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ABSTRACT With the exponential growth of the data generated by Internet of Things (IoT) devices,
computation offloading becomes a promising method to alleviate the computation burden of local IoT
device and improve processing latency. In order to address the bottleneck problem of limited resources
in IoT device more efficiently and provide security guarantee in data processing and forwarding process,
in this paper, we propose a privacy and energy co-aware data aggregation computation offloading for fog-
assisted IoT networks. Specifically, a fog-assisted three-layer security computing architecture is developed to
counteract security threats and enable the aggregation operation can be performed in ciphertext. Meanwhile,
a momentum gradient descent based energy-efficient offloading decision algorithm is developed to minimize
the total energy consumption of computation tasks, which can achieve the optimal value with fast conver-
gence rate. Finally, the security and performance evaluations reveal that the developed data aggregation
offloading scheme is a secure data processing scheme and achieves significant performance advantage in
energy consumption. For example, the total energy consumption can be reduced by an average of 23.1%
compared with benchmark PGCO solution.

INDEX TERMS Computation offloading, fog computing, data aggregation, data security.

I. INTRODUCTION
Internet of Things (IoT), as an important force to promote the
development of the information industry, has penetrated into
people’s lives. With the continuous growth of the number of
devices connected to the network, the data generated by IoT
devices show an explosive growth trend [1]. In these large
scale data, they usually include a large number of sensitive
data containing users’ private information. Therefore, how to
deal with mass data efficiently with privacy preservation has
become an urgent problem that needs to be solved. At the
same time, many IoT applications have real-time service
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requirements, which will lead to disastrous effects if the
response delay exceeds the tolerable latency. In addition,
energy consumption is also an important metric that needs
to be considered, it will affect the network efficiency and
lifetime significantly. Consequently, how to improve the pro-
cessing efficiency of large amounts of data with security
guarantee has become a huge challenge.

Under the scenario of massive data need to be processed,
cloud computing emerges as the times require, which can
effectively handle the different tasks of various devices. How-
ever, as the number of smart devices increases, bandwidth
consumption and data processing burdens become heavier
and heavier, task processing will face various problems, such
as high delay, congestion, energy consumption and security
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risk. Fortunately, the emergence of fog computing [2]–[4]
effectively overcomes these shortcomings of cloud comput-
ing. Fog computing paradigm is closer to the terminal device
with low data processing delay and strong mobility, which
can effectively reduce core network pressure and save energy.
These advantages make that fog computing can be applied in
many fields, such as industrial IoT (IIoT) [5], [6], vehicular
network [7], healthcare [8] and smart grid [9]. Furthermore,
in order to enhance task processing efficiency and alleviate
resource constraint problem of single edge device, the com-
putation offloading theory was studied. Fog computing-based
computation offloading emerges as a promising solution to
address above challenge (i.e., the processing efficiency prob-
lem of big data).

At present, the research schemes of computation offload-
ing mainly focus on optimizing offloading ratio to minimize
the global energy consumption or time delay. For example,
He et al. [10] proposed a delay-aware energy efficient com-
putation offloading scheme for fog radio access networks
(F-RANs) with hybrid energy supplies, it can minimize the
consumption of non-renewable grid energy under delay con-
straint. From time delay perspective, Yousefpour et al. [11]
conceived a delay-minimizing collaboration and offloading
policy that aims to reduce the service delay of IoT appli-
cations. Similarly, in [12], the authors constructed an ana-
lytical framework of fair task offloading for fog computing
networks, which offloads tasks to the selected nodes based
on a rule that minimizes the task delay. In [13], Wang et al.
developed a completion time minimization offloading mech-
anism with joint optimization of computation resource and
offloading decision for fog-enabled IoT. Unfortunately, they
lack the security consideration to guarantee data security that
is important for users’ privacy data.

