original
code sample S2.

M Watermark Sample 1

B Watermark Sample 2

92,13

100
S0
80

m
g
o9
o0

70
60
50
40
30
20

Percentage (%)

10

¢
-

o
-

S3A1 S3A2 S3A3 Average

FIGURE 7. Accuracy of obtained watermark samples on three attacked
samples (S3A1, S3A2 and S3A3) obtained after attack on original code
sample S3.

average and to our best knowledge, watermarking has not
been used as a way to prevent cyber-attacks in past.

The KeySplitWatermark can be applied to protect software
source codes written in any programming language and of
finite length against attacks. The proposed approach can
be deployed as an anti-malware system and can make the
attacker’s efforts null and void. Also, we can detect and
observe the tampered part of code to identify attackers’ inten-
tions.

V. COMPARATIVE ANALYSIS

This section compares the performance of the KeySplitWa-
termark with the most recent relevant work on software
watermarking Experiments are carried out on this two pro-
grams: CompressDemo and CryptoEncryption used in pre-
vious research work by [40], to facilitate comparison and
used watermarks for 128, 256, 512, and 1024-bit random
binary sequences. The experimental setup is kept the same
as in [40] and the experiments are conducted in a system
environment with Intel Core IS CPU, 4GB of RAM, and
Windows 10 operating system.

VOLUME 8, 2020

~
%]

(]
S

o
£
F 15
=3
g
=
3 10
©
& m

5 i

& st _ =M ml| ml |

& & & &
5 & o &
> <& Ca \
& & & ¥
& N & NS
S & S R
< 2
N N S N
i N 1 N
N > A ©
N A?

H128 m256 m512 w1024

FIGURE 8. Execution time of KeySplitWatermark as compared with [40]
for CompressDemo program for 1.23, and 7.26 MB of data with varied size
watermarks.

To evaluate the watermarked program execution time
objectively, two different inputs are selected for each pro-
gram. To reduce the interference of the operating system,
memory, and other environments on program execution time,
we run the programs 20 times with each input and calculated
the average time. The comparative results of experiments per-
formed on the CompressDemo program with 1.23 MB files as
input and varied sizes of watermarks are given in Table 6. The
KeySplitWatermark is zero watermarking algorithm, hence
it does not utilize exceptions, so no binary encoding for
exceptions is needed. With our algorithm, there is no increase
in file size and execution time.

The comparative results of experiments performed on
CryptoEncryption program with 31KB file as input and var-
ied size of watermarks are given in table 2. The reduction in
execution time can be observed in KeySplitWatermark due to
zero watermarking approach and no additional computation
needed for exception handling.

The reduction in execution time of the watermarked
CryptoEncryption and CompressDemo for [40] and for
KeySplitWatermark with different input sizes are shown in
Figures 8 and 9, respectively. Figure 8 shows the reduction
in execution time (ms) for input files of size 1.23 MB and
7.26 MB for the KeySplitWatermark as compared with [40]
after the watermarks of 128, 256, 512 and 1024 bits are
embedded in CompressDemo program. The KeySplitWater-
mark has reduced execution time with both input files even
when watermark size is 1024 bits.

Figure 9 shows the reduction in execution time (ms) for
input files of size 3 and 48 KB for KeySplitWatermark as
compared with [40] after the watermarks of 128, 256, 512 and
1024 bits are embedded in CryptoEncryption program. The
KeySplitWatermark reduce the execution time with both input
files for watermarks of varied sizes.

The execution time of the KeySplitWatermark is not depen-
dent on watermark length. As the input size increases,
the watermarked program execution time increases too but

72657

IEEE Access

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

TABLE 6. Comparative results for increase in the size of the watermarked code and in execution time for CompressDemo with 1.23 MB file.

Watermark length | Increase in program | Increase in program size | Execution time | Execution time (ms)
(bits) size (KB) [40] KeySplitWatermark (ms) [40] KeySplitWatermark
128 15 0 0.36 0.28

256 33 0 0.90 0.75

512 67 0 3.25 2.78

1024 130 0 7.30 6.54

TABLE 7. Comparative results for increase in the size of the watermarked code and in execution time for CrptoEncryption with 31KB file.

