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ABSTRACT Feature selection has shown significant promise in improving the effectiveness of multi-
label learning by constructing a reduced feature space. Previous studies typically assume that label assign-
ment is complete or partially complete; however, missing-label and unlabeled data are commonplace and
accompanying occurrences in real applications due to the high expense of manual annotation and label
ambiguity. We call this “‘highly incomplete labels” problem. Such label incompleteness severely damages
the inherent label structures and masks true label correlations. In this paper, we propose a novel structure-
induced feature selection model to simultaneously identify the most discriminative features and recover the
highly incomplete labels. To our best knowledge, it is the first attempt to explore the local density structure
of data to capture the intricate feature-label dependency in the highly incomplete learning scenarios. Feature
selection is guided by the label structure reconstruction, and highly incomplete labels are recovered via the
structure transferred from feature space. In this elegant manner, the processes of selecting discriminative
features and recovering incomplete labels are coupled in a unified optimization framework. Comprehensive
experiments on public benchmark datasets demonstrate the superiority of the proposed approach.

INDEX TERMS Feature selection, multi-label learning, weakly-supervised learning, label correlation.
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assumption is tough to satisfy because complete labels tend unannotated (green parts).
to become increasingly difficult to fetch (in consideration
of the explosive increase of data size). A common learning
scenario in image annotation is demonstrated in Fig. 1. Par-
tially labeled and unlabeled instances simultaneously exist in
the multi-label image dataset. The partially labeled instance

is annotated with penguin, pine tree, and snow, while other
labels are missing (e.g., building, sky, window, and handrail).
Furthermore, some instances are completely unlabeled due

The associate editor coordinating the review of this manuscript and to limited .resources’ thereby y1eld1.ng empty label sets.
approving it for publication was Pasquale De Meo. Such label incompleteness masks the inherent label structure
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and deteriorates the performance of feature selection. For
instance, the correlation between building and window can-
not be extracted due to missing labels; correspondingly,
the discriminative features for both labels (or even other
closely related labels, such as snow) can hardly be selected.
In another example, high-dimensional proteomic data are
easy to collect because of high-throughput biotechnologies,
but the process is limited by the applied experimental proto-
cols. That is, highly confidential proteins bear labels (protein
function), and other proteins (sometimes most of them) are
not annotated.

The existing multi-label feature selection approaches
address either the missing label issue or the semi-supervised
issue (unlabeled and completely labeled instances). A pioneer
study on multi-label feature selection with missing labels [4]
jointly recovered label space and removed irrelevant features
while ignoring the latent guide information given by the unla-
beled instances. By contrast, some semi-supervised multi-
label feature selection approaches exploit manifold learning
based on local geometry structure to capture label correla-
tions, which are then used to steer feature selection [5]-[7].
These works derive benefits from a moderate number of
completely labeled instances; in the learning scenario of
this work, the traditional semi-supervised learning loses its
effectiveness because of lacking the sufficient support from
completely labeled instances [8]. Holistically handling the
missing-label instances and unlabeled instances is the focus
of this work.

Furthermore, the aforementioned works generally yield
correlation information by constructing local geometry struc-
tures based on distance metrics; nevertheless, distance met-
rics are inappropriate in some cases to measure the intricate
dependencies between features and labels. On the one hand,
the pairwise distances measured in the high-dimensional fea-
ture space may be not qualitatively meaningful due to the
curse of dimensionality [9]; on the other hand, distance met-
rics are typically irrespective of the data distribution informa-
tion and thus fail to capture the intrinsic structure especially
when data are not uniform density distributions [10]. A well-
known example is that two instances in the sparse region may
be more similar than two instances with equal inter-distance
in the dense region [11]. Thus we argue that, local geometry
structures are weak to capture the intrinsic correlation infor-
mation in some complex learning scenarios.

These observations inspire us to approach incomplete
label.! information-oriented multi-label feature selection. We
tackle three major challenges in this work: (1) how to extract
underlying local structure from the original feature space
(filled with a considerable number of irrelevant and redun-
dant features); (2) how to incorporate feature-label depen-
dency based on the extracted local structure to recover label

1Incomplete labels comprise two parts in our work, i.e., missing labels
and unannotated labels. Missing labels denote those missing annotations
in partially labeled instances, and unannotated labels correlate with the
instances without any annotations (i.e., the learning targets in common semi-
supervised cases)
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structure; and (3) how to imitate the annotator in selecting
discriminative features based on the recovered label structure.

Inspired by the chicken-and-egg relationship, we endeavor
to accomplish three tasks in a unified framework and adopt
a mutual optimization mechanism to solve the latter two
tasks. A novel feature selection framework is proposed by
employing the weakly supervised setting specific to the
highly incomplete learning cases, called Structure-induced
Multi-label Feature Selection (SMFS). Concretely, the intrin-
sic local density structure of the feature space is extracted
through the probability mass estimation, and subsequently
transferred to estimate missing labels. Under the Smoothness
Assumption that the points close to each other are more likely
to share the same label, label structure reconstruction and
feature selection are alternately performed in SMFS, that is,
the recovered labels contribute to finding the discriminative
features and the selected features facilitate the recovery of
labels.

In summary, the main contributions are as follows:

o We pioneerly attempt to conduct multi-label feature
selection with highly incomplete labels, making sense to
practical applications. Our tasks are more complex and
challenging than existing ones due to the considerable
lack of prior assignment information within instances
and between instances.

o To our best knowledge, we firstly construct the local
density structure by considering the concrete data dis-
tributions in multi-label feature selection and follow the
Smoothness Assumption to explore feature-label depen-
dency, both of which facilitate effective feature selection
and label recovery in a unified framework.

