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ABSTRACT Activation functions facilitate deep neural networks by introducing non-linearity to the learning
process. The non-linearity feature gives the neural network the ability to learn complex patterns. Recently,
the most widely used activation function is the Rectified Linear Unit (ReLU). Though, other various existing
activation including hand-designed alternatives to ReLU have been proposed. However, none has succeeded
in replacing ReLU due to their existing inconsistencies. In this work, activation function called ReLU-
Memristor-like Activation Function (RMAF) is proposed to leverage benefits of negative values in neural net-
works. RMAF introduces a constant parameter (α) and a threshold parameter (p) making the function smooth,
non-monotonous, and introduces non-linearity in the network. Our experiments show that, the RMAF
works better than ReLU and other activation functions on deeper models and across number of challenging
datasets. Firstly, experiments are performed by training and classifying onmulti-layer perceptron (MLP) over
benchmark data such as the Wisconsin breast cancer, MNIST, Iris and Car evaluation. RMAF achieves high
performance of 98.74%, 99.67%, 98.81% and 99.42% respectively, compared to Sigmoid, Tanh and ReLU.
Secondly, experiments were performed on convolution neural network (ResNet) over MNIST, CIFAR-10
and CIFAR-100 data and observed the proposed activation function achieves higher performance accuracy
of 99.73%, 98.77% and 79.82% respectively than Tanh, ReLU and Swish. Additionally, we experimented our
work on deep networks i.e. squeeze network (SqueezeNet), Dense connected neural network (DenseNet121)
and ImageNet dataset, which RMAF produced the best performance. We note that, the RMAF converges
faster than the other functions and can replace ReLU in any neural network due to the efficiency, scalability
and its similarity to both ReLU and Swish.

INDEX TERMS Activation function, deep learning, memristive window function, muilti-layer perceptron,
RMAF.

ACRONYMS
ABReLU Average Biased Rectifier Linear Unit
CIFAR Canadian Institute for Advanced Research
CNN Convolutional Neural Network
CVNN Complex-Valued Neural Network
DBN Deep Belief Network
DenseNet Densely Connected Convolutional Networks
DL Deep Learning
DFUNet Diabetic Foot Ulcer Network
DNN Deep Neural Network
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LVCSR Large Vocabulary Continuous Speech

Recognition
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PReLU Parametric Rectifier Linear Unit
RCCNet Convolutional Neural Network for Routine

Colon Cancer Nuclei
ReLU Rectifier Linear Unit
RelTanh Rectified Linear Tanh
ResNet Residual Network
RMAF ReLU-Memristor-like Activation Function
RReLU Randomized ReLU
SELU Scaled Exponential Linear Unit
SqueezeNet Squeeze Network
Tanh Hyperbolic tangent

I. INTRODUCTION
Deep learning (DL) has recently shown very good per-
formance on a range of tasks including computer vision,
speech processing and natural language processing [1] partly
due to the availability of large-scale datasets and high end
computational resources [2]. Various deep neural networks
have been introduced for different type of problems such
as multi-layer perceptrons (MLP) [3] for handling real vec-
tor R-dimensional data [4], [5] and Convolutional Neural
Networks (CNN) for malware detection, image processing
and video processing [6]–[8]. Wen et al. proposed a Mem-
ristive Fully Convolutional Network (MFCN) for accelerat-
ing hardware image-segmentation, where a memory segment
was able to perform computations [10]. Several researchers
have capitalized the benefits of DL to implement different
tasks such as hybrid MLP-CNN classifier which is used for
fine resolution remotely sensed image classification [14],
DL for solar power forecasting [15], deep CNN for audio-
visual speech enhancement [16], DFUNet (a CNN) for dia-
betic foot ulcer classification [17] and RCCNet (a CNN) for
histological routine colon cancer nuclei classification [18].
The deep neural network (DNN) generally transforms input
to feature space, where it becomes linearly separable into
classes. In other to achieve this, the neural networks depend
on units called activation functions [23]. These functions
(such as Sigmoid, Tanh and ReLU etc.) are the backbone
of any neural network. The work of the activation function
is to decide whether a neuron should be activated and also
determines the relevant information to be received by the
neurons. In addition, the properties of activation functions
is the introduction of non-linearity to facilitate learning of
connection weights for a precise problem. DL models use
several sigmoid hidden layers along with a variety of initial-
ization, optimization and regularization strategies [24]. Previ-
ous works have shown that sigmoid non-linearity function is
not optimal for DNNs. The observation of this issue brought
about a new activation function called hyperbolic tangent
(tanh). Which was to leverage the issue of the sigmoid. The
tanh could not succeed in solving the problem of the sigmoid
but both of the activation functions had the same problem
known as vanishing gradient.

