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ABSTRACT A methodology based on the joint usage of support vector regression and active subspace is
introduced in this paper for accelerated sensitivity analysis of high-speed links through parameter space
dimensionality reduction. The proposed methodology uses the gradient directly obtained by support vector
regression with Gaussian kernel to generate an active subspace with its application to the high-speed link
model. Active subspace generated by this method is defined by the directions that are most influential on the
desirable output measure. The resulting reduced-dimensional model is shown to perform well in sensitivity
analysis of high-speed links including IBIS-AMI equalization, and is computationally more efficient than
Sobol’s method.

INDEX TERMS High-speed link, support vector regression, active subspace, sensitivity analysis, dimen-
sionality reduction, eye diagram, surrogate modeling.

I. INTRODUCTION
Efficient methodologies for sensitivity analysis and design
optimization of high-speed channels is a current topic
of significant interest to the electronic design automation
community [1]–[3]. More specifically, the task at hand is
the advancement of reliable and computationally efficient
methodologies for the investigation of the impact of the mul-
titude of input design parameters on the performance of the
link. These methodologies aims to reduce the expedient itera-
tion toward an optimized design thatmeets design specswhile
mitigating or minimizing overdesign driven by worst-case
assumptions. Toward this objective, the research community
has been investigating approaches for fast sensitivity analysis
and dimensionality reduction techniques aimed at identifying
the subset of input design parameters most influential on
the channel’s performance. Once such a subset has been
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identified, reduced-order, surrogate models of the channel
can be developed to accelerate design optimization.

The variance-based Sobol’s method [4], [5] is a popu-
lar sensitivity analysis method widely used in many fields,
such as environmental modeling [6], reliability engineering
[7], and electronic engineering [2]. The objective of Sobol’s
method is to quantify the influence each input parameter has
on the variance of the model output; thus, its results infer
the most influential input parameters to be considered in the
development of reduced space of input parameters to be used
for design optimization studies. However, Sobol’s method
using Monte Carlo integral is computationally expensive,
especially when the dimensionality of the space of input
parameters is high.

Polynomial Chaos (PC) approaches have been proposed
for the development of uncertainty quantification in the
framework of high-speed links [8]–[10], reducing the com-
putational cost of sensitivity analysis compared with Monte
Carlo simulation [2]. Bayesian Active Learning has been
proposed for the development of an accurate predictive
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probabilistic model to perform sensitivity analysis of an
industrial high-speed channel [3]. Principal component anal-
ysis (PCA) method [11] and the Partial Least Squares (PLS)
regression method [12] have been shown to be useful in
identifying the principal components to be used in the devel-
opment of a reduced input parameter space. Recently, active
subspace method [13] have been proposed as an alternative
way for dimensionality reduction and sensitivity analysis;
however, the gradient information between input and output
parameters required in this method is often difficult to obtain.
This is the case in its application to high-speed links.

To resolve this problem, we propose a new algorithm,
named Support Vector Regression based Active Subspace
(SVR-AS). In the context of high-speed link design, rather
than seeking the probability distribution of the output of inter-
est [14], this methodology uses the support vector regression
(SVR) [15] predictive model to construct a functional rela-
tionship between design parameters and eye-opening param-
eters [16], [17], the gradient of which can then be employed
to calculate the active subspace and its corresponding active
variables. Developed from the SVR predictive model, SVR-
AS provides an alternative predictive function between active
variables and model outputs including dimensionality reduc-
tion. The performance of this new methodology is examined
through its application to the sensitivity analysis of a high-
speed link including IBIS-AMI Tx/Rx models with equal-
ization, and the performance and results are compared to
Sobol’s method. SVR-AS is found to exhibit good accuracy
for sensitivity analysis with better computation efficiency
compared with Sobol’s method.

This paper is organized as follows. In Section II, the SVR-
ASmethod is presented. Section III presents the details of the
interconnect structure under consideration, namely, a high-
speed link with IBIS-AMI model. In Section IV, the results
from the application of SVR-AS to the sensitivity analysis
of the high-speed link are presented. The performance of the
proposed method and its comparison to other approaches are
discussed in Section V. The paper concludes in Section VI
with a summary of its contributions and an outlook on future
developments.

II. METHODOLOGY
This work focuses on the development of a stable and
accurate algorithm for sensitivity analysis and dimension-
ality reduction in a realistic high-speed link model with
many design parameters. Inspired by active subspace [13],
we propose a methodology that combines SVR and active
subspace. We evaluate the accuracy and efficiency of our
proposed method against Sobol’s variance-based sensitivity
indices and the predictive model generated by support vector
machine (SVM) and SVR without dimensionality reduction.