Watermark length | Increase in program | Increase in program size | Execution time | Execution time (ms)
(bits) size (KB) [40] KeySplitWatermark (ms) [40] KeySplitWatermark
128 18 0 23 18

256 34 0 40 32

512 67 0 45 39

1024 130 0 123 105

Execution Time

m128 m256 m512 m1024

FIGURE 9. Execution time of KeySplitWatermark as compared with [40]
for CryptoEncryption program for with different inputs and varied size
watermarks.

that is a natural increase with no overhead of excep-
tion handling as in [40]. The algorithm proposed by
Wang et al. [40] shows degraded performance on programs
with a large number of loops, since if the watermarks are
embedded in these loops, large quantities of exception han-
dling get executed, resulting in a significant increase in pro-
gram execution time. In KeySplitWatermark, an increase in
the number of loops does not make any effect on program
execution time even with large inputs.

To further evaluate the robustness of the KeySplitWater-
mark, we use attack tools ASProtect, Upx, and Aspack to
attack the watermarked program and verify the correctness
of the extracted watermark. The experimental results are
shown in Table 8. The watermark can be extracted correctly
after attacks of encryption, shelling, and compression of
the watermarked programs. The original semantics of the
program are still maintained, although different attacks are
conducted.

The existing watermarking algorithms for static as well as
dynamic watermarking embed watermark in program files
which increase file size and execution time. In our proposed
method, we make no changes in program file, rather gen-

72658

TABLE 8. Attacks and results.

. Extraction

Tool Attack Mode Extraction [40] KeySplitWatermark
ASProtect | CNCIYPS 100% 100%

program
Upx Conducts.code 100% 100%

compression
Aspack Used to shell the 100% 100%

program

erate key using the structure of file thus make no increase
in program size. The KeySplitWatermark also extracts 100%
watermark since the compression, encryption and shelling
does not change program code. Wang et al. [40] also extracted
100% watermark but at the cost of increased execution time
and increased file size. In our proposed approach, even if
program code gets tampered and 80% watermark sequence
gets extracted, it would be sufficient to claim copyright own-
ership. In KeySplitWatermark, where watermarking embed-
ding is done once only and extraction is done only if any
copyright issues arises. There is no need to increase program
size and enhance execution time of program for watermark
embedding.

VI. CONCLUSION

In this work, we proposed KeySplitWatermark, a novel zero
watermarking approach to protect software code against
cyber-attacks. The algorithm is blind and adds watermark
logically into the code using the inherent properties of code
and provides a robust solution. The source code and the
user-provided watermark are used to produce a personalized
key that gets registered with the Certification Authority (CA)
and is used later by the extraction algorithm to identify the
original owner and to restore the original software code. Our
KeySplitWatermark logically embeds watermark, the pres-
ence of watermark is known by the original owner and CA
only. It is not possible to destroy the watermark without
altering the code significantly and if any change occurs in
code, the original code gets restored. The performance of
the algorithm was evaluated for tampering attacks made on
three different code samples and the results prove that the

VOLUME 8, 2020

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

IEEE Access

KeySplitWatermark is robust, secure and efficient with mini-
mal computational requirements. We also compared the pro-
posed algorithm with the relevant work and it outperformed
in terms of execution time, capacity and size. In this work,
we have used two watermarks and limited samples written
in two programming languages. In the future, this work can
be extended and evaluated for application-specific software
codes written in other programming languages with different
set and number of keywords.

REFERENCES

[1]

[2]

[3]

[4]

[5

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti,
“AlphaLogger: Detecting motion-based side-channel attack using smart-
phone keystrokes,” J. Ambient Intell. Humanized Comput., pp. 1-14,
Feb. 2020.

A. K. Abdulrahman and S. Ozturk, “A novel hybrid DCT and DWT based
robust watermarking algorithm for color images,” Multimedia Tools Appl.,
vol. 78, no. 12, pp. 17027-17049, Jun. 2019.