Glorot et al. [55] found that DNNs with rectifier linear
unit (ReLU) in place of traditional sigmoid and tanh can

perform much better on image recognition and text classi-
fication tasks. Indeed, the advantage of rectified networks
was obvious in tasks with more supervised training data,
which is the case for DNN model training in large vocab-
ulary continuous speech recognition (LVCSR). DNNs with
rectifier non-linearities have played an important role in the
top-performing systems for the ImageNet large scale image
classification benchmark [7].Moreover, the nonlinearity used
in an unsupervised feature learning neural network played an
important role in determining final system performance [22].
ReLU has become popular due to the simplicity of use in
various type of DL models. The major drawback with ReLU
is the diminishing gradient for the negative values of the
inputs. Due to the problem of diminishing gradient, ReLU
units can be weak during training and the gradient may die.

In this work, we used memristive window function tech-
nique to discover a new activation function, which we
call ReLU-Memristor-like activation function (RMAF). The
function is proposed to provide effective performance on
deep networks and thereby providing researchers chance
to replace ReLU. In this work, classification experiments
were performed to show the performance improvement over
variety of datasets on five types of neural networks. Our
experiments show that RMAF outperforms ReLU and other
standard activation functions on deep networks applied to
variety of challenging domains such as image classification
and feature recognition.

The contributions of this paper are as follows,

1) We highlight an activation function named RMAF to
improve the performance of neural networks.

2) RMAF function introduces a constant hyperparameters
α and p to make the function smooth, non-monotonous
and scalable to any given network.

3) To evaluate the RMAF activation function, our
study implemented different types of neural net-
works, including Multilayer Perceptron (MLP) and
Convolutional Neural Network (CNN) by residual
neural network (ResNet50), Alexnet, SqueezeNet and
DenseNet121.

4) Experimental data used for the experiments are
1) 1-dimensional data, thus Wisconsin breast cancer,
Car, Iris and MNIST datasets, 2) 2-dimensional image
data, thus MNIST, CIFAR-10, CIFAR-100 and Ima-
geNet datasets.

The rest of this paper is organized as follows: Section 2
Introduces the related works. Section 3 outlines the prob-
lem statement and the proposed RMAF activation; Section 4
describes the experimental setup; Section 5 presents the
experimental results; and in Section 6, we concluded this
paper.

II. RELATED WORK
Our focus in this section of the related work was based on the
standard activation functions and different variations of the
ReLU that has recently been proposed.
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A. SIGMOID
The sigmoid activation function defined as f (x) = σ (x) =
1/1 + e−x , was commonly used in the early days of neural
networks. The function serves as the point-wise non-linearity
applied to hidden neurons of a deep neural network. The anti-
symmetric property of sigmoid is about 0 and has extremely
gradual gradient compared a logistic sigmoid. This leads to
a more robust optimization when training DNNs. Sigmoid
function squashes a large negative number to 0 and a large
positive number to 1. Implementing the sigmoid function
on a very shallow layer does not give any serious problem.
On the other hand, when the architecture becomes increas-
ingly deeper due to the derivative terms that are lesser than 1.
Thismaymultiply each othermany times and result to smaller
values until the gradient tends towards zero, hence vanishing.
In addition, if the values are bigger than 1, the opposite result
happens with the numbers being multiplied and gradually
increased until they approach to infinity and gradient may
explode. Hence, the sigmoid function in DNNs could suffer
from the problem of vanishing gradient [44].

B. HYPERBOLIC TANGENT
Tanh defined as (2/2+ e−2x)− 1, is among the very popular
and widely used activation functions by most researchers.
This function has the same characteristics as the sigmoid
function and can be seen as a scaled sigmoid function. Except
that, the output values of tanh lie between -1 and 1 depending
on the input real values. The non-linearity nature of tanh
also has the capabilities of stacking layers. The range −1, 1
of the function gives the property of being capable of solv-
ing activation blow up through the network. The gradient
for tanh is stronger when compared to sigmoid which has
steeper derivatives. Deciding between the sigmoid and tanh
will depend on the requirement of gradient strength. The van-
ishing gradient is the major problem of sigmoid and tanh in
both positive and negative directions. The vanishing gradient
occurs when the lower layers of a DNN have gradients near
to 0. For instance, when the higher layer units are nearly
saturated at the point of −1 or 1. The problem can introduce
slow optimization convergence and also poor local minimum
on the final network trained to converge. Hence, the weight
of the hidden unit in the network must be carefully initialized
to prevent any significant saturation during the initial stage of
training.