Let X =
{
x1, . . . , xi, . . . , xp

}
represent the input

p-dimensional normalized design parameter space. Let Y
denote the output of the model. The sampling data set is
expressed as D = {(X1,Y1) , . . . (Xn,Xn)}.

A. SUPPORT VECTOR MACHINE AND SUPPORT
VECTOR REGRESSION
SVM [18] is a kind of supervised learning algorithm for clas-
sification problem with generalized linear classifier, where
Kernel method can be added for non-linear classification.
When SVM is applied to solve the problem of regression
prediction of a continuous function, it is also called SVR [15].
SVM is aimed at solving a convex optimization problem:

min
w,b,ξ

1
2
‖w‖ + C

∑
1≤i≤n

ξi,

s.t. Yi
(
wTϕ (X i)+ b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , n, (1)

where X i is a sampling of input design parameters, ϕ (X i)

is defined as the mapped X i in higher-dimensional feature
space, w =

{
w1, . . . ,wp

}
is a normal vector of hyperplane

wTϕ (X i)+ b, b represents displacement, ξ = {ξ1, . . . , ξn} is
introduced as slack variable, and C is a positive constant.
Lagrange multiplier method is a common method to solve

convex optimization problem with constraints. After deduc-
ing the Lagrange function, dual problem and Karush-Kuhn-
Tucker (KKT) conditions of Eq. (1), it is easy to get the SVM
model function:

g (X) = sgn
(
wTϕ (X)+ b

)
= sgn

 ∑
1≤i≤n

αiYiκ (X,X i)+ b

 , (2)

where κ
(
X i,X j

)
= ϕ (X i)

T ϕ
(
X j
)
is defined as the kernel

function to calculate the inner product of X i and X j in the
higher-dimensional feature space, and αi ≥ 0 is Lagrange
multiplier calculated by sampling data.

In regression prediction tasks, we want to find a regression
model, expressed by h (X) = wTϕ (X) + b, such that h (X)
is as close as possible to Y . Thus, the SVR problem can be
regarded as

min
w,b,ξ ,ξ ′

1
2
‖w‖ + C

∑
1≤i≤n

(
ξi + ξ

′
i
)
,

s.t. h (X i)− Yi ≤ ε + ξi,

Yi − h (X i) ≤ ε + ξ
′
i ,

ξi ≥ 0, ξ ′i ≥ 0, i = 1, 2, . . . , n, (3)

where ξi and ξ ′i are slack variables, and SVR allows a margin
of tolerance ε. Similarly, the final SVR predictive function
can be calculated via a Lagrange multiplier method:

h (X) =
∑
1≤i≤n

(
α′i − αi

)
κ (X,X i)+ b, (4)

where αi ≥ 0 and α′i ≥ 0 are introduced as Lagrange
multipliers.
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B. ACTIVE SUBSPACE METHOD
An alternative approach, called active subspace, rather than
determining a subset of the inputs as important, identifies a
set of important directions in the space of all input parameters
for sensitivity analysis and dimensionality reduction [13].
The model output, Y , is more influenced by the perturbation
on input parameters along these directions rather than its
orthogonal directions [19].

Consider a generic, multivariate function, Y = F (X),
where normalized design parameters are from a uniform
density over the hypercube X ∈ [−1, 1]pand F is an abstract
representation of the map from normalized inputs to the
predictions.

Denote the gradient of F as a column vector

∇XF (X) =
[
∂F
∂x1

,
∂F
∂x2

, . . . ,
∂F
∂xp

]T
. (5)

A symmetric and positively semi-definite matrix Z is defined
when draw sampling X i independently,

Z =
1
n

∑
1≤i≤n

∇XF (X i) (∇XF (X i))
T , (6)

which admits a real eigenvalue decomposition

Z = W3WT, (7)

where 3 = diag
(
λ1, λ2, . . . , λp

)
, λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.

We can partition the eigenvectors as

W = [W1 W2] , 3 =

[
31

32

]
, (8)

where W1 contains the first q eigenvectors with the largest
eigenvalues. The subspace defined by W1 is called active
subspace and represents the important directions along which
perturbation in the input have the largest impact on the out-
put. The magnitude of the eigenvector components can be
regarded as the relative sensitivity index of the input parame-
ters [19]. Then y = WT

1X denotes the vector of the active vari-
ables, which provides a lower-dimensional representation of
the input parameters. Active subspace is based on the premise
that it is reasonable to approximate F (X) by a function of
q < p combinations of X , represented by the vector of the
generated active variables, when the eigenvalues in 32 are
much smaller than those in 31.