« Extensive experimental comparisons with the state-of-
the-art feature selection approaches are conducted on
various multi-label benchmark datasets to validate the
performance of SMFES from the empirical point of view.

Il. RELATED WORK
A. MULTI-LABEL LEARNING
Multi-label learning, which assumes one instance is
associated with several labels simultaneously, has been
diversely applied in real-world applications, e.g., text
classification [12], [13], bioinformatics [14], [15], image
tagging [16], [17], action recognition [18], et al. Generally, in
terms of label correlations, exiting multi-label classification
approaches can be classified into three categories: First-order
approach, second-order approach and high-order approach.
The first group is that binary methods separate
the multi-label problem into multiple single-label sub-
problems, and employ single-label classifier for each
subproblems [12], [16]. An inevitable drawback is that these
approaches commonly ignore label correlations, which have
revealed important roles in many state-of-the-art works [19].
And, when the size of label set is large or even enormous,
the number of binary classifiers would be larger, which
leads to class-imbalance problems. The second group is that
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multi-label learning approaches generally consider pairwise
label correlations. For instance, Fiirnkranz et al. [20] utilized
calibrated label ranking (CLR) to transfer the multi-label
learning problem into a pairwise label ranking problem.
These approaches use label ranking technologies to score
each instance-label pair with minimizing label ranking loss
functions [21], [22]. Nevertheless, label correlations in real-
world applications could be complex and exceed pairwise
relationship. Thus, the last group is that global label corre-
lation is taken into consideration in multi-label learning. For
example, the work in [23] utilized the classifier chain (CC)
that transformed the multi-label learning problem into a chain
of binary classification problems. Another solutions to extract
high-order label correlations were construct based on shared
subspaces or latent label space [24]. For instance, the work
in [25] captured the low-rank label matrix by exploiting
dictionary learning. Recently, deep learning method [26]
was also employed to simultaneously learn feature subspace
and label subspace. These approaches endeavor to extract
a common subspace shared among multiple labels, thereby
suffering high costs for estimating complex label correlations.

B. MULTI-LABEL FEATURE SELECTION

On the basis of label information, existing multi-label feature
selection approaches can be roughly categorized into three
families.

The first family is typically implemented over com-
plete label information. Some multi-label feature selection
approaches [27], [28] divide the multi-label learning prob-
lem into multiple subproblems, which fails to take the label
interdependency into account. A majority of approaches try
to incorporate label correlations into the process of model
construction to help select discriminative features [2], [3],
[29], [30]. To remove the irrelevant and noisy features, sparse
regularization [31] is also imposed on the feature selection
matrices. These approaches perform under the condition that
the training data are equipped with complete label assign-
ments, which is hard to satisfy in reality.

The second family comprises the semi-supervised
approaches, which focus on dealing with a certain vol-
ume of unlabeled data. For example, the work in [32]
employs a simple linear regression model to learn the
label matrix. A popular strategy is to utilize the mani-
fold learning or shared subspace learning to capture label
correlations [5]-[7], [17], [33]. Although the aforementioned
approaches can process unlabeled data, they need to be
enlightened with abundant complete assignments of labeled
data.

The last family lays emphasis on tackling the missing label
issues that are rarely touched. An example is the work in [4]
that employ robust linear regression to missing label recovery
and feature selection simultaneously. However, these stud-
ies neglect the importance of a large number of unlabeled
instances for feature selection.

Another series of works that relate to ours are
local structure-based approaches. Most multi-label feature
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selection algorithms [4]—[7], [34] explore correlation infor-
mation based on the local structure to guide the selection
of relevant features. Despite their widespread applications,
most approaches capture the local geometry structure through
distance metrics that completely rely on the geometric posi-
tions of instances and thus hardly capture their intricate rela-
tions for the following reasons. First, many approaches [3],
[6], [33], [35] resort to the Gaussian function to construct
local geometry structure, which makes these models sen-
sitive to the parameter tuning. Next, the reconstruction or
adaptive weights are measured based on nearest neighbors
and employed to characterize geometric properties [7], [34],
which may be not stable and may produce distorted struc-
ture [36]. Furthermore, local geometry structure completely
ignores the data distributions, which are beneficial for observ-
ing the nature of data and construct effective feature selection
models. Previous researchers have pointed out two instances
in a sparse region are more similar than two instances with the
same inter-distance in a dense region [10], [11]. This property
motivates us to capture the local information by resorting to
the density structure of data.

We must emphasize the difference between the traditional
manifold learning and SMFS. Traditional manifold learning
is mostly used to induce a low-dimensional embedding of the
latent manifold. The recovery of the label manifold in SMFS
is similar to the popular manifold learning strategy called
locally linear embedding [37]. However, SMFS performs this
recovery not by embedding the feature manifold into the label
manifold; that is, in SMFS, two manifolds exist in different
spaces.

In contrast to existing multi-label feature selection
approaches, the proposed SMFS firstly approaches the highly
incomplete label learning task, and derives benefits in the
following aspects: (1) the intrinsic local density structure
is effectively captured by probability mass estimation in
the feature space, which can be used to measure the reli-
able feature-label dependencies; (2) the local label structure
is reconstructed via the local feature structure information
according to the Smoothness Assumption, and contributes to
the complete label recovery; and (3) feature selection and
label recovery are mutually boosted in a unified framework.