In fog/edge computing scenario, jointly considering the
privacy preservation of big data and system performance has
become a trend [14]–[16]. For the sake of ensuring data
security and reducing energy consumption (or time delay),
many privacy preservation based data offloading schemes
were investigated. For example, Wang et al. [17] developed
a lightweight anonymous mutual authentication scheme for
n-times computation offloading in IoT, it can resist several
security threats with low latency, such as compromising
attack, privacy leaking and denial of service (DoS) attack.
In [18], Tang et al. proposed a blockchain-based offloading
approach, it can verify each fog server’s authenticity and
security, and then constantly maintain a set of candidate
authorized fog servers by leveraging blockchain technology.
What’s more, the offloading decision can be made in a real-
time fashion and satisfy the demand for computation resource
in mobile applications. From the intelligent decision perspec-
tive, in [19], Min et al. proposed a reinforcement learning-
based privacy preserving smart offloading mechanism, it can
provide the privacy preservation for healthcare users and
reduce the processing latency and energy consumption of
sensing device. Indeed, these schemes improve the secu-
rity of data processing on the basis of optimizing energy

consumption or time delay. However, they ignore the possi-
bility of specific data manipulation on the ciphertext, which
actually limits further improvement of network performance.
For example, if the data aggregation technology can be intro-
duced to aggregate ciphertext, the network performance will
be improved significantly.

In order to overcome shortcomings of the current research
schemes, i.e., to further enhance network performance with
privacy protection, from the joint consideration perspec-
tive of privacy preservation, data aggregation operation and
offloading decision, this paper proposes a privacy and energy
co-aware data aggregation computation offloading for fog-
assisted IoT networks. The major contributions are expressed
as follows.
• First, we construct a fog-assisted three-layer security
computing architecture, in which a privacy-aware data
processing mechanism is developed to counteract eaves-
dropping and compromising attacks and enable the
aggregation operation can be performed on ciphertext.

• The second is that an energy-aware computation offload-
ing optimization problem is formulated to minimize
the total energy consumption of computation tasks, and
a momentum gradient descent based energy-efficient
offloading decision algorithm is proposed to address
such problem. This solving algorithm can achieve
the optimal value with fast convergence rate for the
momentum gradient updates the downward direction by
considering the momentum accumulated in the previ-
ous iteration in conjunction with the current gradient
direction.

• Finally, the security and performance analyses ver-
ify that the developed data aggregation computation
offloading scheme is a secure data processing scheme
and achieve a significant reduction in energy consump-
tion with faster convergence rate.

The remainder of this paper is arranged as follows. Briefly,
Section II presents related works on our research topic. The
system model is constructed and expounded in Section III.
In Section IV, the proposed offloading scheme is illus-
trated in detail. Whereafter, the numerical results are given
in Section V. Finally, we make a concise conclusion in
Section VI.

II. RELATED WORK
With the advent of big data era, data present an explosive
growth trend. The mismatch between the limited computing
resource of sensing device and intensive real-time computing
tasks leads to the problem of excessive energy consump-
tion and poor service quality. Around these thorny issues,
the computation offloading technology has become a hotspot
in recent years due to its advantages of timeliness and energy
saving. For example, Chang et al. [20] proposed an energy
efficient computation offloading scheme in a multi-user fog
computing system, which minimizes the energy consumption
with execution delay constraint. Similarly, in order to balance
the response time and energy consumption for multiple fog
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devices with multiple running applications, in [21],
Jiang et al. presented an energy-efficient offloading deci-
sion mechanism and offloading dispatcher to dispatch
applications to the corresponding devices by effectively
managing the computation and communication resources
of all devices in fog computing architecture. Based on the
trade-off between the considered computation and com-
munication costs, in work [22], a revenue maximization
problem was formulated to distribute the data among fog
nodes. Based on fog-to-fog collaboration consideration,
Al-khafajiy et al. [23], [24] investigated fog computing per-
formance improvement scheme by integrating the load bal-
ance and computation capability sharing among fog nodes.
From the intelligent decision perspective, Ali et al. [25]
designed a deep learning-based energy-efficient computation
offloading method, it achieves optimal offloading decision
with performance improvement by comprehensively con-
sidering energy, delay, task load and network condition.
Although the above schemes can effectively improve the
performance gains in terms of latency and energy consump-
tion, the security of data transmitting and processing is not
considered in their network scenario, which is important for
several sensitive privacy data.

In order to effectively solve the data security problem and
reduce communication overhead, in recent years, data aggre-
gation involving privacy protection has become a research
focus in IoT. For instance, Huo et al. [26] developed a real-
time stream data aggregation framework with adaptive ω-
event differential privacy which can ensure data security
over infinite stream. Okay and Ozdemir [27] presented a
novel Domingo-Ferrer additive privacy based secure data
aggregation scheme for fog computing-assisted smart grids,
it can achieve end-to-end confidentiality while ensuring
the low communication and storage overhead. Similarly,
Lyu et al. [9] investigated an efficient and privacy-preserving
aggregation system with the aid of fog computing archi-
tecture, it can minimize the privacy leakage and mitigate
the utility loss. In work [28], a device-oriented anonymous
privacy-preserving schemewas constructed to efficiently pre-
serve the privacy of sensitive data in the fog-enhanced IoT
environment.