C. ReLU
The ReLU activation function (f (x) = max(x, 0)) was
proposed for training deep networks [6]. The function has
breakthrough against the problem termed as vanishing gra-
dient which is in the case of sigmoid and tanh. The ReLU
is an identity function for the non-negative inputs and zero
function for the negative inputs. Nair and Hinton [28] noted
that, the better solution to gradient vanishing from sigmoid
and tanh is to maintain the resultant values to 1 to prevent
changes when they are multiplied. This is generally the work

of ReLU, which has a gradient of 1 for positive inputs and 0
for negative inputs. Having gradient of zero may be an issue
at first but can help to make the network sparse by keeping
useful links. Several works have shown that, the network
becomes less dense and low computation with the help of
sparsity. However, in spite of the performance of ReLU,
excess amount of sparsity element which it introduce could
also be harmful to the networks where negative values are
prevented from propagating and once the gradient becomes
zero any corresponding nodes would not have influence on
the network. As a result, they do not provide any contribution
to the improvement of the learning, which is therefore called
dying neurons. Hence, negative values are not considered
to be important representation. The worse part of this is
that, the DNNs would not have any benefits from negative
representations. It has been noted from several research that
the network can benefit from the negative representations to
achieve better performance [25], [27].

Through the adoption of ReLU in deep learning and its
dying neurons problem, several variants of ReLU activation
function (such as, Leaky ReLU (LReLU) [24], Parametric
ReLU (PReLU) [27], Randomized ReLU (RReLU) [51],
Exponential linear units (ELU) [26], Gaussian Error Lin-
ear Units (GELU) [29] and Scaled Exponential Linear
Units (SELU) [28]) have been proposed which allow the
propagating of negative values in the network.

D. LReLU
Maas et al. [24] proposed LReLU. This function is similar
compared to ReLU, except for allowing small, non-negative
and constant gradient of input in other to reduce the dying
neuron input problem. In other to solve the dying prob-
lem, LReLU introduced an alpha (α) parameter which is
the leak, so that gradients will be small but not zero. This
approach reduces the sparsity but tends to make the gradient
more robust for optimization and on the other hand, there
is an adjustable weight for the nodes that were not active
with ReLU.

E. PReLU
PReLU is an extension of LReLU by training with which
trains coefficient of leakage into a parameter instead of fixing
it with a constant value He et al. [26]. Leakage parameter
in PReLU is learned along with the other neural network
parameters. Hence, LReLU and PReLU are in between the
linear function and ReLU which is a disadvantage in terms of
decreased rate in non-linearity.

F. ELU
The function is similar to ReLU in terms of identity functions
for non-negative inputs Clevert et al. [25]. ELU becomes
smooth slowly until its output equals to a constant negative
value unlike ReLU which sharply becomes smooth. ELU
blows activation which leads to gradient exploding problem
for a given positive inputs.
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G. SELU
SELU function adds a scaling fixed parameter in ELU that
sustains the bad weight initialization Nair and Hinton [28].

H. GELU
GELU randomly applies identity or zero map to neuron input
according to Gaussian function Hendrycks and Gimpel [29].
In between ReLU and ELU lies the shape of GELU.

I. ABReLU
ABReLUwas proposedwhich allows prominent negative val-
ues after converting it into positive values by biasing it with
an average of all activations Dubey and Chakraborty [30].
The function ABReLU could as well not utilize the nega-
tive values due to the trimming of values at zero, similarly
to ReLU.

J. SWISH
Ramachandran et al. proposed a sigmoid-weighted linear unit
Swish activation function [33]. In their work, they found
Swish a promising activation function by testing several func-
tions. The Swish activation function interpolates between
Linear function and ReLU, by learning the parameter. How-
ever, the gradient diminishing problem is still in existing in
the case of Swish activation function.

K. RelTanh
Wang et al. [52] proposed a new activation function called
Rectified Linear Tanh (ReLTanh) to improve traditional Tanh
function, due to its vanishing gradient problem. In their pro-
posed work, they replaced Tanh’s saturated waveforms with
two straight lines, which the slope of the lines was calculated
by using the tanh’s derivatives at two learnable thresholds.
The waveform of tanh in the center provides the ReLTanh
with ability of nonlinear fitting while the linear contributes to
the relief of vanishing gradient problem.

L. ISIGMOID
Qin et al. [53] noticed that, ReLU and LReLU functions
are not applied to Deep Belief Networks (DBNs), because
both functions cannot fully make use of pre-training effects
of Restricted BoltzmannMachines. Therefore, they proposed
an improved logistic Sigmoid (Isigmoid) units to tackle van-
ishing gradient problem during back-propagation of DBNs
using the conventional sigmoid function. They designed the
Isigmoid to combine the advantage of the unsaturation from
Leaky Rectified Linear (LReL) units.

M. DReLU
Macedo et al. [58] proposed a transfer function called Display
Rectifier Linear Unit (DReLU). It was indicated that perform-
ing conjecture by the enlarging the identity function of ReLU
to the third quadrant can enhance the compatibility of batch
normalization.

Recently, an attempt was made to design a nonparametric
and complex activation function for complex-valued neural
networks (CVNNs) [34]. This depends on the kernel expan-
sion with a fixed dictionary which can be applied on vector-
ized hardware. The existing activation functions are still weak
to replace ReLU due to their inconsistencies.

In this paper, RMAF is proposed which allows scalability
to any application and unlike LReLU able to solve dying
neurons in the neural networks.