Ill. THE PROPOSED FRAMEWORK

A. PROBLEM FORMULATION

Here, we provide the basic notations used in this study. Let
X =[x15...;x,] € R"*4 be a data matrix for n instances,
where x; € R? is the i-th instance, and H (X) = {H; —1

denotes the set of all partitions available in X. ¥ = [gi ] €

R"*€¢ is the label matrix, where c is the number of labels.
Y, represents the partially labeled matrix with some missing
labels, where y; = 1 if the i-th instance is associated with
the j-th label, and y;; = —1 indicates that the i-th instance is
not assigned or omitted with the j-th label [8]. Y, denotes the
unlabeled matrix, where y;; is initially set to — 1 and iteratively
learned in the subsequent optimization process.
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B. STRUCTURE-INDUCED MULTI-LABEL FEATURE
SELECTION

When label matrix is highly incomplete, inherent label struc-
ture is inevitably damaged and the label correlation based
on this incomplete label information hinders the selection
of relevant features and the recovery of labels. To address
this problem, we recover the underlying true label matrix Y
based on local structure reconstruction via transferring the
local structure from feature space to label space. Hence, the
extraction of intrinsic local structure in the feature space that
encodes the intricate feature-label dependencies is signifi-
cant for effective model construction. Motivated by the work
in [11], we capture the local density structure of the feature
space solely dependent on data distribution via probability
mass estimation. We formalize the concepts as follows. Its
underlying intuition is that the affinity relation between two
instances primarily depends on the amount of probability
mass in the partition that covers two instances. For any two
instances x;, Xj, 0 (x,-, xj|H; X ) is the smallest partition con-
taining x; and x; w.r.t. X. In practice, p estimates the prob-
ability of the partition by counting the number of instances
in that partition and the probability mass would be estimated
from t partitions as follows:

p (xi, xj|H; X) = arg min Z I(xgerlreHd), (1
r

x,€X

1 < o (xi, xj|Hy) |
& (xiy) = — % ©)
t=1

where x;,x; € r, r is the partition, and I (-) is an indicator
function. The probability mass of x; and x; is defined as
& (xi,x,') € (0, 1], where a small & (x,~,xj) indicates a highly
relevant relation between two instances. Consequently, based
on & (xi, xj), the local density structure in the feature space
can be constructed through the k-lowest probability mass
neighborhoods, which preserves inherent local correlation
information. To ensure the local density structure validity
in recovering labels structure, the weight matrix W of local
density structure is defined as

exp(—¢€ (x;, x})) . .
= , ifjeN; 3
Wij Zq exp( iy (xi,xq)) if j € Ni(D) 3

where W e R™" and N, (i) denotes the index set for the
local density structure of i-th instance measured by & (xi, xj).
This strategy promises weights smoothly dependent on the
probability mass estimation [38]. We constrain 1Tw; =110
ensure the local structure that transfers from feature space to
label space remain invariant [39], where 1 is the vector of
all ones.

Here H can produce larger partitions in sparse region than
those in dense region, which means that two instances in
sparse region are more similar than two instances of equal
geometry distance in dense region [10]. Fig. 2 compares the
contour of the two structure under non-uniform distribution
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FIGURE 2. The geometry structure versus the density structure: Contours
w.rt. (0, 0). A 2-dimensional visualization of the multi-dimensional Forest
dataset, transformed by t-SNE [40].

Forest dataset taken from website’. This example shows
that the geometry structure (i.e., resorting distance metrics)
has the same contour irrespective of the data distribution.
In contrast, the density structure (i.e., resorting probability
mass estimation) can adapts its contour to the local data
distribution, i.e., from the peak (0, 0), the contour decreases
at a slower rate in the sparsest region than in dense regions.
Accordingly, local density structure has a higher value at
(0.5, 0) than that at (—0.5, 0). The ability to adapt to the
density structure of a dataset is the key advantage of the local
density structure in feature selection, which naturally induces
from Smoothness Assumption that, the local density structure
can be transferred from feature space to label space to help
better recover label structure.

According to the local density structure in the feature
space, we can estimate the confidence of the missing label
j for the i-th (1 < i < [) instance using its already known
labels via the Smoothness Assumption as follows:

wiy;, ify;j=—1

Yij» otherwise.

Yij = 4)

In Eq. (4), y; is the label vector for the i-th (1 < i < [)
instance with known and estimated labels. If y;; = —1 and the
instances correlated with the i-th instance also correlate with
the j-th label, Yij = wity1j + wiay2j + -+ + Windnj, then the
missing label is assigned with a large value (high confidence).
Take the electronic medical record diagnosis for example.
If the patient records similar to the i-th patient record are
annotated with cardiopathy (j-th label), the i-th patient has
a high risk of cardiopathy.

Accordingly, local density structure is captured and miss-
ing labels are estimated, with the transferred local density
structure, the reconstruction of the complete label matrix can
be infer to the minimization of

. 2
“‘sz ly; — Zwij){/||2~ o)
i J

Since the local density structure in feature space adapts to the
density structure of a dataset, we naturally induce the consis-
tency of the local density structure between feature space and

2http://archive.ics.uci.edu/ml/datasets.php.
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label space based on Smoothness Assumption, that is, label
space and feature space share same local density structure,
which is fundamentally different with label semantic enrich-
ment that employs reconstruction error [39]. Hence, label
density structure is effectively recovered through transferring
the local density structure from feature space.

Finally, we jointly select features and recover incomplete
labels based on the Consistency Assumption, Smoothness
Assumption, and local structure reconstruction, to overcome
the challenging issue of highly incomplete labels. The Con-
sistency Assumption ensures that the predicted label matrix is
consistent with the initial label matrix. The learning objective
of the proposed SMEFS is defined as

min 3~ sit [P i3+ Y yi= D was[3+B 1Pz,
o i J

st.Twi=1, 0<wy<1, —1<y;<]1, (6)

where P € RY*¢ is a map or feature selection matrix in
which p;; records the discriminative ability of the i-th fea-
ture to the j-label. o and B are trade-off parameters, and
S e R™" is a diagonal matrix to distinguish labeled and
unlabeled instances, s; = 1 if x; is labeled and O otherwise.
SMEFS is added a ||P||,,; penalty to encourage sparseness.
An optimal feature subspace is constructed according to the
feature selection matrix P.

