
Received March 30, 2020, accepted April 11, 2020, date of publication April 14, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987976

Neural Network-Based Error-Tracking Iterative
Learning Control for Tank Gun Control
Systems With Arbitrary Initial States
QIYAO YANG 1, QIUZHEN YAN 2, JIANPING CAI 1,
JINGHUA TIAN 2, AND XIAOHUI GUAN 2
1School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
2College of Information Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Corresponding author: Qiuzhen Yan (zjhzyqz@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573322, in part by the Scientific
Research Project of the Water Conservancy Department of Zhejiang Province under Grant RC1858, and in part by the Zhejiang Province
Welfare Technology Applied Research Project under Grant LGF20F020007.

ABSTRACT In this paper, a novel neural network-based error-track iterative learning control scheme is
proposed to tackle trajectory tracking problem for tank gun control systems. Firstly, the system modeling
for tank gun control systems is introduced as a preparation of controller design. Then, the reference error
trajectory is constructed to deal with the nonzero initial error of iterative learning control. The adaptive
iterative learning controller for tank gun control systems is designed by using Lyapunov approach. Adaptive
learning neural network is adopted to approximate nonlinear uncertainties, with robust control technique
being used compensate the approximation error and external disturbances. As the iteration number increases,
the system error can follow the desired error trajectory over the whole time interval, which makes the system
state accurately track the reference error trajectory during the predetermined part time interval. Numerical
simulations demonstrate the effectiveness of the proposed iterative learning control scheme.

INDEX TERMS Tank gun control systems, iterative learning control, neural network, Lyapunov approach.

I. INTRODUCTION
Iterative learning control (ILC) is a proper control technique
for those uncertain systems which repetitively operating over
finite time intervals [1]. Due to its high-precision tracking
performance despite the lack of prior knowledge on system
model, ILC has earned a great deal of interest.

In the past two decades, adaptive ILC has been a hot
issue in ILC field for at least two reasons. Firstly, comparing
with contraction-mapping ILC, adaptive ILC is capable of
handling non-global Lipschitz continuous uncertainties.

Secondly, adaptive ILC may be used in controller design
for parametric uncertain systems, conveniently. Early results
on adaptive ILC focus on estimating and attenuating time-
invariant uncertainties over a finite time interval, by using
differential learning approaches [2]. Later on, difference
learning approaches are explored to deal with time-varying
but iteration-invariant uncertainties [3]. Along with the deep
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development of study, more complicated parametric uncer-
tainties has been investigated in the field of adaptive ILC.
Yin et al. investigated the high-order internal model strategy
to estimate a class of iteration-varying parametric uncertain-
ties [4]. Ye xudong developed an adaptive ILC law for a
class of nonlinear systems, in which, the period length of
disturbance is unknown [5]. In addtition, the adaptive ILC
developments for nonparametric systems have been carried
out in recent years [6], [7]. For more detail about the recent
development in the related fields, see [8]–[12].

On the other hand, tank is a kind of offensive and defen-
sive weapon in modern battlefields for enhancing soldiers’
surviving ability and the efficiency of artillery firepower.

While in fighting, tank gun control systems (TGCSs)
need accomplish a launch mission under the circumstance
with friction, uncertainties and external disturbances. The
researches on trajectory-tracking control for TGCSs have
been carried out for ages, and the main related schemes
have been proposed by using variable structure control [13],
optimal control [14], [15], PID control control [16], adaptive
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control [17], [18] and adaptive robust control [19]. The above
researches have promoted the development of control tech-
nique for TGCSs, but the high-precision control for TGCSs
is still an issue to be solved. In order to obtain better control
performance, in recent years, researchers have explored the
ILC control development for TGCSs [20], [21]. As men-
tioned above, since the complicated application scenarios
and the difficulties in system modeling, there exists compli-
cated uncertainties in TGCSs, such as parametric uncertain-
ties, nonparametric uncertainties and random perturbations.
In [22] and [23], disturbance observer were designed to
approximate uncertainties. In [24] and [25], an adaptive fuzzy
system and an adaptive neural network were adopted to
approximate the uncertainties and disturbances in TGCSs,
respectively.