III. PROBLEM STATEMENT
Deep feed-forwardNeural Network is composed ofmore than
one hidden nonlinear layer. Given an input vector x, each hid-
den layer is capable of transforming input vector by applying
a linear affine transformation followed by a non-linear map-
ping. The training of deep neural networks becomes slow in
optimization convergence with Sigmoid and Tanh activation
functions due to the problem of vanishing gradient. Recently,
ReLU has been the popularly used activation function for
training deep neural networks which solves vanishing gra-
dient problem [28]. However, ReLU suffers from gradient
diminishing problem which leads to the problem of dying
neuron in the networks. Therefore, this work proposes RMAF
that can replace the ReLU and enhance the performance of
given neural networks. In this paper, we explore memristive
window function to discover a new activation function for
deep neural network. We introduce memristive window func-
tion and the proposed activation functions in the next part of
this sections.

A. MEMRISTIVE WINDOW FUNCTION
Memristor was proposed by Leon Chua, being the fourth
passive circuit element besides resistor, capacitor and induc-
tor. In 2008, a group of researchers announced the pro-
duction of memristor as a physical device [35]. After, the
studies on the memristor increased rapidly. Having a suit-
able modeling for the memristor element is very important
and as a result, various methods of modeling memristor
was proposed in the literature. Memristor model called the
linear ionic drift model was proposed taking into account
the linear drift on the memristive device [35]. However,
this model had some boundary effect problem that needed
to be tackled. Based on that, it was important to create
new memristor models that can achieve scalability, bound-
ary lock, and nonlinear effects at the same time [36]. The
method used to model the memristor is a non-linear model
called window function. Hence, the window function was
an approach to account boundary condition that was not
recognised in the linear model. Several window functions
available in the literature was used in modeling of the
memristor.

This work was inspired by Clevert et al. [25] find-
ing a novel window function to solve boundary lock
phenomenon.

Given (4)-(5) in [36] as a memristive system, having the
window function f(x) which satisfies (B.1)-(B.4), the internal
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state variable therefore follows as a sigmoidal curve.

x = S(q) = F−1(α(q− q0)) (1)

Here, if the sigmoidal x=S(q) is obtained, we compute the
corresponding f(x) by applying:

1

f (x)
= α

d
dx

[S−1(x)] (2)

The transformation achieve windows from wide range of
sigmoidal function used in modeling most physical and bio-
logical processes [37][38]. Sigmoidal is obtain from the win-
dow function analytically. Here, (2) is simplified as in [36].

f (x) = 1− [(x − 0.5)2 + 0.75]p (3)

this can be equivalently written as f (x) = 1 − [0.25(2x −
1)2 + 0.75]p. To solve the boundary lock problem (2x − 1)
was replaced by (x− stp(−i)). Therefore, the new function is
define as

f (x) = 1− [0.25(x − stp(−i))2 + 0.75]p (4)

where in the design of memristor device, the stp is known as
short-term plasticity, which is applied to solve any boundary
lock effects [56], [57]. While i represents the current flowing
through the memristive device. The stp is defined as

stp(i) =

{
1, if i ≥ 0 (v ≥ 0)
0, if i < 0 (v < 0)

(5)

Jinxiang et al. [56] modified (4) to obtain window function
to improve the scalability of the function. Thus, the function
can be adjusted to various application.

f (x) = j(1− [0.25(x − stp(−i))2 + 0.75]p) (6)

where j is used as a scale parameter and any p scales upward
or downward with suitable j. In choosing different j, the
window function can adjust to various applications.

B. THE PROPOSED METHOD: RMAF
Our focus is finding a scalar activation function, which takes
in scalar input and output a scalar. This is because scalar
activation functions can replace the ReLU function without
changing the architectural network.

RMAF contains properties like both ReLU and Swish, and
a threshold p and j hyperparameter are attached, which could
improve the classification accuracy of deep neural networks.
The ReLU activation function can mathematically be calcu-
lated as [4]:

ReLU (x) =

{
x, x ≥ 0
0, x < 0

(7)

The introduction of ReLU tackles the issues such as gra-
dient vanishing/exploding and squashing problems by the
Sigmoid and Tanh activation functions in DNNs [15]–[17].
Sigmoid activation function can be calculated as [18]:

Sigmoid(x) =
1

1+ e−x
(8)

Based on the scalar generation and the focus on non-
linearity for our model in deep neural networks, the (6)
was modified. To construct the RMAF activation function,
the (6) was amend by replacing the first minus operator with
(/) and x+stp(−1)2 with function (1+e−x). This can simply
be written as

RMAF(x) = (j(1/[0.25t(1+ e−x)+ 0.75]p)) (9)

In this work, (9) was multiplied with a constant or trainable
parameter αx, which in this work, α was initialized to 1
(i.e. α = 1). Finally, the RMAF activation function can be
defined as

RMAF(x) =
[
j
(

1
(0.25 · (1+ e−x)+ 0.75)p

)]
· αx (10)

where parameter p > 0, controls the flatness of region. With
adjustment of parameters j and pmake the function like ReLU
and capable of scaling to any given network. Fig. 1 shows the
plot of the proposed function and its derivative function.