C. SUPPORT VECTOR REGRESSION
BASED ACTIVE SUBSPACE
The gradient of function F plays an important and necessary
role in the active subspace algorithm. In [13], active subspace
is realized by either local or global linear approximation of
the relationship between output and inputs, which allows the
gradient ∇F to be estimated. This approach presents two
challenges in its application to high-speed link models. First,
additional EM modeling and channel simulations need to be
performed in order to construct the linear estimator between
design parameters and eye-opening parameters. Second, prior

results show that the eye opening estimation problem is best
solved using Gaussian kernel rather than linear regression
[16]. Linear regression model performs relatively poor in eye
opening prediction of high-speed link models, going against
the accurate active subspace identification. Thus, we choose
to use a predictive function from trained SVR with Gaussian
kernel to replace the unknown relationship between input
parameters and output and to implement active subspace.

With the Gaussian kernel given by

κ (X,X i) = exp
(
−

1
2σ 2 ‖X − X i‖

2
)
, (9)

the SVR predictive model shown in Eq. (4) becomes

h (X) =
∑
1≤i≤n

(
α′i − αi

)
exp

(
−

1
2σ 2 ‖X−X i‖

2
)
+b, (10)

where σ > 0 is the width of Gaussian kernel. The partial
derivatives of h (X) with respect to each input parameter
xk , k = 1, . . . , p can be deduced as

∂h (X)
∂xk

=

∑
1≤i≤n

(
α′i − αi

) (
−

1
σ 2 (xk − xik)

)

exp

− 1
2σ 2

∑
1≤j≤p

(
xj − xij

)2 (11)

Thus, Eq. (11) can be further used in Eq. (5) to calculate
the gradient of function F (X). With that in mind, it is easy
to calculate matrix Z and obtain the eigenvectors and active
variables from SVR-AS. Fig.1 illustrates the workflow of
SVR-AS method. In this way, the surrogate model and active
subspace identification come from the same data sets. Specif-
ically, the active subspace is identified for free after we have
constructed the SVR model with Gaussian kernel. It is worth
mentioning that the proposed SVR-ASmethod can be applied
to not only Gaussian kernel but also any other kernels that are
differentiable in closed-form.

III. APPLICATION EXAMPLE
We consider the chip-to-chip, high-speed serial link model
depicted in Fig. 2. It consists of the transmitter block (Tx,
IBIS-AMI model and package included), a microstrip line,
a land grid array (LGA) model [20], a via model, a strip
line, the cascade of the aforementioned via model, LGA,
and microstrip line forming a path to the receiver, and,
finally, the receiver block (Rx, IBIS-AMI model and package
included).

A. GEOMETRY AND DESIGN PARAMETERS
In the following we describe the seven blocks cascaded in
series and forming the entire interconnect channel between
Tx and Rx. This work focuses on uncertainties in the design
parameters of the Tx microstrip line, the strip line and the Rx
microstrip line. The via and LGA models have fixed design
parameters.
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FIGURE 1. The workflow of SVR-AS method.

FIGURE 2. The structure of the entire high-speed link.

Fig. 3a and 3b depict the cross-sectional geometries of
the differential microstrip line and strip line, respectively.
Table 1 summarizes the information of 16 geometric design
parameters associated with the lines. Substrate relative per-
mittivity, εr , channel width, w, channel spacing, s, substrate
thickness, h, and channel length, l, are considered in the
Tx microstrip line, the strip line, and the Rx microstrip
line. For the strip line, substrate thickness is characterized
by two parameters, H1 and H2, as shown in Fig. 3b. The
ranges of values of these 16 design parameters is shown
in Table 1. These 16 parameters constitute an input parameter
space of relatively high dimensionality such that a brute-force
parameter sweep for design optimization is intractable. For a

FIGURE 3. The cross-sectional geometries of the microstrip line and strip
line: (a) microstrip line; (b) strip line.

more expedient analysis, identification of the most influential
design parameters and, leveraging dimensionality reduction,
the associated development of a reduced-order model is the
approach considered in this paper.