Furthermore, for the sake of reducing service latency and
energy consumption with security guarantee, the integration
of privacy protection and computation offloading attracts
great attention. For example, in [29], a privacy-aware data
offloading method in edge computing was proposed to pro-
hibit privacy leakage and achieve low latency. Similarly,
He et al. [30] developed a constrained Markov decision
process based privacy-aware task offloading scheduling algo-
rithm, which achieves the best possible delay and energy
consumption with a high level of privacy. To solve the risk
of disclosing possibly sensitive user data to eavesdroppers,
He et al. [31] studied a novel physical-layer assisted privacy-
preserving offloading scheme, in which the edge server
proactively broadcasts jamming signals to impede eaves-
dropping attack and leverages full-duplex communication

technique to effectively suppress the self-interference.
In work [32], an energy-efficient computation offloading
method with privacy preservation, was proposed to improve
the load balance and energy consumption of all the edge
nodes in edge computing-enabled 5G networks. Although
these works perform well in terms of energy consumption
and data security, there is still room for improvement in
system performance. For example, if the specific computation
operation (such as data aggregation) can be integrated into the
existing scheme, the data processing and energy efficiencies
of above offloading schemes can be improved significantly.

III. NETWORK MODEL
In this section, as displayed in Fig. 1, we construct a fog-
assisted secure three-layer computing model for IoT. From
bottom to the top, are respectively defined as the sensing
layer, the fog layer and the cloud layer, and the data is
processed layer by layer. The whole coverage area of IoT is
divided into multiple sub-areas, each of them contains a fog
node and several IoT sensing devices. We define that there
exists n IoT sensing devices in one sub-area. The specific
functions of these layers and threat model are defined in the
following part.

A. SENSING LAYER
This layer is composed of IoT sensing devices, which
are deployed to the corresponding places for data sensing.
We assume that each IoT device needs to calculate the average
value of the generated data in a time period tj, where j repre-
sents the index of the time period, and the length of each time
period is a constant T. We assume that each device generates
data at a fixed rate, and these data are all integer and greater
than zero. What’s more, the different devices generate data
at different speeds. We take a sub-area as an example, first,
to ensure the security of data processing, the data generated
by the n devices in the different time periods are encrypted by
Paillier encryption. Next, the sensing layer will make appro-
priate offloading decision to solve the resource constraint
problem of sensing device by choosing the most suitable task
offloading ratio αi. We define L

tj
i (Mb) as the task size of

device i during the time period tj. The system tends to offload
the partial task αi · L

tj
i to the nearby fog node and processes

the remaining task locally. The result of the local computation
part of device i in the time period tj is denoted as a

tj
i and the

sensing layer will transmit the computation result to the cloud
layer.

B. FOG LAYER
This layer is the intermediate layer between the sensing layer
and the cloud layer, which is deployed at the edge of the
network. Each sub-area contains a fog node which is able
to interact with IoT devices within its coverage area. Com-
pared with IoT devices, fog node has stronger computation
capability. Based on the offloading decision, the fog node
accepts the computation task αi · L

tj
i that transmitted to it by
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FIGURE 1. Fog-assisted three-layer computing architecture for IoT.

device in its coverage region. Next, the fog node will perform
the aggregation operation on the received computation task
αi · L

tj
i , and the aggregation result can be denoted as b

tj
i .

Finally, this layer will transmit the computation result to the
cloud layer.

C. CLOUD LAYER
The cloud layer receives the computation results from the
sensing layer and the fog layer. This layer calculates the
final result c

tj
i by performing the aggregation operation on

a
tj
i and b

tj
i . At the same time, the cloud layer utilizes the

private key which is assigned to it by the trusted authority
to decrypt the aggregated encrypted data, i.e., to get data sum
of each IoT device during each time period. Finally, the sum
is divided by the number of data generated by each device
in the corresponding time period to get the required average
value.

D. TRUSTED AUTHORITY
We assume that there exists a trusted third party, which has
strong processing ability, is mainly responsible for generating
the key and distributing it to the corresponding entity.

E. ADVERSARY MODEL
Based on the defined system model, we mainly consider the
following two types of security threats, i.e., the eavesdrop-
ping and compromising attacks.