FIGURE 1. The proposed RMAF function and its derivative.

This work has noticed that, the RMAF at x ≥ 0 has a
similar property to ‘‘Swish’’ which was proposed recently
by Google Brain [19]. Fig. 2 shows plot of RMAF func-
tion and derivative with different initialized p. Moreover, we
visualized the comparison of RMAF with ReLU and Swish
in Fig. 3, which their derivative plots are shown. Swish shows
much superiority over ReLU on several deepmodels in image
classification and machine translation problems [19]. Mean-
while, the derivative of Swish is composed with high portion
of nonsparse property and hence, increase the computational
complexity of the given network. However, RMAF can retain
its hard zero property which on the other side ReLU which
often deactivated most of the neurons during both forward
and backward propagation.

The RMAF function can be any point utilized when fitting
data and giving knowledge to the basic forms dependable on
its dynamics.

It is noted that deep neural network is composed of sev-
eral differentiable functions [50], hence, during the back-
ward propagation [51], neural network updates its parameters
(notably the weights and biases) by computing the derivative
(or gradient). The derivative of the RMAF function in (10)
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FIGURE 2. RMAF function and its derivative with different p. In (a) the plot represents the RMAF with the parameter p = 1. (b) shows
a RMAF function with different selected p. (c) represent the derivative of RMAF, while (d) shows the derivative of RMAF with
different p. In this work, all curves were set with the same alpha (i.e. α = 1). Best view in color.

can be formulate as: when j = 1,

f (x) =
αx

[0.25(1+ e−x)+ 0.75]p
(11)

for convenience sake, let f1(x) = αx and

f2(x) = [0.25(1+ e−x)+ 0.75]p

we can derive that;

d[f1(x)]
dx

= α (12)

and
d[f2(x)]
dx

= p[0.25(1+ e−x)+ 0.75]p−1

·
d[0.25(1+ e−x)+ 0.75]

dx
= −0.25pe−x[0.25(1+ e−x)+ 0.75]p−1 (13)

According to the derivation rules for compound function,
df (x)
dx can be described as

df (x)
dx
=

d[ f1(x)f2(x)
]

dx
=

d[f1(x)]
dx f2(x)−

d[f2(x)]
dx f1(x)

f 22 (x)
(14)

Substitute (12) (13) and (14) into equation (15) such that
we can obtain
df (x)
dx
=
αf2(x)+ 0.25pαxe−x[0.25(1+ e−x)+ 0.75]p−1

[f2(x)]2

=
α

[0.25(1+ e−x)+ 0.75]p

+
0.25pαxe−x[0.25(1+ e−x)+ 0.75]p−1

[0.25(1+ e−x)+ 0.75]2p
(15)

we can simply re-write the above as
d
dx
RMAF(x) =

α

[0.25(1+ e−x)+ 0.75]p

+
0.25pαxe−x

[0.25(1+ e−x)+ 0.75]p+1
(16)

In this work, the experiments show that RMAF matches
or performs higher than ReLU on varieties of deep learning
models. In Fig. 1, RMAF is unbounded above and bounded
below unlike ReLU and Swish transfer functions

Theoretically, it is importance to achieve unboundedness
to avoid the saturation when training is slow because of near-
zero gradient Glorot & Bengio, 2010 [54]. The ReLU transfer
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FIGURE 3. Visualization of RMAF, its derivative compared with ReLU and Swish activation functions. (a) RMAF vs ReLU, (b) The
derivative of RMAF and ReLU. (c) RMAF vs Swish and (d) The derivative of RMAF and Swish. The derivative of RMAF is denoted
as RMAF′ . This is same with the ReLU and Swish as shown at the upper left of each of the figures. Best view in color.

function was a great improvement over the tanh function due
to the property of unbounded above that can avoid saturation
when x > 0. The unbounded above property is very important
and have been applied in almost recently proposed transfer
functions. Additionally, the property of bounded below can
also be an advantage due to the strong regularization effects.
Due the limitation of the function approaching zero, large
negative inputs are irrecoverable Ramachandran et al. [32].
The RMAF activation function shares the same property
having its positive side approaching the linear function as
the input becomes increasingly positive. Unlike LReLU [24],
RMAF also introduced hyperparameters (α) and (p) which
are considered as leaks to make sure gradients will be small
but not zero. This idea was applied to resolve the vanishing
gradient and dying neuron problem.

Although, it is much difficult to rate an activation func-
tion over its existing counterparts, we are convinced that
the RMAF function being both unbounded above, bounded
below, smooth and non-monotonic are all advantages. The
non-monotonic subject to RMAF has the capability of
increasing and improving the gradient flow, which can
be considered as a great importance focusing on the pre-
activations that falls into this range. Furthermore, robustness
can also be achieved through different initialization process
and learning rates.