Eq. (6) solves feature selection and label recovery simul-
taneously. Highly missing labels corrupt the estimation of
the true label distribution, which is generally non-uniform.
Hence, the model in Eq. (6) wherein the loss for predicting
each label is equally weighed should be adjusted, to prevent
the overall loss being dominated by the frequent labels, sac-
rificing the prediction accuracy of rare labels [41]. Thus, we
weigh labeled instance in a tf-idf-like fashion so that losses
from rare labels are given more weights during training.
Specifically, each label on the i-th instance is assigned with

acost ¢; = L%, where ¢; is the number of times the label i
appears in the training set. Thus, the matrix S is re-defined as
si= Y. g ifx;islabeled @)

JEN i)

where N, (i) represents the indexes set of the positive labels
of the i-th instance (i.e., positive label index in y;). By incor-
porating Eq. (7) into Eq. (6), the contributions of rare labels
in label reconstruction are emphasized, and this is more con-
sistent with the true label distributions to some extent.

In summary, SMFS makes the first attempt to extract the
intrinsic local structure of feature space solely based on data
distribution, which consequently help encode the intricate
feature-label dependencies and recover labels based on local
structure reconstruction in multi-label feature selection. The
recovered label matrix can be considered as a regularization
of selecting diverse features to discriminate different labels,
considering that these labels have distinct characteristics.
Consequently, the learning processes of selecting discrimina-
tive features and recovering incomplete labels are mutually
optimized until convergence.
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IV. ALTERNATING OPTIMIZATION

In this section, we present an optimization algorithm for the
proposed SMFS to solve its non-smooth objective function
involving /> 1-norm. Detailed convergence analysis and com-
putational complexity analysis are available in Section V.

A. CONSTRUCT LOCAL STRUCTURE

we use a recursive partition scheme called iForest [42] to
implement probability mass estimation, as used in [11],
which can be divided into two steps. The first step is to build
an iForest consisting of t iTrees as the partition structure.
The second step is the evaluation step. Instances x; and x;
are passed through each iTree to find the mass of the deepest
node that contains x; and x;. & (x;, x;) is the mean of these
mass values over t iTrees based on Eq. (2). Finally, local
density structure in feature space is constructed based on the
k lowest probability mass neighbors that are derived directly
from data, and the weight matrix of local density structure W
is computed by Eq. (3).

We give Proposition 1 to prove that the optimization prob-
lem in Eq. (14) is jointly convex with respect to P and Y.

Proposition 1: Denote P € RIXc| Yy e R"™C Wy €
R™"_ The minimization of ¥ (P, Y) is jointly convex with
respectto P and Y.

Proof: (Proof Sketch): Each term in ¢ (P,Y) is pos-
itive semi-definite. Thus, minimizing ¥ (P, Y) is a convex
problem.

Hence, the objective function in Eq. (6) can achieve its opti-
mal value by optimizing variables P and Y. Due to the high
complexity of optimizing multiple variables simultaneously,
we convert the problem into a series of sub-solution processes
in which only one variable is involved.

B. UPDATE P
when Y is fixed, optimizing Eq. (6) becomes the following
problem w.r.t variable P:

minTr( (XP = Y)" S (XP —Y) ) + Tr (PTDP> . @®)

where D is a diagonal matrix where Dj; is defined as
_ 1
2P,
D = . &)
1
2]P4],

Since D is related to P, it is difficult to solve this problem.
Hence, we can obtain D with initialized P in an iterative
manner. Then, we have

pP= (XTSX n ﬂD>71 (XTSY) . (10)

C. UPDATE Y
when P is fixed, the optimization problem in Eq. (6) becomes
the following problem w.r.t. variable Y:

min Tr((XP—Y)"'S (XP =) ) e 3 lyi= 3 wi .
! J

Y
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Due to the constraint 17 w; = 1 (Vi), the reconstruction error
in terms of label structure is rearranged, and thus Eq. (11) is
rewritten as

min 7r( (XP—Y)" S (XP — Y) ) +aTr (YTWYY) . (12)

where Wy = I —W)T (I —W) € R and I is the
identity matrix. Then, the optimal label matrix is calculated
as

= (SI +aWy) ! SXP. (13)

In each iteration, y;; needs to be set in the range of [—1, 1] to
avoid a trivial solution. Hence, we set y;; = 1 if y;; > 1 and
yvij = —1ify; < —1. By computing optimal W and itera-
tively updating P and Y, Eq. (6) monotonically decreases and
finally converges to a fixed point demonstrated in Section V.
To obtain the accurate labels, we set y; = 1if y; > 0 and
yij = —1if y;; < 0 at the end of the iteration.

V. THEORETICAL ANALYSIS
In this section, we prove the the convergence of our proposed
SMEFS and analyse the computational complexity.

For convenience, we reformulate the objective function as

- sr o on .
+aTr (YTWYY),

st Twi=1, 0<wy;<1, —1<y; <1, (14

where Wy = I —W)T I —W) e R"™" Disa diagonal

matrix, and / is the identity matrix.