W. Hu, R.-G. Zhou, J. Luo, and B. Liu, “LSBs-based quantum color images
watermarking algorithm in edge region,” Quantum Inf. Process., vol. 18,
no. 1, p. 16, Jan. 2019.

Z.Jalil and A. M. Mirza, “An invisible text watermarking algorithm using
image watermark,” in Innovations in Computing Sciences and Software
Engineering. Dordrecht, The Netherlands: Springer, 2010, pp. 147-152.
N. Davis, “Secure software development life cycle processes: A technol-
ogy scouting report,” Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep. ADA447047, 2005.

M. E. Kumar, G. T. Reddy, K. Sudheer, M. Reddy, R. Kaluri, D. S. Rajput,
and K. Lakshmanna, “Vehicle theft identification and intimation using
gsm & iot,” in Proc. Mater. Sci. Eng. Conf., vol. 4, 2017, Art. no. 042062.
G. T. Reddy, R. Kaluri, P. K. Reddy, K. Lakshmanna, S. Koppu, and
D. S. Rajput, “A novel approach for home surveillance system using
IoT adaptive security,” in Proc. Int. Conf. Sustain. Comput. Sci., Technol.
Manage. (SUSCOM), vol. 3. Rajasthan, India: Amity Univ. Rajasthan,
Feb. 2019, pp. 1616-1625, doi: 10.2139/ssrn.3356525.

G. T. Reddy, K. Sudheer, K. Rajesh, and K. Lakshmanna, ‘“Employing
data mining on highly secured private clouds for implementing a security-
asa-service framework,” J. Theor. Appl. Inf. Technol., vol. 59, no. 2,
pp. 317-326, 2014.

R. Raghavan, J. K. Singh, T. G. Reddy, K. Sudheer, P. Venkatesh, and
S. O. Olabiyisi, “A case study: Home environment monitoring system
using Internet of Things,” Int. J. Mech. Eng. Technol., vol. 8, no. 11,
pp. 173-180, 2017.

J. Epstein, S. Matsumoto, and G. McGraw, “Software security and SOA:
Danger, will robinson!”” IEEE Secur. Privacy Mag., vol. 4,no. 1, pp. 80-83,
Jan. 2006.

A. Al-Ghamdi, “A survey on software security testing techniques,” Int. J.
Comput. Sci. Telecommun., vol. 4, pp. 14-18, Apr. 2013.

G. S. Leite and A. B. Albuquerque, ‘“The importance of safe coding prac-
tices and possible impacts on the lack of their application,” in Proc. Com-
put. Sci. On-line Conf. Cham, Switzerland: Springer, 2019, pp. 214-224.
R. I. Davidson and N. Myhrvold, “Method and system for generating
and auditing a signature for a computer program,” U.S. Patent 5559 884,
Sep. 24, 1996.

G. Myles, C. Collberg, Z. Heidepriem, and A. Navabi, “The evaluation
of two software watermarking algorithms,” Softw., Pract. Exper., vol. 35,
no. 10, pp. 923-938, Aug. 2005.

D. Gong, F. Liu, B. Lu, P. Wang, and L. Ding, “Hiding informationin in
java class file,” in Proc. Int. Symp. Comput. Sci. Comput. Technol., vol. 2,
2008, pp. 160-164.

G. Qu and K. Potkonjak, “Analysis of watermarking techniques for graph
coloring problem,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design.
Dig. Tech. Papers, Nov. 1998, pp. 190-193.

G. Myles and C. Collberg, “Software watermarking through register allo-
cation: Implementation, analysis, and attacks,” in Proc. Int. Conf. Inf.
Secur. Cryptol. Berlin, Germany: Springer, 2003, pp. 274-293.

'W. Zhu and C. Thomborson, “Algorithms to watermark software through
register allocation,” in Proc. Int. Conf. Digit. Rights Manage. Berlin,
Germany: Springer, 2005, pp. 180-191.

VOLUME 8, 2020

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

(43]

I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure, robust
watermark for multimedia,” in Proc. Int. Workshop Inf. Hiding. Berlin,
Germany: Springer, 1996, pp. 185-206.