IV. EXPERIMENT SETUP
A. DATASETS
The effectiveness of the proposed RMAF function was eval-
uated on seven benchmark databases, thus Wisconsin breast
cancer, MNIST, Iris, Car evaluation, CIFAR-10, CIFAR-100
and ImageNet.

Recently, researches on medicine have shown that, the
features of breast cell nuclei can be used to classify benign
and malignant breast tumors [40]. In this work, the breast
cancer data from Wisconsin Breast Cancer Data repository
created by [Dr. William H. Wolberg] was used. The dataset
helps scientists, cancer biologists and clinical researchers
to evaluate and conduct their research [41]. Features are
generated from a digitized image of a fine needle aspira-
tion (FNA) of a breast mass. Which describe characteristics
of the cell available in the image. The dataset consists of
569 instances of both benign and malignant cells as shown
in Table 1. The attribute of the dataset is made of ID number,
Diagnosis and 30 real-valued features which are computed
for each cell nucleus. The dataset was split into training and
testing set, each involving 357 instances and 212 instances
respectively. For training and testing the multi-layer neural
network on the dataset in other to distinguish between the
benign (non-cancerous) and malignant (cancerous), 70% of
the cancer dataset was used for training and 30% for testing.
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TABLE 1. Database information of Wisconsin breast cancer, MNIST, Iris Car evaluation, CIFAR-10 and CIFAR-100 showing training, testing, total set and the
number of classes for each datasets.

FIGURE 4. Sample data of MNIST and CIFAR.(a) Shows a sample data of MNIST, (b) shows sample data of CIFAR-10 and CIFAR-100. We note that, CIFAR-10
and CIFAR-100 are composed of different total class samples. As the names depict, the total classes of CIFAR-10 is 10 while CIFAR-100 has 100 classes.

In this study, normalization features were performed to have
a uniformly scaled value. Moreover, the process was done to
prevent gradient descent taking too long to converge. In addi-
tion, the idea of normalization regarding each feature was to
have the mean of zero and unit variance.

The Car Evaluation dataset used in this paper was to
test the performance of activation functions with multi-layer
perceptron. The dataset contains total samples 1728 with
4 classes having 6 dimensional features [43]. The Iris Flower
dataset [43] is a classic and one of the best-known multi-
variate datasets that contains a total of 150 samples from
3 different species, including Iris setosa, Iris virginica and Iris
versicolor. In Iris dataset, every sample is a vector of length
four (i.e., ‘‘sepal length’’, ‘‘sepal width’’, ‘‘petal length’’,
and ‘‘petal width’’). The MNIST dataset is widely used for
recognizing handwritten digits from images. This dataset
contains a total of 60,000 training samples and 10,000 test
samples of dimension 28× 28 [44]. In this dataset, one image
contains a digit from 0 to 9. The Fig. 4(a) shows sample
images of theMNIST dataset. The CIFAR-10 dataset consists
of 32×32 resolution 60,000 color images from 10 classes,
with 6,000 images per class [45]. The 5,000 images with
5,000 images per class were used for the training and
10,000 images with 1,000 images per class were used for the
testing. The 10 classes of CIFAR-10 dataset are composed
of the ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’,
‘frog’, ‘horse’, ‘ship’, and ‘truck’ categories, respectively.
The CIFAR-100 dataset contains the same CIFAR-10 dataset
images. The dataset was split into two where 50000 was used

for training and 10,000 for testing. The training and test-
ing images were categorized into 100 classes in CIFAR-100
dataset. The sample images of CIFAR-10 and CIFAR-100
data is shown Fig. 4(b). The CIFAR datasets is available
www.cs.toronto.edu/ kris/cifar.html

B. TESTED NEURAL NETWORKS
A neural network (NN) is an implementation of biological
neural network used in solving complex task using rule of
programming [46]. A perceptron defined for 2-dimensional
space that classifies problems can be expressed as

Tn = W 1X1 +W 2X2 + . . .Wn−1Xn−1 (17)

Y = φ(
n∑
i=1

W i ∗ X i + B) (18)

where φ represents an activation function, X represents the
input vector, which can also be the output from the previous
layer. W is the weight or set of parameters in the layer and
B represents bias vector. The activation functions utilized in
our experimentation are sigmoid, eq. 7, and ReLU (Rectified
Linear Unit) function (eq. 6).

In this paper, two different types of neural networks
(i.e. Multi-layer Perceptron (MLP)) with one or more hidden
layers, and deep convolutional Pre-activation Residual Net-
work (ResNet-PreAct) [47] were designed.

1) MULTIlAYER PERCEPTRON
We designed a MultiLayer Perceptron (MLP) consisting of
three hidden layers for the classification problem. This MLP
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network is a deep network due to the number of hidden layers
implemented, which composed of more than two hidden
layers. Fig. 5 shows our simple design structure of MLP.

FIGURE 5. A structure of our multi-layer perceptron (MLP).