B. SIMULATION WITH EQUALIZATION
The output of interest is the eye opening of the channel.
It is obtained through a statistical high-speed link analysis
using commercial IBIS-AMI behavioral I/O models for the
transmitter and the receiver, including effects of transmitter
feed forward equalization (FFE), receiver continuous time
linear equalization (CTLE), and receiver decision-feedback
equalization (DFE).

We use ANSYS Q3D Extractor [21] and Keysight ADS
[22] for the high-speed link simulation needs of this paper.
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TABLE 1. Design parameters of the high-speed link.

FIGURE 4. Eye openings of the high-speed link: (a) Tx output signal; (b) Rx
input signal; (c) Rx output signal; (d) Rx output signal at 10−12 BER.

ANSYS Q3D Extractor is used to calculate the S-parameters
for the Tx microstrip line, the strip line, and the Rx microstrip
line. The calculated S-parameters, combined with the fixed
S-parameters of the via model and the LGA, are used in
Keysight ADS to calculate the eye opening. On the computer
used for our simulations, it takes approximately 75 seconds
for each Q3D extraction and 4 seconds for each ADS simu-
lation using Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz with
12 cores.

Fig. 4 illustrates the effects of equalization when the
microstrip lines and strip line are designed using the nominal
values in Table 1. Eye diagrams of Tx output signal, Rx input
signal and Rx output signal are depicted in Fig. 4a, 4b and
4c, respectively. We consider three eye opening measures of
the Rx output signal, namely, Eye Height, Eye Width, and
Eye WidthAtBER, as shown in Fig. 4c and 4d. Eye Height
is the distance between the 3σ points of the logic-1 and
logic-0 histograms, measured across the eye level boundary.
Eye Width is the distance between the 3-sigma points of the
crossing time histograms. Eye WidthAtBER is the maximum
width of contour at 10−12 bit error rate (BER).

FIGURE 5. The workflow of eye height and eye width prediction.

IV. NUMERICAL RESULTS
A. PREDICTIVE MODEL BY SVM AND SVR
SVM and SVR are utilized as a surrogate predictive model
to find the relationship between the 16 design parameters
and the Eye Height, Eye Width, Eye WidthAtBER of Rx
output signal, respectively. Fig. 5 depicts the workflow of Eye
Height and EyeWidth prediction, in which only SVRmethod
is used.

We note that some of the designs resulting from values of
the design parameters within the ranges indicated in Table 1
result in extremely poor output with some of them having no
eye opening at 10−12 BER. These cases are not included in
the data sets used for the development of the SVR predictive
model. A more complex workflow is established, depicted
in Fig. 6, for Eye WidthAtBER prediction as follows. SVM
model is first used to examine whether an eye opening exists
at 10−12 BER. If there is no eye opening for the specific set
of design parameters, Eye WidthAtBER is judged to be zero.
Otherwise, the design parameters are fed into another SVR
model to find the exact value of Eye WidthAtBER.

We use 2000 data sets generated by ANSYS Q3D and
Keysight ADS to explore the SVM and SVR model (both
Fig. 5 and Fig. 6) for eye opening prediction. Predictive
models are implemented by the MATLAB machine learning
toolbox with Bayesian hyperparameter optimization. These
2000 data sets are randomly generated through sampling
the uniform distributions of the design parameters. They are
divided into one group of 1500 sets used for training and
another group of 500 sets to be used for testing. Among
these 1500 training sets, 1437 include EyeWidthAtBER data.
Thus, the SVRmodel in Fig. 6 uses these 1437 sets for model
training.

The prediction results with respect to Eye Height, Eye
Width and Eye WidthAtBER are presented in Fig. 7. The
root mean square errors (RMSE) between simulation results
and prediction results are 0.01 V, 1.09 × 10−12 sec and
3.84× 10−12 sec with respect to Eye Height, Eye Width and
Eye WidthAtBER. The mean absolute errors are 0.0085 V,
8 × 10−13 sec and 1.87 × 10−12 sec, respectively. It can be
inferred that these three SVR model and one SVMmodel are
trained well and can successfully help predict eye opening
based on the design parameters within the design range.

B. EIGENVECTOR AND ACTIVE VARIABLE BY SVR-AS
A well-trained SVR provides a certain relationship between
design parameters and eye opening. As mentioned in
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FIGURE 6. The workflow of eye WidthAtBER prediction.

FIGURE 7. The prediction results of eye opening: (a) eye height; (b) eye width; (c) eye WidthAtBER.