J. P. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater, ‘“Robust object
watermarking: Application to code,” in Proc. Int. Workshop Inf. Hiding.
Berlin, Germany: Springer, 1999, pp. 368-378.

C. Collberg, C. Thomborson, and D. Low, ‘“Manufacturing cheap, resilient,
and stealthy opaque constructs,” in Proc. 25th ACM SIGPLAN-SIGACT
Symp. Princ. Program. Lang. (POPL), 1998, pp. 184—196.

G. Arboit, “A method for watermarking java programs via opaque pred-
icates,” in Proc. 5th Int. Conf. Electron. Commerce Res. (ICECR), 2002,
pp. 102-110.

G. Myles and C. Collberg, “Software watermarking via opaque predicates:
Implementation, analysis, and attacks,” Electron. Commerce Res., vol. 6,
no. 2, pp. 155-171, Apr. 2006.

P. Cousot and R. Cousot, “An abstract interpretation-based framework
for software watermarking,” ACM SIGPLAN Notices, vol. 39, no. 1,
pp. 173-185, Jan. 2004.

M. Dalla Preda and M. Pasqua, “Software watermarking: A semantics-
based approach,” Electron. Notes Theor. Comput. Sci., vol. 331, pp. 71-85,
Mar. 2017.

C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu,
C. Linn, and M. Stepp, “Dynamic path-based software watermarking,”
in Proc. ACM SIGPLAN Conf. Program. Lang. design Implement., 2004,
pp.- 107-118.

C. Collberg and C. Thomborson, “Software watermarking: Models and
dynamic embeddings,” in Proc. 26th ACM SIGPLAN-SIGACT Symp.
Princ. Program. Lang. (POPL), 1999, pp. 311-324.

C. S. Collberg and C. Thomborson, ‘“Watermarking, tamper-proofing,
and obfuscation—tools for software protection,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735-746, Aug. 2002.

K. Holmes, “Computer software protection,” U.S. Patent 5287407,
Feb. 15, 1994.

P.R. Samson, “Apparatus and method for serializing and validating copies
of computer software,” U.S. Patent 5287 408, Feb. 15, 1994.

J. Hamilton and S. Danicic, “A survey of static software watermark-
ing,” in Proc. World Congr. Internet Secur. (WorldCIS), Feb. 2011,
pp. 100-107.

B. B. Madan, M. Banik, and D. Bein, “Securing unmanned autonomous
systems from cyber threats,” J. Defense Model. Simul., Appl., Methodol.,
Technol., vol. 16, no. 2, pp. 119-136, Apr. 2019.

A. Dey, S. Bhattacharya, and N. Chaki, “Software watermarking: Progress
and challenges,” INAE Lett., vol. 4, no. 1, pp. 65-75, Mar. 2019.

S. Guang, F. Xiaoping, F. Sha, S. Yingjie, and L. Huifang, “Software
watermarking in the cloud: Analysis and rigorous theoretic treatment,”
J. Softw. Eng., vol. 9, no. 2, pp. 410418, Feb. 2015.

H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, and D. Gao, ‘““Software water-
marking using return-oriented programming,” in Proc. 10th ACM Symp.
Inf., Comput. Commun. Secur. (ASIA CCS), 2015, pp. 369-380.

C. Iwendi, M. Uddin, J. A. Ansere, P. Nkurunziza, J. H. Anajemba, and
A. K. Bashir, “On detection of Sybil attack in large-scale VANETS using
spider-monkey technique,” IEEE Access, vol. 6, pp. 47258-47267, 2018.
C. Iwendi, A. Allen, and K. Offor, “Smart security implementation for
wireless sensor network nodes,” J. Wireless Sensor Netw., vol. 1, no. 1,
pp. 1-13, 2015.

C. O. Iwendi and A. R. Allen, “Cia security management for wireless
sensor network nodes,” in Proc. 12th Annu. PostGraduate Symp. Converg.
Telecommun., Netw. Broadcast. Liverpool, U.K.: Liverpool John Moores
Univ., 2011, pp. 123-128.