The zero-initial error condition is an obstacle in the ILC
design for TGCSs. In traditional ILC algorithms, there usu-
ally assume that the initial system error must be zero at each
iteration, which is called the initial problem of ILC [26]–[28].
Otherwise, a slight initial error may lead to the divergence
of tracking error. In industrial applications, achieving such
a zero-error initial resetting at each iteration is actually an
impossible task. Therefore, relaxing the zero-error resetting
condition is very significant to broaden the application fields
of ILC. In recent years, through continuous explorations,
a few solutions have been proposed, such as time-varying
boundary layer [29], [30], error-tracking strategy [31]- [33],
initial rectifying action [34]- [36]. In [21], alignment con-
dition is used as a solution to remove the zero initial error
condition for the ILC design in TGCSs, and the algorithm
can work well in the TGCSs whose reference trajectories are
smoothly closed. In [20], an error-tracking ILC algorithm
was proposed for TGCSs whose initial velocity is allowed
to be any bounded value, but whose initial acceleration error
is assumed to be zero. Therefore, it is necessary to carry
out further research in adaptive iterative learning controller
design for TGCSs with both nonzero initial velocity error and
nonzero initial acceleration error.

Motivated by the above discussions, this work focuses on
trajectory-tracking problem for TGCSs with arbitrary initial
states. The adaptive iterative learning controller is designed
by using Lyapunov approach, with adaptive learning neural
network being constructed to approximate uncertainties in
TGCSs. Compared to the existing results, the main con-
tributions of this work mainly lie in the several fields as
follows:

(1) With reference error trajectory is constructed for deal-
ing with nonzero initial errors, the error-tracking strategy is
adopted to solve the initial problem of ILC for TGCSs.

(2) An adaptive learning radial basis function (RBF) neural
network is used to approximate uncertainties in tank gun
servo systems. The optimal weight of neural network is esti-
mated by using difference learning method.

(3) A Lyapunov functional is constructed for the controller
design, and the corresponding convergence analysis of closed
loop system is given.

The rest of this paper is organized as follows. The system
model of TGCSs, the control objective and the detailed con-
struction process of reference error trajectory are addressed
in Section 2. The adaptive iterative learning controller design
is presented in Section 3, with the corresponding convergence
analysis given in Section 4. In Section 5, an illustrative
example is provided to demonstrate the effectiveness of the
proposed ILC scheme. Section 6 concludes this paper.

II. PROBLEM FORMULATION
Nowadays, all-electric TGCSs have become the main-
stream of development of TGCSs. Comparing to traditional
electro-hydraulic/all-hydraulic TGCSs, all-electric TGCSs
have simpler structure and higher efficiency. In all-electric
TGCS, the direction adjustments of turret and gun, includ-
ing horizontal-direction adjustments and vertical-direction
adjustments, can be fulfilled by using by motor drives.
Fig. 1 shows the structure of vertical servo system of all-
electrical tank gun. The main parts of controlled device are
AC motor, speed reducer and barrel.

FIGURE 1. Structure diagram of all-electrical tank gun vertical servo
system.

FIGURE 2. Transfer function block diagram of tank gun AC servo system.

The block diagram of tank gun AC servo system is pre-
sented in Fig. 2, where ωref and ω represent the desired
angular velocity and the real angular velocity of the cannon,
repectively. GSR(s) and GCR(s) are the velocity regulator and
the current regulator, respectively. uq is the output voltage
of the current loop. R and L represent the resistance and the
inductance of motor armature circuit, respectively. Ka is the
amplifier gain. Ea is the armature back electromotive force of
motor. Ki is the current feedback coefficient of q axis. Kt is
the motor torque factor. Ke denotes the electric torque coef-
ficient. Te, TL and Tf are the motor torque, load torque dis-
turbance and friction torque disturbance, respectively. Kω is
the angular velocity feedback coefficient of cannon. J is
the total moment of inertia to the rotor. B is the viscous
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friction coefficient. i is the moderating ratio. s denotes the
Laplace operator.