Section II, this relationship can be expressed by a specific
function, Eq. (4), and its gradient is induced as the combina-
tion of Eq. (5) and Eq. (11). This gradient is then utilized to
calculate active subspace and active variables for sensitivity
analysis and dimensionality reduction.

SVR-AS uses the same data sets used for SVRmodel train-
ing. In other words, no extra training data or additional sim-
ulations are needed to compute the active subspace. Table 2
depicts the eigenvalues calculated by SVR-AS with respect
to Eye Height, Eye Width and Eye WidthAtBER. These
eigenvalues are listed in order of decreasing value. The order-
of-magnitude gap between the first and the second eigenval-
ues for all three cases suggests a dominant one-dimensional
active subspace. Consequently, direction W1 includes only
the first eigenvector and the active variable y = WT

1X is
a one-dimensional linear combination of the corresponding
input parameters.

The weights of the linear combination are the components
of the first eigenvector W1. These weights also provide an
intuitive sensitivity analysis of the 16 design parameters,
where components with larger magnitude indicate that the
corresponding parameters have a larger influence on the
output. Results in Table 3 indicate the design parameters
with top-7 largest magnitude of W1. Clearly, ‘‘the length
of the strip line’’ is the most influential parameter, and its

TABLE 2. Eigenvalues of eye height, eye width and eye WidthAtBER.

correspondingW1 value is the largest, greater than 0.98, in all
three cases. This result is consistent with our expectations
based on past experiences. Additionally, results in Table 3
indicate that the normalized changes in “the dielectric con-
stant of the strip line”, “the length of the Tx microstrip
line” and “the length of the Rx microstrip line” also have a
significant effect on eye diagram.
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FIGURE 8. Sufficient summary plots of eye opening verse active variables: (a) eye height; (b) eye width; (c) eye WidthAtBER.

TABLE 3. Parameters with top-7 magnitude of W1.

Based on the one-dimensional active subspace defined
by W1, the 16 design parameters can be combined into a
one-dimensional active variable y = WT

1X . We can create
sufficient summary plots based on the active variables y and
corresponding outputs with the respect to Eye Height, Eye
Width and Eye WidthAtBER as illustrated in Fig. 8. It can
be inferred from the plots that active variables keep a clear
relationship with outputs; hence their importance in effec-
tive design parameter space dimensionality reduction. Again,
as expected, the eye tends to close when the length of the strip
line and/or the microstrip line is increases. The relationship
presented in sufficient summary plots can be used to predict
eye openings with new active variables and also infer the
design of active variables for desired eye openings.

C. SENSITIVITY ANALYSIS RESULTS
BY SOBOL’s METHOD
Sobol’s method based on variance decomposition is a global
and model-independent sensitivity analysis method [4], [5].
For the purposes of this work, it is used as the reference
method to evaluate the performance of SVR-AS. The total-
order index, ST , introduced by [23] is one of the most impor-
tant outputs in Sobol’s method. It accounts the contribution to
the output variance caused by an input parameter, xi, includ-
ing both its own effect and all interactions with other input
parameters. Considering a model represented by a function
Y = f (X) = f

(
x1, . . . xp

)
, the total-order index can be

naturally deduced as STi =
EX−i

(
Vxi (Y |X−i)

)
V (Y ) . Here, X−i is

defined as a (p − 1)-dimensional parameter space, which
consists all input parameters expect xi.

The total-order sensitivity indices ST of 16 design parame-
ters with respect to Eye Height, EyeWidth, and EyeWidthAt-
BER are calculated by sensitivity analysis library in Python
[24] using 54000 high-speed link simulations of designs gen-
erated through the sampling of the space of the input design
parameters. Table 4 lists the Top-7 influential parameters.
Same with results from SVR-AS, “the length of the strip line”
is the most influential parameter. “The dielectric constant of
the strip line”, “the length of the Tx microstrip line” and “the
length of the Rxmicrostrip line” also have amore pronounced
effect on eye opening compared to the rest of the design
parameters.

Fig. 9 shows the evolution of ST among 16 parameters
for Eye Height prediction. It can be inferred that, after about
27000 high-speed link simulations, the value of ST among
these parameters has converged. The ST of Eye Width and
Eye WidthAtBER exhibit similar convergence tendencies.

V. DISCUSSION
A. SVR-AS VS ACTIVE SUBSPACE METHOD
Active subspace method provides an appealing approach for
high-dimensional parameter study. Eigenvectors and active
variables provided by active subspace method can be used
for sensitivity analysis and input space dimensionality reduc-
tion, respectively. However, the gradient information of the
relationship between input parameters and output required in
active subspace method is difficult to obtain in high-speed
link analysis.