1) EAVESDROPPING ATTACK
The eavesdropper can eavesdrop all communication links and
obtain the transmitted data, so it can obtain the user’s private
information. As a result, whether the data transmitted from
the sensing layer to the fog layer or the data from the fog
layer to the cloud layer, the system must ensure that the
data are transmitted in the ciphertext form. It can guarantee
the privacy of user’s data for the eavesdropper is unable to
accurately restore the data even if it successfully observes the
data over the data link.

2) COMPROMISING ATTACK
We assume that the active attacker has enough resources to
compromise the fog node, so the data of the fog node will
be exposed to the attacker. The system must ensure that the
data of the fog node are always processed or stored in the
ciphertext form, so as to ensure the security of user’s data
even if the attacker obtains the data of fog node.

Important notations used in this paper are given in the
following TABLE 1.

IV. PRIVACY AND ENERGY CO-AWARE COMPUTATION
OFFLOADING MECHANISM
In this section, we propose a privacy and energy co-aware
computation offloading mechanism for fog-assisted IoT

TABLE 1. Notation definitions.
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networks, the purpose is to minimize the total energy con-
sumption with privacy preservation. The detailed encryption,
offloading and decryption processes are explained as follow.

A. PRIVACY-AWARE DATA PROCESSING
1) DATA ENCRYPTION AND OFFLOADING AT IOT DEVICE
Based on the definition of network model, the data generated
by the device i in the time period tj can be represented as

Di
(
tj
)
=
[
Di1

(
tj
)
,Di2

(
tj
)
. . .Dizi

(
tj
)]
, (1)

where Zi represents the number of data generated by the
device i in the time period tj.

All the data generated by the device i in the time period tj
are encrypted by the Paillier encryption, operation steps are
shown as follows.

We assume that p and q are two large prime numbers which
satisfies

gcd(pq, (p− 1)(q− 1)) = 1, (2)

we define that N = pq, then we select a generated element
g ∈ Z∗

n2
, it can be denoted as

gcd
(
L
(
gλ mod N 2

)
,N
)
= 1, (3)

where

L(u) = (u− 1)/N . (4)

The private key can be expressed as

sk = λ(N ) = lcm(p− 1, q− 1), (5)

and the public key can be represented as

pk = (N , g), (6)

where the private key is assigned to the cloud by the trusted
authority, and the public key is assigned to the sensing devices
by the trusted authority.

The generated data are encrypted in the sensing layer. For
any plaintext m ∈ Di

(
tj
)
, we select r ∈ Z∗n at random to get

the corresponding ciphertext, which can be denoted as

c = Epk (m) = gmrN mod N 2. (7)

According to the formula (1), the set of ciphertext can be
shown as

D′i
(
tj
)
=
[
D′i1

(
tj
)
,D′i2

(
tj
)
. . .D′izi

(
tj
)]
. (8)

Based on the offloading decision, the part of ciphertext
which are offloaded to the fog node can be written as

D′i−offload
(
tj
)
=
[
D′i1

(
tj
)
,D′i2

(
tj
)
. . .D′iαiZi

(
tj
)]
, (9)

where the remaining ciphertext to be processed locally can be
given as

D′i−local
(
tj
)
= [D′i(αizi+1)(tj),D

′

i(αizi+2)(tj)...D
′
izi (tj)]. (10)

2) DATA AGGREGATION
We make use of the additive homomorphism property of
Paillier encryption during the data aggregation, the local
aggregation ciphertext of device i during time period tj can
be defined as

a
tj
i =

zi∏
k=αizi+1

D′ik
(
tj
)
mod N 2, (11)

and the offloaded aggregation ciphertext can be written as

b
tj
i =

αizi∏
k=1

D′ik
(
tj
)
mod N 2. (12)

Next, the cloud layer receives the aggregation results
respectively from the sensing and fog layer, and conducts
secondary aggregation on them to obtain the final aggregation
result, which can be organized as

c
tj
i =

Zi∏
k=1

D′ik
(
tj
)
mod N 2

=

zi∏
k=1

gDik(tj)rNk mod N 2

=

(
gDi1(tj) · gDi2(tj) · · · gDiZi(tj) mod N 2

)
·

( zi∏
k=1

rk

)N
mod N 2

= gDi1(tj)+Di2(tj)+···DiZi(tj)
( zi∏
k=1

rk

)N
mod N 2. (13)

In order to show c
tj
i more intuitive and in a Paillier

encrypted form. We define the following two variables

M = Di1
(
tj
)
+ Di2

(
tj
)
+ . . .+ Dizi

(
tj
)
, (14)