From Fig. 2, we can obtain
i̇q = −

R
L
iq −

Kei
L
ω +

Ka
L
uq,

ω̇ =
Kt
Ji
iq −

1
Ji
TLs

(1)

where TLs = TL + Tf .
Define x1 = ω, x2 = ω̇. Then, from (1), the dynamics of

TGCSs at the kth iteration can be described as
ẋ1,k = x2,k ,

ẋ2,k = −
R
L
x2,k −

KtKe
LJ

x1,k +
KaKt
LJi

uq,k

+1f (xxxk , t),

(2)

where, k(= 0, 1, 2, 3, · · · ) is the iteration number, xxxk =
[x1,k , x2,k ]T , 1f (xxxk , t) = − R

LJiTLs,k −
1
Ji ṪLs.k . Without loss

of generality, we assume 1f (xxxk , t) = f1(xxxk ) + f2(xxxk , t),
where f1(xxxk ) is the continuous part with respect to xxxk , and
f2(xxxk , t) represents the sum of discontinuous but bounded
perturbations. In addition, the parameters in (2), including
R,L,Kt ,Ke,Ka,Kt , J and i, are all assumed to be unknown
constants.

Letting eeek (t) = [e1,k (t), e2,k (t)]T = xxxk (t) − xxxd (t), from
(2), we can obtain

ė1,k = e2,k ,

ė2,k = −
R
L
x2,k −

KtKp
LJ

x1,k +
KaKt
LJi

uq,k

+1f (xxxk , t)− ẍd .

(3)

In this work, we want to drive eeek (t) to follow eeerk (t) =
[er1,k (t), e

r
2,k (t)]

T over [0,T ], which actually is a bridge to
make xxxk (t) track xxxd (t)]T over [T1,T ]. Here, T1 is a time point
between 0 and T , whose value is predetermined according to
the need of practical application.

The reference error trajectory eeerk (t) is constructed as fol-
lows. For 0 ≤ t < T1,
let er1,k (t) = 0, er2,k (t) = 0. For T1 ≤ t ≤ T , let

er1,k (t) = a0,k + a1,k t + a2,k t2 + a3,k t3 + a4,k t4

+a5,k t5,

er2,k (t) = a1,k + 2a2,k t + 3a3,k t2 + 4a4,k t3

+5a5,k t4,

where, a0,k = e1,k (0), a1,k = e2,k (0), a2,k = 0, a3,k
a4,k
a5,k

 =
 T 3

1 T 4
1 T 5

1
3T 2

1 4T 3
1 5T 4

1
6T1 12T 2

1 20T 3
1

−1

×

−a0,k − a1,kT1 − a2,kT 2
1

−a1,k − 2a2,kT1
−2a2,k

 .
From the above constructions, we can see that if eeek (t) can
follow eeerk (t) over [0,T ], then the precise tracking from xxxk (t)
to xxxd (t) may be achieved during [T1,T ].

Let z1,k = e1,k − er1,k , z2,k = e2,k − er2,k and sz,k =
αz1,k + z2,k , with α > 0. According to the above-mentioned
construction method, z1,j(0) = e1,j(0) − er1,j(0) = 0 and
z2,j(0) = e2,j(0) − er2,j(0) = 0 hold for j = 0, 1, 2, · · · , k ,
which leads to

sz,j(0) = αz1,j(0)+ z2,j(0) = 0, j = 0, 1, 2, · · · , k. (4)

From (4), we can deduce eqtuation (25), which plays an
important role in the convergence analysis of adaptive ILC
design.

III. CONTROL SYSTEM DESIGN
It follows from (3) that

ż1,k = z2,k ,

ż2,k = −
R
L
x2,k −

KtKp
LJ

x1,k +
KaKt
LJi

uq,k + f1(xxxk )

+ f2(xxxk , t)− ẍd − ėr2,k

and

ṡz,k = αz2,k −
R
L
x2,k −

KtKp
LJ

x1,k +
KaKt
LJi

uq,k

+f1(xxxk )+ f2(xxxk , t)− ẍd − ėr2,k . (5)

Let h , KaKt
LJi . Taking the derivative of Vk = 1

2h s
2
z,k with

respect to time yields

V̇k = sz,k [
1
h
(αz2,k − ẍd − ėr2,k )−

R
hL

x2,k −
KtKp
hLJ

x1,k

+uq,k +
1
h
f1(xxxk )+

1
h
f2(xxxk , t)]. (6)