A. CONVERGENCE ANALYSIS
Lemma 1: Given an optimization problem:

minf (Z) + IVR®(Z)|%, s.t.ZeF, (15)

where f(Z) and ®(Z) are matrix functions of Z, F is the
feasible region, and R is a diagonal matrix where R;; is
defined as m. If Z* is the optimal solution of the above
optimization problem Eq. (15), we have

F@) + 1221 = f(Zo) + 1PZo)2,1.  (16)

Proof: Since Z* is the optimal solution of Eq. (16), we
have

fZ*) + INRDZH|% < f(Zo) + INROZo) 2. (17)

Therefore

1e@3 Lo
SO S o, < 0T 19 (9

We have
1 IICD(Z*)zIIz

> UP@illa— 5

1—=||®(Zy);
2 | P(Zo)ll2 1oz = Z( || Zo)ill2)-

(19)
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Summing Eq. (18) and Eq. (19), we obtain

F@Z) + |PZN)l2 < f(Zo) + [|1P(Zo)]l2- (20)
Finally, we obtain

fZ+ IICD(Z*)II%J <f(Zo)+ IICD(ZO)II%J, (21)
where the equality holds if and only if ®(Z*) = ®(Zy).

Algorithm 1: SMFS: Structure-Induced Multi-Label
Feature Selection
Input: Training data X, highly incomplete label matrix
Y, scale of the local structure k;
Output: Feature selection matrix P, recovered label
matrix Y;
1 Sett = 0 and initialize P with Gaussian distribution;
2 Estimate probability mass w.r.t X according to Eq. (2);
Construct local density structure of the feature space
based on k lowest probability mass neighbors;
Compute the weight matrix W according to Eq. (3);
Estimate missing labels of labeled instances via Eq. (4);
repeat
Compute D; according to Eq. (9);
Compute P, according to Eq. (10);
Compute Y, according to Eq. (11);
10 t=t+1;
11 until convergence;
12 return P* and Y*.

w

o e NN &

Theorem 1: The alternate updating rules in Algorithm 1
monotonically decreases the objective function value in each
iteration until convergence.

Proof: First, we define

2 2
P, —arg min H VS(XP,_1—Y) HF+/3 H VDP,_, HF @)
P
According to Eq. (22), we have
|vsap, -

w8 |Vpor <
+aTr (Y'WyY) + 8 | VD Py H; R,

According to lemma 1, we have

e (v7wir) s v

< Hx/E(XPt,l - Y)Hi +aTr (YTWyY>

2 T
_+alr (Y WyY)

|vsap,- - Y)H:;

s, w4

2
+8|VDpi| (24)
By combining Eq. (23) and Eq. (24), this implies that
V@Y 1,) =y Pr—1,Yi-1). (25)

Second, we fix P as P; to optimize Y, we have

Y, = argminTr ((XP, — v, 'SP, - YH))

+aTr (Y,T_IWYYH) . (6)
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For local label structure reconstruction, the weight of local
density structure in the feature space is constrained to be
positive, thus it is easy to prove that the solution of Eq. (26)
w.r.t Y is monotonically decreasing [37]. Thus we have

Y PLY ) <Y (Pro1, Y1) 27)

Based on Eq. (25) and Eq. (27), the objective function value
of Eq. (6) decreases monotonically in each iteration until the
algorithm convergence. The proof is completed.

Theorem 2: Sequence {P;} and {Y,} produced
in Algorithm 1 converges, and the limit point is a stationary
point of Eq. (14).

Proof: Eq. (14) is a convex optimization problem, hence
its solution obtained by Algorithm 1 is globally optimal.

In summary, the objective function value of Eq. (14)
decreases monotonically in each iteration until the algorithm
converges to a stationary point. The proof is completed.

B. TIME COMPLEXITY ANALYSIS

The time consumption of SMFS mainly lies in three parts.
In local structure construction, structure is built by iFor-
est and the weight matrix W is computed, which costs
O (r<p10g<p +n2rlog (p). In large datasets, ¢ < n; thus
the cost is approximately equal to O (nz) Then, the major
computational cost lies in updating of variable P and Y,
the computational cost of matrix inverse can be avoided by
iterative optimization [43]. In updating P, the complexity is
O(Td?*c + nd? + ndc), where T is the number of iterations.
As c is smaller than d and # in real situations, the complexity
of updating P can be calculated as O(Td*> + nd?), which
is linear to the number of instances n. The cost of updating
Y becomes O(Tn2c + ndc). In fact, due to the k-sparsity of
matrix Wy (i.e., each column of Wy has k nonzero elements
and k < n), the complexity drops to O(Tnk + nd) in
practice. Thus, the complexity of SMFS is summarized as
O(Td?* 4 nd? + Tnk) with updated P and Y in local structure
construction with additional O(n?).

VI. EMPIRICAL STUDY

Six groups of multi-label data sets fetched from Mulan
library 3 are tested, as shown in Table 1. The benchmarks
cover various domains, including audio, music, text, image,
biology, and all of the numerical features are normalized with
zero mean and unit variance in the experiments.

TABLE 1. Data sets description.

Data sets Instances  Features Labels  Domain
Birds 645 260 19 audio
Emotions 593 72 6 music
Enron 1702 1001 53 text
Language log 1459 1004 75 text
Scene 2407 294 6 image
Yeast 2417 103 14 biology

3 http://mulan.sourceforge.net/datasets.html.
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A. EXPERIMENTAL SETTINGS

In this study, we pioneerly deal with the learning problem
of highly incomplete labels in multi-label feature selection.
We investigate the performance of the proposed SMFS by
comparing with the following baselines, including semi-
supervised multi-label feature selection and multi-label fea-
ture selection with missing labels approaches (half of them
were proposed within 3 years):

o All-Fea: all of the original features without any selection
are tested.

o SFSS [5]: a state-of-the-art semi-supervised multimedia
data analysis approach incorporating feature selection.

o CSFS [32]: a popular semi-supervised multi-label fea-
ture selection suitable for large-scale datasets without
graph Laplacian matrix construction.