R =
zi∏
k=1

rk . (15)

Finally, the aggregation ciphertext can be reformulated into
the following format, and which is in according with the
ciphertext form of Paillier encryption.

c
tj
i = gMRN mod N 2. (16)

3) DATA DECRYPTION AT CLOUD
As mentioned above, after receiving the final calculation
result c

tj
i , the cloud layer immediately performs decryption

operation on it. We denote the final decryption result as M,
the specific decryption process is shown as

M = Dsk
(
c
tj
i

)
=

(
L
(
cλ(N ) mod N 2

)
/L
(
gλ(N ) mod N 2

))
mod N .

(17)
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B. ENERGY-AWARE COMPUTATION OFFLOADING
OPTIMIZATION
On the premise of ensuring the security of data process-
ing, this subsection formulates an energy-aware computation
offloading optimization problem which is aimed at minimiz-
ing the total energy consumption during the data processing.

In our network model, we assume that the task of each
device is to calculate the average value of the data generated
by itself during the time period tj. Let αi, Ri respectively
represent the task offloading ratio and the data transmission
rate of device i, and let βi represent the occupation ratio
of fog node’s computation capacity assigned to device i.
We define L

tj
i (Mb) as the task size of device i during the

time period tj. We assume that all the devices in the sub-
area have the same computation capacity and power, which
are respectively defined as U comp

d (Mb/s) and Pcompd (W).
Besides, the computation capacity and power of fog node
are respectively defined as U comp

f (Mb/s) and Pcompf (W), and
the transmission power of device i is defined as Ptrandi (W).
All the devices in the sub-area share a wireless channel, and
the channel is equally allocated to these devices for the data
transmission operations.

Transmission power of the device i: According to Shan-
non equation, the transmission rate of the device i can be
expressed as

Ri =
B
n
log2

(
1+

n · Ptrandi · h
2
i

N0B

)
, (18)

where B represents the wireless channel bandwidth, Ptrandi rep-
resents the transmission power of the device i, hi represents
the channel gain of the device i, and N0 represents the white
Gaussian noise. Then the transmission power of the device i
can be expressed as

Ptrandi =
N0B

n · h2i

(
2
n·Ri
B − 1

)
. (19)

Energy consumption: We assume that the local com-
putation energy consumption of device i, the computation
energy consumption of fog node and the transmission energy
consumption of device i can be respectively represented as
Ecompdi , Ecompf and E trandi , the specific expressions of the above
three energy consumptions are respectively given as

Ecompdi = Pcompdi ·
(1− αi)L

tj
i

U comp
di

, (20)

Ecompf = Pcompf ·
αi · L

tj
i

βi · U
comp
f

, (21)

E trandi =
N0B

n · h2i

(
2
n·Ri
B − 1

)
·
n · αi · L

tj
i

B
. (22)

The total energy consumption Etotal contains the computa-
tion energy consumption of local IoT devices, the transmis-
sion energy consumption of IoT devices and the computation

energy consumption of fog node, which can be expressed as

Etotal =
n∑
i=1

(
Ecompdi + E trandi + E

comp
f

)
=

n∑
i=1

(
Pcompdi ·

(1− αi)L
tj
i

U comp
di

+
N0B

n · h2i

(
2
n·Ri
B − 1

)
·
n · αi · L

tj
i

B

+Pcompf ·
αi · L

tj
i

βi · U
comp
f

)
. (23)

Here we formulate an optimization problem, the objective
of which is to minimize the total energy consumption Etotal
by adjusting the parameters αi, Ri and βi, and the specific
optimization problem can be written as

P1 : min
αi,βi,Ri

Etotal (24)

s.t. Ti,total = max
[
Ti,local,Ti,offloaded

]
≤ T , (24a)

0 ≤ αi ≤ 1, (24b)
n∑
i=1

βi ≤ 1, (24c)

n∑
i=1

Ri ≤ B, (24d)

0 < βi ≤ 1. (24e)

In objective function (24), the purpose is to minimize the
total energy consumption Etotal by adjusting the parameters
αi, Ri and βi. Constraint (24a) ensures that the maximum
delay of the device i to complete the task can’t exceed the
time period. Constraint (24b) indicates the offloading ratio of
device i should be between 0 and 1. Constraint (24c) ensures
that the sum of the occupation ratio of fog node’s computation
capacity assigned to each device does not exceed the unity.
Constraint (24d) ensures that the sum of the data transmission
rate of each device does not exceed the value of channel
bandwidth. Constraint (24e) indicates the occupation ratio
of fog node’s computation capacity assigned to each device
should be greater than 0 and less than or equal to 1, i.e., once
the local device offloads the computation task to the fog node,
this task will be assigned certain computation resource from
fog node.