Then, by adopting radial basis function (RBF) neural network
to approximate

1
h
(αz2,k − ẍd − ėr2,k )−

R
hL

x2,k −
KtKp
hLJ

x1,k +
1
h
f1(xxxk ),

we design the ILC law as

uq,k = −γ1sz,k − θθθTk (t)φφφ(Xk )−
2ηksz,k
|sz,k | + ε

(7)

and adaptive learning laws as

θθθk = satθ,θ̄ (θθθk−1)+ γ2sz,kφφφ(XXX k ), θθθ−1 = 0, (8)

ηk = sat0,η̄(ηk−1)+ γ3|sz,k |, η−1 = 0. (9)

where, γ1 > 0, γ2 > 0, γ3 > 0, ε > 0, θθθTk (t)φφφ(Xk ) and ηk are
used to approximate

θθθ∗T (t)φφφ(Xk ) =
1
h
(αz2,k − ẍd − ėr2,k )−

R
hL

x2,k

−
KtKp
hLJ

x1,k +
1
h
f1(xxxk )− ε(Xk ) (10)

and

η(t) = sup
(
|
1
h
f2(xxxk , t)+ ε(Xk )|

)
, (11)

respectively. In (10) and (11), θθθ∗(t) is the optimal weight
of neural network, ε(XXX k ) is the approximation error,
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XXX k = [e∗1,k , e
∗

2,k , e1,k , e2,k , xd , ẋd , ẍd ]
T and φφφ(Xk ) =

[φ1,k , φ2,k , · · · , φm,k ]T with

φj,k = e
−
‖XXXk−cccj‖

2

2b2j , j = 1, 2, · · · ,m. (12)

In (12), cccj and bj are the center and the width of the receptive
field, respectively. In learning laws (8) and (9), the definition
of saturation functions is given as follows. For scalar â,

sata,ā(â) ,


āâ > ā
a a ≤ â ≤ ā
a â < a.

For a vector âaa = [â1, â2, · · · , âm] ∈ RRRp, sata,ā(âaa) ,[
sata,ā(â1), sata,ā(â2), · · · , sata,ā(âp)

]T .
For brevity, in the rest of this paper,φφφ(Xk ) is abbreviated as

φφφk , and arguments are sometimes omitted while no confusion
occurs.

IV. CONVERGENCE ANALYSIS
Theorem 1: For the tank servo dynamic system (2),

the adaptive learning controller specified by equations (7)-(9)
ensures that all signals in the closed loop system are bounded
and |sz,k (t)| ≤ ε holds ∀t ∈ [0,T ] as the iteration number
increases, which means

|e1,k (t)| <
ε

α
, t ∈ [T1,T ] (13)

and

|e2,k (t)| < 2ε, t ∈ [T1,T ]. (14)

Proof: The proof consists of three parts. Part 1 derives
the difference of the Lyapunov functional Lk . Part 2 proves
the Lyapunov functional Lk is bounded for k = 0. The perfect
tracking performance and the boundedness of all signals in
the closed loop system are shown in Part 3.

Part 1. Difference of Lk
Substituting (7) into (6), we obtain

V̇k ≤ −γ1s2z,k + sz,k [θθθ
∗T (t)φφφ(Xk )− θθθTk (t)φφφ(Xk )]

+|sz,k |η(t)−
2ηks2z,k
|sz,k | + ε

(15)

Define η̃k = η − ηk . While |sz,k | ≥ ε,

|sz,k |η −
2ηks2z,k
|sz,k | + ε

≤ |sz,k |η(t)− ηk |sz,k |

= η̃k |sz,k |. (16)

Combining (15) with (16), we get

V̇k ≤ −γ1s2z,k + sz,kθ̃θθ
T
k φφφk + |sz,k |η̃k , (17)

where θ̃θθk = θθθ − θθθk . From (17), we have

Vk (t) ≤ Vk (0)− γ1

∫ t

0
s2z,kdτ +

∫ t

0
sz,kθ̃θθ

T
k φφφkdτ

+

∫ t

0
|sz,k |η̃kdτ. (18)