Evaluating the proposed activation function on the breast
cancer classification, our MLP shown in Fig. 5 was used. The
MLP architecture is composed of input, hidden, and output
layers. The number of neurons initialized in the input layer
corresponds to the features of the Wisconsin breast cancer
dataset, and two neurons in the output layer (0 or 1) signifying
the predicted classes. The network is made of three hidden
layers where they constitute 8, 6, and 4 neurons respectively
which can be viewed as deep network. The input of a hidden
unit j in layer l receive value from the previous layer and
multiplying weights plus the biases. The hidden unit j obtains
a single output by following nonlinear activation function f.

0lj = F
( K∑
K=1

wkjxk + θj

)
(19)

where F is a transfer function and K is the number of hidden
units in each hidden layer and w and θ are weights and bias
associated with unit j that need to be learned.

For the Car evaluation dataset, the MLP was initialized
with 6, 5, and 4 nodes while Iris Flower dataset over MLP
consists of 5, 4, and 3 nodes in the input, hidden and out-
put layers respectively. The MNIST dataset images were
stretched into one-dimensional (1D) vectors used with multi-
layer perceptron neural network. In this work, the MNIST
dataset trained on the MLP consists of input, hidden and
output layer, and has 784, 512, and 10 nodes respectively.

2) RESIDUAL NEURAL NETWORK
The state-of-the-art for image classification task was the
Residual Neural Network (ResNet). The ResNet architec-
ture with pre-activation [47] is accepted as the improved
version of ResNet. In this study, the model was used for
the image classification overMNIST, CIFAR-10, CIFAR-100
and ImageNet datasets. The pre-activation ResNet was used
with 164-layers over the CIFAR-10 and CIFAR-100 datasets.

FIGURE 6. Pre-activated residual module: RMAF and Weight represent
activation and convolutional layers. The Xl and Xl+1 are input and output
volumes, respectively. Here residual module adds the input volume Xl
with output volume of the second convoluional layer F(x)+x to obtain the
final output volume Xl+1.

FIGURE 7. DenseNet model validation accuracy on the (a) CIFAR-10,
(b) CIFAR-100, (c) MNIST and (d) ImageNet dataset trained with
200 epochs.

FIGURE 8. SqueezeNet model validation accuracy on the (a) CIFAR-10,
(b) CIFAR-100, (c) MNIST and (d) ImageNet dataset trained with
200 epochs.

In this work, we used 20 layers for MNIST dataset. The Fig. 6
illustrates a simple pre-activation residual block.

3) DENSE CONNECTED CONVOLUTIONAL NETWORKS
In other to show how RMAF performs on deep learn-
ing structures, we designed and implemented Dense
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TABLE 2. Classification performance of MLP over Breast cancer, Cars Evaluation, Iris and MNIST datasets for different activations.

Convolutional Network (DenseNet) [61] for experimentation
on our work, which we trained from scratch. DenseNet is a
deep model, connecting each layer to all other layers in a
feed-forward manner. Whiles the conventional convolutional
networks with number of layers and number connections in
between the layers and their preceding layers, we imple-
mented a network with Ln(Ln+1)/2 direct connections. In the
DenseNet, each layer with their feature-maps of all preceding
layers were applied as inputs data.Whiles its existing feature-
maps were used as inputs to the subsequent layers. DenseNets
have several advantages that improve performance of the
network: they resolve the vanishing-gradient problem, feature
propagation is strengthen, feature reuse is encourage and
finally number of parameters are substantially reduced.

C. TRAINING SETTINGS
In this work, Keras deep learning libraries with tensorflow
back-end was used for the implementation and evaluation of
the activation function. NVIDIA GeForce GTX 1060 6GB
GPU system was used for the different experimentations.
In training the neural networks, we used batch size = 128,
learning rate of 0.1 and Adam optimizer [49] was used for
categorical entropy loss.

V. EXPERIMENTAL RESULTS
In this paper, the effectiveness and performance of the
proposed RMAF transfer function was evaluated and com-
pared with state-of-the art activation functions such as
sigmoid, Tanh, ReLU, ELU, SELU, PReLU and Swish.
In this section of the work, experiment results using multi-
layer perceptron (MLP), ResNet50, Alexnet, SqueezeNet and
DenseNet121 are presented.

A. MULTI-LAYER PERCEPTRON
In this section, Table 2 report the classification performance
of multi-layer perceptron (MLP) over Wisconsin Breast
cancer, MNIST, Iris, and Cars datasets. Here, the work was
evaluated based on the accuracy and loss over training and
validation sets. RMAF transfer activation achieved the least
training and validation loss over the other datasets. RMAF
activation function achieved the best accuracies of 97.98%,
97.33% and 98.60% over the benchmark Breast cancer,
MNIST, Iris and the Car evaluation datasets.