C. OPTIMIZATION SOLUTION
In this subsection, in order to solve the optimization problem
P1, we develop a momentum gradient descent based energy-
efficient offloading decision algorithm for achieving the min-
imum energy consumption.

First, we define function J to represent the energy con-
sumption of device i’s computation task, which can be
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expressed as

J = Pcompd ·
(1− αi)L

tj
i

U comp
d

+
N0B

n · h2i

(
2
n·Ri
B − 1

)
·
n · αi · L

tj
i

B

+Pcompf ·
αi · L

tj
i

βi · U
comp
f

. (25)

Then, by means of partial derivative calculation, the gradient
of the function J with respect to αi, βi and Ri can be respec-
tively represented as ∂J

∂αi
, ∂J
∂βi

and ∂J
∂Ri

, the specific definitions
are shown as follows:

∂J
∂αi
= −

Pcompdi · L
tj
i

U comp
di

+
N0 · L

tj
i

h2i
· 2

n·Ri
B

−
N0 · L

tj
i

h2i
+
L
tj
i · P

comp
f

U comp
f

·
1
βi
, (26)

∂J
∂βi
= −

L
tj
i · P

comp
f · αi

U comp
f · β2i

, (27)

∂J
∂Ri
=

ln 2 · N0 · L
tj
i · n · αi

h2i · B
· 2

n·Ri
B . (28)

Next, we can leverage the gradient descent with momen-
tum method to update variables αi, βi and Ri, which are
shown as 

αi(k + 1) = αi(k)− oi(k + 1),

βi(k + 1) = βi(k)− qi(k + 1),

Ri(k + 1) = Ri(k)− ri(k + 1),

(29)

where 
oi(k + 1) = γ · oi(k)+ s · gi(k),

qi(k + 1) = γ · qi(k)+ s · gi(k),

ri(k + 1) = γ · ri(k)+ s · gi(k),

(30)

where symbols k, s, γ , gi(k) respectively represent the number
of iterations, the step size of iteration, the attenuation value
and the gradient of the function J. And variables oi(k), qi(k)
and ri(k) respectively represent the accumulated momentum
of αi, βi and Ri at their iterative processes. The specific
expression of gi(k) is written as

gi(k) =



∂J (k)
∂αi(k)

,

∂J (k)
∂βi(k)

,

∂J (k)
∂Ri(k)

.

(31)

When the stop condition is reached (i.e., reaching the
maximum number of iterations), the iteration for αi, βi and
Ri will stop, and the optimal value of them will be achieved.

Meanwhile, the minimum energy consumption E∗total can also
be obtained, which can be expressed as

E∗total =
n∑
i=1

(
Pcompd · L

tj
i

U comp
d

−
Pcompd · L

tj
i · α

∗
i

U comp
d

+
N0 · L

tj
i · α

∗
i

h2i
· 2

n·R∗i
B −

N0 · L
tj
i · α

∗
i

h2i

+
L
tj
i · P

comp
f

U comp
f

·
α∗i

β∗i

)
, (32)

where α∗i represents the optimal offloading ratio of device i,
R∗i represents the optimal data transmission rate of device i,
and β∗i represents the optimal occupation ratio of fog node’s
computation capacity assigned to device i.

To facilitate the understanding, the detailed solution pro-
cess of the minimum energy consumption can be found in
Algorithm 1.

Algorithm 1 Momentum Gradient Descent Based Energy-
Efficient Offloading Decision Algorithm

Input:
The task size L

tj
i , bandwidth B, time period T, step size s,

and attenuation value γ .
Output:

The optimal values α∗i , β
∗
i , R
∗
i and E

∗
total .

1: begin
2: Initializing αi, βi, Ri and setting k =1;
3: while constraint conditions (24a)-(24e) are all satisfied;

do
4: Updating the αi(k), βi(k) and Ri(k) by formula (29)

with momentum (30) and gradient function (31);
5: k = k + 1;
6: end while
7: Obtaining the optimal values α∗i , β

∗
i and R∗i ;

8: The optimal energy consumption E∗total can be obtained
by calculating equation (32) with the optimal (α∗i , β

∗
i ,

R∗i ).
9: end

V. SECURITY AND PERFORMANCE EVALUATION
In this section, theoretical analysis and numerical results
are used to verify the security and performance advantages
of our proposed privacy and energy co-aware computation
offloading mechanism.