Define a candidate Lyapunov functional at the kth itera-
tion as

Lk = Vk +
1
2γ2

∫ t

0
θ̃θθ
T
k θ̃θθkdτ +

1
2γ3

∫ t

0
η̃2kdτ, (19)

where, k = 0, 1, 2, 3, · · · . While k > 0 and |sz,k | ≥ ε, from
(18) and (19), we have

Lk − Lk−1

≤ Vk (0)− γ1

∫ t

0
s2z,kdτ +

∫ t

0
sz,kθ̃θθ

T
k φφφkdτ +

∫ t

0
|sz,k |η̃kdτ

−Vk−1 +
1
2γ2

∫ t

0
(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)dτ

+
1
2γ3

∫ t

0
(η̃2k − η̃

2
k−1)dτ (20)

As the appendix I of Reference [37] addressed, (a − â)2 ≥
(a − sata,ā(â))2 holds. By this property, from (8) and (9),
we obtain

1
2γ2

(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)+ sz,kθ̃θθ

T
k φφφk

≤
1
2γ2

[(θθθ − θθθk )T (θθθ − θθθk )− (θθθ − satθ,θ̄ (θθθk−1))
T (θθθ

−satθ,θ̄ (θθθk−1))]+ sz,kθ̃θθ
T
k φφφk

≤
1
2γ2

(2θθθ − θθθk − satθ,θ̄ (θθθk−1))
T (satθ,θ̄ (θθθk−1)− θθθk )

+sz,kθ̃θθ
T
k φφφk

≤
1
γ2

(θθθ − θθθk )T (satθ,θ̄ (θθθk−1)− θθθk )+ sz,kθ̃θθ
T
k φφφk

= 0 (21)

and
1
2γ3

(η̃2k − η̃
2
k−1)+ |sz,k |η̃k

≤
1
2γ3

(2η − ηk − sat0,η̄(ηk−1))(sat0,η̄(ηk−1)− ηk )

+|sz,k |η̃k

≤
1
γ3

(η − ηk )(sat0,η̄(ηk−1)− ηk )+ |sz,k |η̃k

= 0, (22)

respectively. Substituting (21) and (22) into (20) leads to

Lk − Lk−1 ≤ Vk (0)− γ1

∫ t

0
s2z,kdτ − Vk−1

≤ Vk (0)− Vk−1, (23)

which further implies

Lk (t) ≤
k∑
j=1

Vj(0)+ L0(t)−
1
2h

k−1∑
j=0

s2z,j(t). (24)

As addressed in (4), sz,j(0) = 0 holds for j = 0, 1, 2, · · · , k .
Hence, we can easily draw a conclusion that

Vk (0) = 0 (25)
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and
k∑
j=1

Vj(0) = 0 (26)

hold for j = 0, 1, 2, · · · , k . Then, from (24) and (26),
we have

Lk (t) ≤ L0(t)−
1
2h

k−1∑
j=0

s2z,j(t) (27)

Remark 1: According to the construction strategy given
in Section 2, we can see that (25) holds, which is a suf-
ficient condition for deducing (26). Further, (26) helps to
deduce (27). In traditional adaptive ILC design, usually, the
candidate Lyapunov function is chosen as

Ve,k =
1
2
s2k , (28)

where sk = αe1,k + e2,k . Since sk (0) 6= 0 and Ve,k (0) 6= 0,
we can not draw a conclusion similar to (27). Hence, Ve,k is
not a suitable candidate Lyapunov function for ILC design.

Part 2. Finiteness of L0(t)
Taking the time derivative of L0 = V0 + 1

2γ2

∫ t
0 θ̃θθ

T
0 θ̃θθ0dτ +

1
2γ3

∫ t
0 η̃

2
ε,0dτ , we have

L̇0 = −γ1s2z,0 + sz,0θ̃θθ
T
0φφφ0 + |sz,0|η̃0 +

1
2γ2

θ̃θθ
T
0 θ̃θθ0

+
1
2γ3

η̃20

= −γ1s2z,0 +
θθθT0

γ2
(θθθ∗ − θθθ0)+

1
γ3
η0(η − η0)