SVR-AS provides the feasibility of its application to
eye opening estimation. After we have constructed the
SVR model, SVR function provides an accurate gradient
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TABLE 4. Parameters with Top-7 total-order sensitivity indices.

FIGURE 9. The evolution of ST among 16 parameters for eye height prediction: (a) w , s, H1 and H2 of the strip line; (b) l of the strip line; (c) εr of the
strip line; (d) εr ,w , s, h and l of the Tx microstrip line; (e)εr , w , s, h and l of the Rx microstrip line.

information and the active subspace can be identified using
the same data sets. SVR-ASmaintains the advantage of active
subspace method: the magnitude of the eigenvector compo-
nents presents the relative sensitivity analysis for the input
parameters; active variables provide a lower-dimensional rep-
resentation of the input parameters.

B. SVR-AS VS SOBOL’s METHOD
SVR-AS uses the components ofW1 to examine the influence
of each of the input design parameters on the outputs, while
Sobol’s method calculates total-order sensitivity indices. The
numerical values of W1 and ST are difficult to compare
because of different normalization. However, the results for
the ranking of the 16 design parameters in these two methods
present the same top-7 important parameters.

Considering the loss and dispersion effect of the transmis-
sion line, quantified through the product loss = γ × l =
(α + jβ) × l, where γ is the propagation constant, l is the

length of the transmission line, α is the attenuation constant
and β is the phase constant. Thus, the length of the trans-
mission line is expected to be a very influential parameter as
verified by the results of SVR-AS and Sobol’s method. Also,
because the range of values of the strip line ismuchwider than
that of the other design parameters, the dielectric permittivity
of the strip line is also ranking in the top-4 parameters.

Although Sobol’s method and SVR-AS both provide
an accurate sensitivity analysis of the design parame-
ters, SVR-AS has a significant advantage with respect to
computation efficiency, especially for applications where
SVR is an appropriate choice for surrogate modeling. Sobol’s
method is computationally demanding, requiring about sim-
ulations of 27,000 designs for convergence. These data
require more than 24-days (27000 simulations x 79 sec-
onds/simulation = 2133000 seconds) simulation time. SVR-
AS is computationally more efficient, since active subspace
calculation shares the same data sets with SVRmodel. For the
specific study, SVR required about 32.9 hours to simulate the
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1500 training designs. The SVR-AS method for dimension-
ality reduction and sensitivity analysis is calculated from
the SVR model parameters directly, requiring no additional
simulations beyond the training set.

C. SVR-AS VS SVR
SVR-AS is developed based on the predictive function of
SVR. The sufficient summary plots shown in Fig. 8 indicate
a certain relationship between active variables and outputs.
These plots can also be used as a predictive method. Different
from the 16 design parameters needed in SVR predictive
model, the function defined by the sufficient summary plot
only need a one-dimensional input.

Eigenvector components calculated by SVR-AS help iden-
tify the most important design parameters, which can be
further used to reduce the dimension of the input parameter
space in SVR model. In other words, SVR-AS can provide
the subset of design parameters that are needed to develop an
adequate reduced input parameter space for the high-speed
link predictive model.

Moreover, SVR provides a forward predictive function that
can be used in high-speed link post-design procedure. Suffi-
cient summary plots in SVR-AS not only provide this ability
but also give an inverse function from output Y to active
variable y. This inverse relationship is promising in providing
guidance for high-speed link pre-design and optimization.

VI. CONCLUSION
In this paper, an efficient method, SVR-AS, is proposed for
sensitivity analysis and dimensionality reduction of complex
high-speed link model. The proposed SVR-AS method uses
SVR predictive model to replace the unknown relationship
between input design parameters and eye-opening character-
istics, and the gradient of SVR function is employed to cal-
culate the active subspace and its corresponding active vari-
ables. This methodology performs well in sensitivity analysis
and is computationally more efficient than Sobol’s method.
In addition to its efficiency, SVR-AS also achieves the goal of
the reduction of the dimensionality of the input design space
with the generated active variable serving as a weighted linear
combination of the input design parameters, with the weights
serving as measures of the influence of each design parameter
on the output. The proposed SVR-AS method can be applied
to other microwave structures when the relationship between
design parameters and a scalar quantity of interest can be
described by SVR function. Ongoing research explores the
usage of SVR-AS for input optimization of SVR predictive
model and PCB pre-design strategy.
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