A. SECURITY EVALUATION
1) SECURITY ANALYSIS
Eavesdropping attack: The first type of possible attack
is called eavesdropping attack, in which an attacker might
eavesdrop communication links to obtain the transmitted
data. To effectively defend against such attack, this paper
utilizes the Paillier algorithm to encrypt the data generated
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by the IoT devices, the encrypted form of which can be rep-
resented as c = Epk (m) = gmrN mod N 2. Even if the eaves-
dropper successfully eavesdrops the transmitted data in the
communication links, they can only obtain the corresponding
ciphertext and cannot obtain the correct plaintext for without
the corresponding decryption key. The specific reason is that
the data encrypted by Paillier algorithm has semantic security
from the chosen plaintext attack [33]. Therefore, the proposed
scheme can effectively protect users’ privacy during the trans-
mission of the links.

Compromising attack: The second type of possible attack
named compromising attack, where the attacker might use
its own resources to compromise a fog node to retrieve data
stored there. However, the decryption key is stored on the
cloud server instead of the fog node, whichmeans the attacker
cannot obtain it. Similar to the above eavesdropping attack
analysis, even though an attacker obtains the ciphertext stored
in the fog node, it cannot recover the original data accurately.
Therefore, the proposed scheme can provide strong confiden-
tiality for data stored in the fog node.

2) SECURITY EVALUATION WITH NUMERICAL RESULTS
In this subsection, we will present the security characteristics
of our proposed scheme more intuitively through numerical
results.

In Fig. 2, we randomly select 40 data generated by one
device in a time period (be defined as 5 seconds) as the
original data. These data are transmitted over the data link
between the sensing layer and the fog layer in the form of
ciphertext, andwe assume that there is an eavesdropper on the
data link. Observing from Fig. 2, we can find that the obtained
results of the legal cloud coincide with the original data,
which indicates the high recovery accuracy of our developed
algorithm. On the contrary, there is a big fluctuation between
the obtained data of the eavesdropper and the original data.
For example, when the index of the data is 10, the original
data is equal to 250, the reconstructed data of the legal cloud
is 250, but the obtained data of eavesdropper is 17. The
reason for this phenomenon is that the eavesdropper does
not have the privacy key, and it is difficult to decrypt the
ciphertext. Even if the decryption operation is performed,
only inaccurate decryption results can be obtained.

Fig. 3 shows the comparison of obtained results between
legal cloud and compromising attacker. The original data
denote the stored data in one fog node, which are aggregation
results from 14 different IoT devices. As can be seen from the
Fig. 3, the decryption results of the legal cloud are perfectly
matching with the original data, where the data obtained
by the compromising attacker deviate from the original data
significantly. For example, when the index of the aggregated
data is 5, the original data is equal to 988, the reconstructed
data of the legal cloud is 988, nevertheless, the obtained data
of attacker is 321. This is because the decryption key is stored
on the cloud server, which is not accessible to the fog node
and attacker. Hence the compromising attack in fog node
does not have the ability to decrypt the encrypted aggregated

FIGURE 2. The comparison of obtained results between legal cloud and
eavesdropper.

FIGURE 3. The comparison of obtained results between legal cloud and
compromising attacker.

ciphertext. Even if the attacker performs the decryption oper-
ation, they cannot acquire the accurate results. Therefore,
it further confirms that the proposed privacy-aware data pro-
cessing mechanism can effectively resist the compromising
attack and the curiosity of fog node.

B. PERFORMANCE EVALUATION
We assume that the sub-area contains a fog node and 5 IoT
sensing devices. The computation capacity and power of
each fog node are set as U comp

f = 30Mb/s and Pcompf =

15W, respectively. Similarly, the computation capacity and
power of each sensing device are set as U comp

d = 10Mb/s and
Pcompd = 5W. In the communication environment, we define
the bandwidth between the sensing layer and the fog layer
to be B = 25Mb/s and the white Gaussian noise to be N0 =

10−10W. We set the channel gain as h = 1, and set the step
size as s = 0.0001. The offloading ratios of five devices are
respectively set as 0.5, 0.7, 0.8, 0.3 and 0.4; the occupation
ratios of fog node’s computation capacity assigned to each
device are respectively set as 0.1, 0.2, 0.1, 0.1 and 0.2; the
initial transmission rates of five devices are respectively set as
5Mb/s, 4Mb/s, 3Mb/s, 4Mb/s and 3Mb/s; and the task sizes of
five devices are respectively set as 10Mb, 9Mb, 13Mb, 7Mb
and 11Mb.