+
1
2γ2

(θθθ∗ − θθθ0)T (θθθ∗ − θθθ0)+
1
2γ3

(η − η0)2

= −γ1s2z,0 +
1
2γ2

(θθθ∗ − θθθ0)T (θθθ∗ + θθθ0)

+
1
2γ3

(η + η0)(η − η0)

= −γ1s2z,0 +
1
2γ2

(θθθ∗Tθθθ∗ − θθθT0 θθθ0)+
1
2γ3

(η2 − η20)

≤ −γ1s2z,0 +
1
2γ2

θθθ∗Tθθθ∗ +
1
2γ3

η2. (29)

Obviously, there exists a large enough positive constant %,
which satisfies % ≥ sup( 1

2γ2
θθθ∗Tθθθ∗ + 1

2γ3
η2) and L̇0 ≤

−γ1s2z,0 + % ≤ %. Therefore, from (29), we can conclude

L0(t) ≤ L0(0)+ %t = %T , ∀t ∈ [0,T ]. (30)

Part 3. Convergence of tracking error
By the definition of Lyapunov functional, we know

L0(t) ≥ 0 and Lk (t) ≥ 0. Note that |sz,k | ≥ ε is a precondition
of (27). If |sz,k | ≥ ε holds as the iteration number increases,
then combining (27) with (30) may lead to Lk (t) < 0, which
is in contradiction with the nonnegativity of Lk (t). Hence, we

conclude that |sz,k (t)| < ε, t ∈ [0,T ] as the iteration number
increases.
On the basis of ż1,k + αz1,k = sz,k , we have,

d
dt
(eαtz1,k ) = eαtsz,k , (31)

Calculating the definite integrals on both sides of (31) from
0 to t yields

eαtz1,k (t)− e0z1,k (0) =
∫ t

0
eατ sz,k (τ )dτ. (32)

Note that zj,k (0) = 0 holds. From (32), we get

|z1,k (t)| ≤
e−αt

α
(eαt − 1)ε <

ε

α
, t ∈ [0,T ] (33)

which implies that

|e1,k (t)| <
ε

α
, t ∈ [T1,T ]. (34)

In addition, from (33) and by the definition of sz,k , we have

|z2,k (t)| ≤ |sz,k (t)| + α|z1,k (t)| < 2ε, t ∈ [0,T ], (35)

which gives that

|e2,k (t)| < 2ε, t ∈ [T1,T ]. (36)

Therefore, by choosing proper ε, we can get the
desired control precision for closed loop TGCSs. Usually,
ε may be set between 0.001 and 0.1, and α may be set
between 1 and 5.

In the learning law design of this work, we adopt the
partial saturation strategy to guarantee the boundedness of
the parameters estimation. Comparing to the unsaturation
learning law design, the proposed saturation learning scheme
own higher security and reliability.
Remark 2: If the control law (7) is substituted by

uq,k = −γ1sz,k − θθθTk (t)φφφ(Xk )− ηk sgn(sz,k ), (37)

then |sz,k | → 0 can hold as k → +∞. However, chattering
phenomenon will happen due to using sign function.

V. NUMERICAL SIMULATION
Consider a TGCS as follows [38]:

ẋ1,k = x2,k ,

ẋ2,k = −
R
L
x2,k −

KtKe
LJ

x1,k +
KaKt
LJi

uq,k

+1f (xxxk , t),

(38)

where R = 0.4�, J = 5239kg · m2, i = 1039, L = 2.907 ×
10−3H, Kt = 0.195N · m/A,Ke = 0.197 V/( rad · s−1),
B = 1.43×10−4 N·m,Ka = 2,1f (xxxk , t) = 13.2+0.1 x1,k+
0.2 x2,k + 0.2sign(x2,k )+ 0.2rand1(k) sin(0.5t), T = 5. The
control objective is to make xxxk accurately track its reference
trajectory xxxd = [0.5 + sin(π2 t),

π
2 cos(π2 )]