K. Lu, S. Xiong, and D. Gao, “RopSteg: Program steganography with
return oriented programming,” in Proc. 4th ACM Conf. Data Appl. Secur.
Privacy (CODASPY), 2014, pp. 265-272.

Y. Wang, D. Gong, B. Lu, F. Xiang, and F. Liu, “Exception handling-based
dynamic software watermarking,” IEEE Access, vol. 6, pp. 8882-8889,
2018.

J. Wang, P. Xie, Y. Wang, and Z. Rong, “A survey of return-oriented
programming attack, defense and its benign use,” in Proc. 13th Asia Joint
Conf. Inf. Secur: (AsiaJCIS), Aug. 2018, pp. 83-88.

H. P. Joshi, A. Dhanasekaran, and R. Dutta, “Impact of software obfus-
cation on susceptibility to return-oriented programming attacks,” in Proc.
36th IEEE Sarnoff Symp., Sep. 2015, pp. 161-166.

A. Alrehily and V. Thayananthan, “Software watermarking based on
return-oriented programming for computer security,” Int. J. Comput. Appl.,
vol. 166, no. 8, pp. 21-28, 2017.

72659

http://dx.doi.org/10.2139/ssrn.3356525

IEEE Access

C. lwendi et al.: KeySplitWatermark: Zero Watermarking Algorithm for Software Protection Against Cyber-Attacks

CELESTINE IWENDI (Senior Member, IEEE)
received the master’s degree in communication
hardware and microsystem engineering from Upp-
sala University, Sweden, in 2008, and the Ph.D.
degree in electronics from the University of
Aberdeen, U.K., in 2013. He is an Associate Pro-
fessor from Sweden. He ranked under 100 in the
world university ranking. He is a highly moti-
vated researcher with a Wireless Sensor Network
Security book and over 100 publications. He is
currently a Senior Lecturer with the Department of Electronics BCC, Cen-
tral South University of Forestry and Technology, China. He has strong
teaching emphasis on communication, hands-on experience, willing-to-learn
and 18 years of technical expertise. He currently teaches engineering team
project, circuit theory, data networks, and distributed systems, and control
systems. He has developed operational, maintenance, and testing procedures
for electronic products, components, equipment, and systems; provided
technical support and instruction to staff and customers. He is a wireless
sensor network Chief Evangelist, a Researcher, and a Designer. He has
been a Board Member of the IEEE Sweden Section, since 2017, and a
Fellow of The Higher Education Academy, U.K., to add to his teaching
and professional experiences. He is an Editor of International Journal of
Engineering and Allied Disciplines, in 2015, a Newsletter Editor of the IEEE
Sweden Section, from 2016 to 2018, the Editor-in-Chief of Wireless Sensor
Network Magazine, in 2009, a Committee Member of International Advi-
sory Panel, International Conference on Marine, Ocean and Environmental
Sciences and Technologies (MAROCENET), from 2014 to 2016, the Editor-
in-Chief of Journal of Wireless Sensor Network, in 2009, and an Advisory
Board member of International Journal of Innovative Computer Science and
Engineering (IJICSE), in 2013. He is the Co-Chair of the special session on
Wireless Sensor Networks.

ZUNERA JALIL (Member, IEEE) received the
B.Sc. degree from Punjab University, Lahore,
Pakistan, in 1999, and the M.S. degree in com-
puter science and the Ph.D. degree in computer
science with information security specialization
from the FAST National University of Com-
puter and Emerging Sciences, Islamabad, Pak-
istan, in 2007 and 2010, respectively. She is cur-
rently an Assistant Professor with the Depart-
ment of Cyber Security and a Researcher with the
National Cybercrimes and Forensics Laboratory, Air University, Islamabad.
Her research interest includes but is not limited to computer forensics,
intelligent systems, and data privacy protection.

ABDUL REHMAN JAVED received the mas-
ter’s degree in computer science from the
FAST-National University of Computer and
Emerging Sciences, Islamabad, Pakistan. He is
currently a Research Assistant with the National
Center for Cyber Security and a Visiting Lec-
turer with the Department of Computer Science,
Air University, Islamabad. His research interests
include but are not limited to mobile and ubiq-
uitous computing, data analysis, knowledge dis-
covery, data mining, natural language processing, smart homes, and their
applications in human activity analysis, human motion analysis, and e-health.
He aims to contribute to interdisciplinary research of computer science and
human-related disciplines.