« FSCLA [6]: arecently proposed semi-supervised multi-
label learning approach combining manifold learning
with shared subspace construction to select discrimina-
tive features.

o SCFS [7]: a latest semi-supervised multi-label feature
selection that extracts label correlations by maintaining
feature-label space consistency.

o« MLMLES [4]: a supervised multi-label feature selection
approach that firstly handles the missing labels through
robust linear regression model.

For a fair comparison, the trade-off parameters are tuned
for the baselines by five-fold cross validations with a ““grid-
search” strategy from {1073, 1072, 107!, 1, 10!, 10%}. We
use iForest with the default setting (i.e., t = 100) [11]
to accomplish the partition for the probability mass estima-
tion. ML-KNN [44] with default parameter is chosen as the
classifier due to its effectiveness that has been verified in
many state-of-the-art works [6], [19]. Each approach selects
{%, %, %, %, %} features to build the ML-KNN classifier,
where d is the number of original features. Here, the missing
label ratio is set to 20% and 40% by randomly dropping the
observed labels from the labeled training data [8], [45]; the
semi-supervised label ratio is set to 10% and 30%. We report
the mean average precision (MAP) and standard deviation
averaged across ten independent runs on each dataset with
different size of features, where each run randomly splits
the original dataset into training and testing subsets with
the 80/20 ratio.

B. CLASSIFICATION PERFORMANCE

We compare SMFS with the baselines in different learning
scenarios respective with 10% and 30% labeled instances,
in which the missing labels occupy 20% and 40%, and the
results are recorded in Table 2 and Table 3.

The results indicate the following. (1) The com-
pared feature selection approaches outperform ALL-Fea in
most cases. In particular, SMFS achieves approximately
2% — 8% improvement across all benchmarks. This result
shows that a discriminative reduced space constructed
by selecting relevant features is beneficial for promoting
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TABLE 2. MAP score(+standard deviation) when labeled data ratio (LR) is 10%, missing label ratio (MLR) is 20% and 40%. The best result and those not
significantly worse than it are highlighted in bold (pairwise t-test at 5% significance level).

D Approaches
ata sets
MLR All—Fea SESS CSFS FSCLA SCES MLMLES SMFS
Birds 20%  0.3884+0.032  0.4314+0.042 0.420+0.049 0.425+0.039 0.384+0.019  0.385+0.023  0.437+0.035
40%  0.387+0.016  0.395+0.038  0.398+0.033  0.4054+0.041 0.371£0.031 0.377£0.018  0.42240.027
Emotions 20%  0.667+0.013  0.6504+0.030 0.673+£0.028 0.664+0.037 0.676+0.024  0.678+0.024  0.710+0.009
40%  0.656+0.014 0.622+0.038  0.667+0.041  0.625+0.041  0.663£0.039  0.628+0.036  0.682+0.022
Enron 20%  0.547£0.020 0.5424+0.002  0.543+0.009 0.555+0.013 0.571+0.014 0.575+£0.023  0.586+0.018
40%  0.500£0.010 0.528+0.014 0.5324+0.009 0.535+0.013  0.529+£0.036  0.533+0.025  0.563+0.014
Language log  20%  0.619£0.019  0.595+0.021  0.631+0.009 0.590+0.051 0.598+0.040 0.622+0.016  0.637+0.009
40%  0.592+0.035 0.556+0.046 0.617+0.016 0.560+0.014  0.590£0.048  0.565+0.024  0.627+0.010
Scene 20%  0.789+0.011 0.6224+0.019 0.718+£0.030  0.658+0.024  0.778+0.018  0.765+0.026  0.811+0.008
40%  0.770£0.017 0.581+0.028 0.669+0.018 0.609+0.020 0.730£0.030  0.713£0.025  0.799+0.008
Yeast 20%  0.663£0.015 0.704+0.015 0.712+0.013  0.7124+0.016  0.707+0.017  0.740+0.013  0.737+0.010
40%  0.645+0.012 0.698+0.011 0.707£0.012  0.698+0.012  0.679£0.015  0.732+0.015  0.728+0.013

TABLE 3. MAP score(+standard deviation) when LR is 30%, MLR is 20% and 40%.The best result and those not significantly worse than it are highlighted

in bold (pairwise t-test at 5% significance level).

D Approaches
ata sets
MLR All—Fea SFSS CSFS FSCLA SCFS MLMLEFS SMES
Birds 20%  0.400+0.038 0.501+0.011 0.4814+0.053 0.53240.039 0.493+0.037 0.521+£0.020  0.545+0.033
40%  0.3974+0.035 0.47340.023 0.4384+0.036 0.49740.024 0.462+0.034 0.478+0.026  0.536+0.036
Emotions 20%  0.6964+0.040 0.68740.028 0.728+0.028 0.707+£0.021 0.733+0.016  0.735+0.033  0.759+0.019
40%  0.685+0.019 0.6884+0.025 0.7084+0.033 0.676+0.018 0.691+£0.041 0.703+0.018  0.736+0.024
Enron 20%  0.56040.048 0.57940.017 0.577£0.015 0.570+0.015 0.554+0.032 0.605+0.016  0.614-0.011
40%  0.5594+0.014 0.5534+0.019 0.57640.005 0.548+0.018 0.545+0.055 0.580+0.014  0.592+0.014
Language log  20%  0.623+0.014 0.617+0.012  0.643+0.002 0.617+0.014 0.627+£0.015 0.614£0.014  0.646+-0.009
40%  0.606+0.007 0.6184+0.020 0.6214+0.008 0.6014+0.020 0.57840.018 0.607+0.014  0.638+0.015
Scene 20%  0.7974£0.012 0.774£0.015 0.801£0.011 0.792+0.016 0.815+0.013 0.816+0.001  0.833+0.011
40%  0.816+0.009 0.73940.019 0.7734+0.018 0.757£0.015 0.795+£0.014  0.747+0.009  0.826+0.014
Yeast 20%  0.682+0.011 0.732+0.008 0.744+0.013 0.73440.013 0.717£0.021  0.731+£0.015  0.748-+0.008
40%  0.6601+0.007 0.72240.019  0.7354+0.007 0.71240.010  0.695+0.021  0.737+0.009  0.738-+0.009