T under the initial
condition xxxk (0) = [0.7+ 0.1rand2(k), 0.8+ 0.02rand3(k)]T .
Here, rand1(·), rand2(·) and rand3(·) are random numbers
between 0 and 1.
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The adaptive ILC law (7) and adaptive learning laws (8)-(9)
are adopted for this simulation with T1 = 0.6, T = 5, α = 2,
ε = 0.02, γ1 = 10, γ2 = 3, γ3 = 0.03, θ = −30, θ̄ = 30,
η̄ = 10. The number of RBF network neurons in
(12) is chosen to be m = 7, with cccj evenly spaced
on [−3, 3] × [−3, 3] × [−3, 3] × [−3, 3] × [−3, 3] ×
[−3, 3] × [−3, 3] and the correspondent width bj = 4 for
j = 1, 2, · · · , 7.

FIGURE 3. x1 and its reference signal x1,d .

FIGURE 4. x2 and its reference signal x2,d .

After 50 iteration cycles, the simulation results are given
in Figs. 3–10. Figs. 3-4 present the state profiles at the 50th
iteration. The profiles of state tracking error and reference
error trajectory are shown in Figs. 5-6, with the corresponding
difference between state error and reference error trajectory
being presented in Figs 7-8. From Figs 5-8, we can see eeek (t)
can precisely track eee∗k (t) over [0,T ] as the iteration number
increases. According to Figs. 3–6, we conclude that xxxk (t)
can precisely track xxxd (t) over [T1,T ] as the iteration number
increases. The profile of control input at the 50th iteration is
shown in Fig. 9. Fig. 10 gives the convergence history of sz,k ,
where Jk , maxt∈[0,T ] |sz,k (t)|.

FIGURE 5. e1 and e∗1.

FIGURE 6. e2 and e∗2.

FIGURE 7. The signal z1.

For comparison, the robust adaptive ILC algorithm
(39)-(41) proposed in [21] will be simulated for (38).

uq,k = −γ4s$k − pppTk ϕϕϕk − ϑϑϑ
T
kψψψk , (39)
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FIGURE 8. The signal z2.

FIGURE 9. Control input.

FIGURE 10. History of sz,k convergence.

pppk = satp,p̄(pppk−1)+ γ5s$kϕϕϕk , ppp−1 = 0, (40)

ϑϑϑk = satϑ,ϑ̄ (ϑϑϑk−1)+ γ6s$kψψψk , ϑϑϑ−1 = 0. (41)

where, sk = αe1,k+e2,k , s$k = sk−$ sat( sk
$
),ϕϕϕk , [ce2,k−

ẍd , x2,k , x1,k , 1]T , ψψψk , [‖eeek‖sat−1,1(
sk
$
), sat−1,1(

sk
$
)]T ,

α = 2,$ = 0.02, γ4 = 10, γ5 = 3, γ6 = 0.03, p =
−100, p̄ = 100, ϑ = −100, ϑ̄ = −100.

The intial states and other control parameters are the same
as the ones in the previous simulation.

The maximum value of |s$,k | at each cycle is illustrated
in Fig. 11, where Js,k , maxt∈[0,T ] |s$,k (t)|. From Fig. 11,
we can see that Js,k does not decrease as the iteration number
inreases. Comparing Fig. 10 with Fig. 11, we conclude that
the control scheme (39)-(41) is not suitable for TGCSs with
arbitrary initial states.

FIGURE 11. Maximum value of |s$,k | at each cycle.

Remark 3: In fact, the above-mentioned robust adaptive
ILC algorithm is suitable for TGCSs under alignment con-
dition, i.e., while the reference trajectories of TGCSs are
smoothly closed, xxxk+1(0) = xxxk (T ) may be used to solve the
initial problem of ILC.

The above simulation results verify the effectiveness of the
proposed neural network-based adaptive ILC scheme.

VI. CONCLUSION
A neural network-based error-tracking ILC scheme has been
proposed to solve the trajectory-tracking problem for TGCSs
with arbitrary initial states. With the corresponding desired
error trajectory being constructed, an error-tracking strategy
is utilized to solve the initial problem of ILC. An adaptive
iterative learning controller is designed by using Lyapunov
approach, with adaptive learning RBF neural network used
to approximate uncertainties. Simulation results have verified
the effectiveness of the proposed neural network-based error-
tracking ILC algorithm.
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