THIPPA REDDY G. received the B.Tech. degree in
computer science and engineering from Nagarjuna
University, Andhra Pradesh, India, the M.Eng.
degree in computer science and engineering from
Anna University, Chennai, India, and the Ph.D.
degree from the Vellore Institute of Technology,
Vellore, India. He is currently working as an Assis-
tant Professor (Senior) with the School of Infor-
mation Technology and Engineering, VIT, Vellore,
India. He has 14 years of experience in teaching.

72660

He produced more than 25 international/national publications. His current
research interests include machine learning, deep learning, computer vision,
and big data analytics, Blockchain.

RAJESH KALURI received the B.Tech. degree in
CSE from JNTU, Hyderabad, the M.Tech. degree
in CSE from ANU, Guntur, India, and the Ph.D.
degree in computer vision from VIT University,
India. He is having more than ten years of teach-
ing experience. He was a Visiting Professor with
the Guangdong University of Technology, China,
in 2015 and 2016. He is currently working as
a Senior Assistant Professor with the School of
Information Technology and Engineering, VIT
University, India. He has published research articles in various reputed
international journals. His current research is in the areas of computer vision,
human-computer interaction, and blockchain.

GAUTAM SRIVASTAVA (Senior Member, IEEE)
received the B.Sc. degree from Briar Cliff Uni-
versity, USA, in 2004, and the M.Sc. and Ph.D.
degrees from the University of Victoria, Victo-
ria, BC, Canada, in 2006 and 2011, respectively.
He then taught for three years at the Department of
Computer Science, University of Victoria, where
he was regarded as one of the top undergraduate
professors in the computer science course instruc-

: tion. In 2014, he joined a tenure-track position at
Brandon Umversny, Brandon, MB, Canada, where he is currently active
in various professional and scholarly activities. He was promoted to an
Associate Professor, in January 2018. He, as he is popularly known, is active
inresearch in the field of data mining and big data. In his eight-year academic
career, he has published a total of 60 articles in high impact conferences
in many countries and high-status journals (SCI and SCIE) and has also
delivered guest lectures on big data, cloud computing, Internet of Things, and
cryptography at many Taiwanese and Czech universities. He currently has
active research projects with other academics in Taiwan, Singapore, Canada,
Czech Republic, Poland, and USA. He is constantly looking for collaboration
opportunities with foreign professors and students. He received the Best Oral
Presenter Award in FSDM 2017 which was held at the National Dong Hwa
University (NDHU), Hualien County, Shoufeng, Taiwan, in November 2017.
He is an Editor of several international scientific research journals.

OHYUN JO (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the Korea Advanced Institute of Science and
Technology (KAIST), in 2005, 2007, and 2011,
respectively. From April 2011 to February 2016,
he was with Samsung Electronics in charge of
research and development for future wireless com-
munication systems, applications, and services.
From March 2016 to July 2017, he was a Senior
Researcher with the Electronics and Telecommu-
nications Research Institute (ETRI) and from August 2017 to February
2018, he was an Assistant Professor with the Department of Electrical
Engineering. He is currently an Assistant Professor with the Department
of Computer Science, Chungbuk National University. He has authored or
coauthored more than 40 articles and holds more than 150 registered and
filed patents. His research interests include millimeter-wave communica-
tions, next-generation WLAN/WPAN systems, 5G mobile communication
systems, military communications, Internet of Things, future wireless solu-
tions/applications/services, machine learning, and embedded communica-
tions ASIC design. During his appointment at Samsung, he was a recipient
of numerous recognitions, including Gold Prize in Samsung Annual Award,
the Most Creative Researcher of the Year Award, the Best Mentoring Award,
Major R & D Achievement Award, and the Best Improvement of Organiza-
tion Culture Award.

VOLUME 8, 2020