learning performance. (2) SMFS yields better performance
than four semi-supervised multi-label approaches (i.e., SFSS,
CSFS, FSCLA, and SCFS) on the benchmarks of Emotions,
Enron, and Scene. This result indicates that label structure
reconstruction based on local density structure in the feature
space gains a competitive advantage in recovering the highly
incomplete label matrix. (3) SMFS generally outperforms
MLMLEFS, indicating that the unlabeled data possess poten-
tial guide information that is beneficial for selecting excellent
features. (4) When the densities between labels tend to be
equal in the overlap region, local density structure depending
on data distributions approximates local geometry structure,
thus our approach exhibits the same remarkable performance
as CSFS and MLMLEFS do on the benchmark Yeast. (5) SMFS
is a comparatively safe approach as it maintains a comparable
or slightly decline performance when the missing label ratio
rises from 20% to 40%. With many labels missing, the label
structure is destroyed to a great extent, which will be further
evaluated in Section VI-D.

Generally, SMFS is superior to the benchmarks under the
evaluation of MAP across different highly incomplete label
learning scenarios. This finding validates the effectiveness of
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SMES in selecting discriminative features under the intricate
recognition situation with highly incomplete labels. One of
the major factors that account for the superiority of SMFS
is its strategy of reconstructing incomplete labels via trans-
ferring the local density structure in the feature space, as
evaluated in Section VI-C.

C. LOCAL STRUCTURE ANALYSIS

In this paper, the local density structure that adapts to the
density structure of a datasets is the key advantage to preserve
reliable local correlation information in the highly incomplete
label learning scenarios. Hence, we evaluate the effects of
local density structure w.r.t. preserving local correlations by
varying the number of lowest probability mass neighbors k
from 2 to 25, utilizing Scene as the benchmark with 40%
missing labels of 30% labeled data, and using four met-
rics, namely, MAP, Hamming Loss, One Error, and Ranking
Loss [5], [11].

Table 4 shows that the scale of local structure (i.e., closest
matching neighbors k) makes effect on the performance of
the proposed SMFS, where the best results on each metric
averaged across ten independent runs are shown in bold face.
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TABLE 4. Experimental results of SMFS on Scene benchmark with different scale of local structure considered.

Evaluation metric

Scale of local structure

k=2 k=5 k=10 k=15 k=20 k=25
MAP 0.818+£0.014  0.822+0.013  0.825+0.007  0.826+0.014 0.808+0.017 0.810£0.011
Hamming Loss 0.137+0.004  0.128+£0.007  0.128+0.006  0.126+0.005 0.135+0.010  0.132+0.010
One Error 0.112£0.005 0.111£0.007  0.109+0.006  0.109+0.008 0.122+0.012  0.121+£0.006
Ranking Loss 0.296+0.028  0.287+0.023  0.287+0.009 0.289+0.019  0.311+£0.028  0.306+0.018

The results also reflect that a small or large scale of the local
structure may degrade the learning performance, because of
missing useful neighbor information or incorporating noisy
information. The results of SMFS reported throughout the
paper are obtained with a moderate value of k as 15.

To assess the performance of SMFS in constructing the
local density structure in the feature space, we compare
SMFS with two local geometry structure-based approaches
that have been widely applied in multi-label learning:

o LGS-D: The local geometry structure is constructed by
determining the k nearest neighbors through a distance
metric; the weights of structure are also defined via a
distance metric [4]-[7];

o LGS-L: A distance-based k nearest neighbor strategy
is adopted in local geometry structure construction; the
weights are defined based on linear combination of
neighbors [34], [37], [39].

We perform a simple comparison between the local den-
sity structure and the local geometry structure. We replace
the strategy of constructing the feature structure in SMFS
with LGS-D and LGS-L. Their selection performance in
the cases of 20%, 40%, and 60% missing labels of 30%
labeled instances on Scene benchmark is demonstrated in
Fig. 3. In the figure, SMFS consistently outperforms the
other two approaches under the evaluation of MAP. This
result reveals that the local density structure in feature space
that is dependent on data distribution that contributes to
the improvement of recovering highly incomplete labels and
selecting discriminative features in the subsequent learning
process. In other words, this kind of structure can encode the
intrinsic feature-label dependencies to help effective model

SMFS LGS-D LGS-L
0.85

0.8

0.75

0.7

MAP

0.65

0.6

20 40 60
Percentage of Missing Labels (%)

FIGURE 3. Comparisons of three local structure construction approaches.
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construction in the wild and complex multi-label learning
scenarios.

We provide a simple comparison between our probabilis-
tic mass strategy and the distance strategy in Fig. 4. The
structure of the majority label (i.e., the label that possesses
the largest number of instances) in the Birds benchmark is
respectively constructed by Euclidean distance and probabil-
ity mass estimation, and visualized by the multidimensional
scaling (MDS) “. Positive and negative instances are scat-
teredly distributed in the structure built by probability mass,
indicating easier to be separated than in the structure built by
instance distances.