Fig. 4 compares the energy consumption’s convergence
rates of the traditional gradient descent and momentum
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FIGURE 4. Energy consumptions with the traditional gradient descent
and momentum gradient descent methods.

gradient descent methods, as well as evaluates the perfor-
mance of the momentum gradient method in the case of
different step sizes. It illustrates that both two different meth-
ods can converge to the optimal energy consumption, and
the momentum gradient method converges faster than tradi-
tional methods under the condition of same step size. This
is because each update of the traditional gradient descent
method is up to the current gradient value, while the momen-
tum gradient methodwill update the descent direction accord-
ing to the previous accumulated momentum and the current
gradient. At the same time, it can be seen from this figure that
the convergence rate behaves better in the case of larger step
size. However, it is not advisable to increase the step size
endlessly in order to get a faster convergence speed. If the step
size exceeds a certain limit, it will not converge to the optimal
value. These simulation results verify the effectiveness of the
proposed algorithm and its advantage in convergence speed
compared with traditional method.

In the following simulation figures, ‘Local computing’
represents the method in which all computation tasks are
processed in local; ‘Full offloading’ refers to the method in
which all computation tasks are offloaded to the fog node
for processing; ‘PGCO’ indicates the performance guaran-
teed computation offloading scheme proposed in work [34];
‘Proposed method’ represents the scheme proposed in this
paper.

Fig. 5 depicts the influence of computation capacity of
IoT device on energy consumption. With the increase of
IoT device’s computation capacity, the energy consumptions
of local computing, PGCO and the proposed computation
offloading scheme in this paper all present a downward trend,
and our proposed scheme has a better performance in energy
consumption when comparedwith other three schemes. Since
PGCO scheme does not consider the optimization allocation
of occupation ratio of fog node’s computation capacity, its
energy consumption is higher than our proposed scheme.
Meanwhile, we discover that the offloading ratios of all
devices show a declining trend. The reason is that as the
increase of the IoT devices’ computation capacity, the pro-
posed scheme prefers to leave the computation task to be
processed in local for decreasing the communication energy

FIGURE 5. The influence of computation capacity of IoT device on energy
consumption.

FIGURE 6. The influence of fog node’s computation capacity on energy
consumption.

consumption. The full offloading scheme remains unchange-
ableness for its energy consumption is independent of local
IoT devices.

Fig. 6 demonstrates the influence of fog node’s compu-
tation capacity on energy consumption. In Fig. 6, with the
increase of the fog node’s computation capacity, the energy
consumptions of the full offloading scheme, PGCO scheme
and our proposed computation offloading scheme all present
a downward trend and our proposed scheme is always the best
among these four schemes in the term of energy consumption.
These simulation results also show that the offloading ratio
of each device keeps an increasing trend, which indicates
that IoT devices are willing to offload their computation
tasks to the corresponding fog node for processing. Because
the increase of fog node’s computation capacity will obvi-
ously enhance the computing efficiency of fog node, and the
reduced computation energy consumption can offset the com-
munication energy consumption under the delay constraint.
The energy consumption of the local computing scheme does
not change under different computation capacities of the fog
node for which is independent of fog node’s computation
capacity.

VI. CONCLUSION
According to the requirements of IoT devices for low energy
consumption and high privacy in data processing, this paper
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develops a privacy and energy co-aware data aggregation
computation offloading scheme for fog-assisted IoT net-
works. The purpose of this proposed scheme is to min-
imize the total energy consumption of computation tasks
with security guarantee, in which a fog-assisted secure
three-layer computing architecture and momentum gradient
descent based energy-efficient offloading decision algorithm
are developed to achieve such goal. Finally, the numerical
results validate the superiorities of our proposed scheme
in data security, convergence rate and energy consumption.
Generally speaking, in a complex and dynamic network,
it will have a large number of variables, and which will
produce great computing challenge for traditional optimiza-
tion solutions. In order to overcome this limitation, in our
further work, the application of artificial intelligence meth-
ods [35], [36], [37] will be considered in the offloading
decision process for realizing more efficient computation
offloading.
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