MDS using Distance MDS using Probability Mass

60 0.6
40 1 04 )
20 1 : i 02!
0f * 0 0r
L
20 . . . 02t
-1 0 1
-40 : 04
0 20 40 60 80 04 02 0 02 04 06

FIGURE 4. MDS demonstration for the affinity matrix of majority-label
instances in Birds: Euclidean distance and probability mass estimation
are used to construct the affinity matrix, and the blue and red points
respectively represent the positive and negative instances.

D. EFFECTS OF THE SIZE OF MISSING LABELS

To evaluate the effects of the damaged label structure on
multi-label feature selection, we vary the missing label
ratio of the 30% labeled training data on Emotions as
{0%, 10%, 20%, 30%, 40%, 50%, 60%} and demonstrate the
performance of the compared approaches under for metrics,
namely, MAP, Hamming Loss, One Error and Ranking Loss,
as shown in Fig. 5. The followings can be observed. (1) With
the scale of missing labels increasing, the selection perfor-
mance of the compared approaches tends to deteriorate, and
SMEFS presents a relatively slower decline trend than the
contrast groups, indicating its effectiveness in different com-
plex recognition situations. (2) When the missing label ratio
is 0%, SMFS degenerates to the semi-supervised multi-label
approach, and still yields a relatively excellent performance.

4MDS is a popular technique for visualizing the information contained in
an affinity relation matrix [46].
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MAP metric, the higher score indicates the better performance, which the others are contrary.

Hence, SMFS is applicable to semi-supervised learning tasks
and can be expected to accomplish dimension reduction tasks
in a broad variety of multi-label learning scenarios. (3) The
performance of the approaches that directly employ label
correlations to select features, such as SFSS, FSCLA, and
SCFS, is significantly influenced when a large number of
labels are missing because of the damaged label structure and
correlations.

E. EFFECTS OF THE SIZE OF LABELED DATA

To further assess the performance of SMFS in different learn-
ing scenarios, we vary the labeled data ratio with 40% missing
labels on Emotions as {10%, 20%, 30%, 40%, 50%, 60%,
80%, 100%} under four metrics, namely, MAP, Hamming
Loss, One Error and Ranking Loss, as shown in Fig. 6.
The followings can be observed. (1) SMFS performs supe-
rior to MLMLFS, which indicates that the underlying guide
information in unlabeled data can help select informative
features and effectively recover highly incomplete labels.
(2) When label information is relatively mostly available
(i.e., labeled data ratio are above 80%), SMFS is compara-
tive with SFSS, FSCLA, and SCFS, illustrating that inherent
label correlations benefit for the selection of discriminative
feature. (3) SMFS considerably beats the baselines under
various metrics in the severe learning situations wherein large
portions of data are unannotated (i.e., labeled data ratio is
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below 60%), mostly available in terms of MAP and Ranking
Loss, indicating that SMFS provides a deep insight into the
abundant information possessed by the unlabeled data and
effectively utilizes this information into model construction.

F. EFFECTS OF THE NUMBER OF SELECTED FEATURES

In this section, we conduct experiments to analyse the per-
formance of SMFS with different size of selected features,
employing Language log dataset with 20% missing labels
of 30% labeled training data. Fig. 7 shows that the MAP
score yields by SMFS on the benchmark when the number of
selected features increases from 167 to 1004 (i.e., the original

0.65

0.63 - B

0.61 1

MAP

0.59 B

0.57 B

. . . . . .
0 167 33 501 668 835 1002
Number of Selected Features

FIGURE 7. Variations of MAP with increasing the number of selected
features.
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feature figure). We can observe that (1) the performance
of SMFS is improved with increasing the size of selected
features from 167 to 669, duo to more discriminative features
are extracted into feature subset, and the highest MAP score is
yielded when the selected number is equal to 669; and (2) the
performance of SMFS gradually declines as the number of
selected features continuously increased, where irrelevant
and noise features exist in the feature set. Hence, there is no
definite pattern about the best selected number across differ-
ent benchmarks. In this paper, we vary the number of selected
features and report the average selection performance for
each baseline.

G. PARAMETER SENSITIVITY AND CONVERGENCE
ANALYSIS

In this section, we conduct parameter sensitivity analysis
for the proposed SMFS with 20% missing labels of 30%
labeled data on Emotions and Scene benchmarks over the
trade-off parameter o and 8 in terms of MAP. As reported
in Fig. 8, we can see, within the considered range of values,
SMEFS is relatively nonsensitive to the variations of « and 8
and remains a stable performance over different parameter
configurations.

We experimentally study the speed of convergence of
SMFS with 20% missing labels of 30% labeled data on Emo-
tions and Scene benchmarks, as shown in Fig. 9. Trade-off
parameters (i.e., o and B) are set to 1, which is a median value
in the tuned range. We can see that the proposed approach
converges within 30 iterations on two benchmarks, validating
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that SMFS is efficient in tackling the complex learning cases
with highly incomplete prior knowledge.

VIi. CONCLUSION

In this work, structure-induced multi-label feature selection
approach is proposed to handle highly incomplete labels,
which integrates two strategies, i.e., multi-label feature selec-
tion and label structure reconstruction, in a mutually benefi-
cial manner. First, local density structure is captured, which
facilitates better extracting intricate dependencies between
features and labels. Then, local label structure is effectively
reconstructed by the structure transferred from the feature
space and provides complete label information to guide fea-
ture selection. A seamless fusion of both terms, i.e., reliable
local information and complete label structure, contributes
to the selection of discriminative features for multi-label
recognition.
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