B. RESIDUAL NETWORK
Table 3 and Fig. 9 - 10 summarizes the training accuracies
of activations over datasets CIFAR-10, CIFAR-100, MNIST
and ImageNet with pre-activation ResNet50. In this work,
ResNet50 was given depth of 20 over MNIST while 164 for
CIFAR datasets. The training was performed for 200 epochs
using the categorical cross-entropy loss. It was observed that
our proposed RMAF activation function outperformed the
other transfer functions with a record accuracies of 99.73%
and 98.77%, and 79.82% over CIFAR-10, CIFAR-100 and
MNIST, datasets respectively. The experiment on ImageNet
dataset using ResNet50 produced 97.60%. In Table 3, the
experiment on ImageNet dataset using ResNet50 produced
97.60% which is higher than the compared functions. More-
over, an improvement has been achieved by RMAF on
CIFAR datasets. The nonlinear properties of our proposed
RMAF activation function achieved efficient and better
training than the other activation functions. The nature of
RMAF led to more exploration of weights, negative and
positive gradients to improve training and classification
performance.
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TABLE 3. Classification performance of ResNet50, Alexnet, Squeezenet and Densenet121 on CIFAR-10, CIFAR-100, MNIST and ImageNet dataset for
different activation functions.

TABLE 4. Statistical features metrics on RMAF validation accuracy.

FIGURE 9. Resnet50: Comparison of training and validation accuracy of our proposed RMAF to two baseline (ReLU and Tanh) activation functions on
CIFAR10. (a) Training and Validation accuracy of ReLU achieved 95.9% and 89.5% respectively, (b) Training and Validation of Tanh had 92.2% and 86.6%
respectively. We show that our proposed function (c) achieves higher performance training and validation accuracy (i.e. 98.7% and 90.3%) compared to
ReLU (a) and Tanh (b) on CIFAR10 dataset.

C. DENSE CONNCECTED NEURAL NETWORK
In the experiment with DenseNet121, RMAF achieved higher
performance compared ReLU and other transfer functions
trained on 200 epochs. This result indicates that, RMAF has
the fastest training. Table 3 and 4 Fig. presents the various

performance on DenseNet121 which RMAF outperformed
the other functions.Moreover, Fig. 7 show the performance of
RMAF with DenseNet with CIFAR-10, CIFAR-100, MNIST
and ImageNet dataset. It could be seen that RMAF achieved
the highest performance among the other functions.
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FIGURE 10. Resnet50: Comparison of training and validation accuracy of our proposed RMAF to two baseline (ReLU and Tanh) activation functions on
CIFAR100. (a) Shows training and validation accuracy of ReLU achieving 75.7% and 61.2% respectively, (b) Training and Validation of Tanh had 64.1%
and 54.2% respectively. We show that our proposed function (c) achieves higher performance training and validation accuracy (i.e. 79.8% and 66.3%)
compared to ReLU (a) and Tanh (b) on CIFAR100 dataset.

TABLE 5. Statistic features.

FIGURE 11. Alexnet: Comparison of training and validation accuracy of our proposed RMAF with two baseline (ReLU and Tanh) activation functions on
CIFAR100 based Alexnet. (a) Shows training and validation accuracy of ReLU achieving 86.71% and 80.80% respectively, (b) Training and Validation of
Tanh had 85.65% and 78.06% respectively. We show that our proposed function (c) achieves higher performance training and validation accuracy
(i.e. 94.50% and 84.58%) compared to (a) and (b) on CIFAR100 dataset. Table 3, presents other variants of ReLU performance.

D. SQUEEZE NETWORK
In Table 3, 4, we present the accuracy of squeezeNet with
RMAF and other nonlinear functions trained on CIFAR-10,
CIFAR-100, MNIST and ImageNet dataset. The results indi-
cate that, RMAF performs faster during training compared to
the other transfer functions. Fig. 8 compares the performance
of RMAF with ReLU, ELU, SELU, PReLU, Tanh and Swish
where RMAF produced the highest accuracy. Fig. 12 presents
the accuracy curves of RMAF on squeezeNet with ReLU
and Tanh.

E. ImageNet CHALLENGE DATASET
In this work, we evaluated RMAF on the 1000-class Ima-
geNet dataset. The data consist of about 1.3M training images

which includes 50k images and 100k images meant for val-
idation and testing, respectively. We performed an evalua-
tion of the dataset and the RMAF on Resnet50, Alexnet,
SqueezeNet and DenseNet121 networks. To regularize the
network, the L2-weight decay term was set to 0.0005, used
40% and 60% drop-out in the two penultimate FC layers. We
re-sized the images to 256×256 pixels and per-pixel mean
subtracted. Training was performed with 128 × 128 random
crops and random horizontal flipping. In other to achieve
better regularization, we performed data augmentation during
training. In Table 3, we show the learning performance accu-
racy of ReLU, ELU, SELU, PReLU, Tanh, Swish and RMAF
on the adopted networks i.e. ResNet50, Alexnet, Squeezenet
and Densetnet. In the result provided in Table 3, RMAF
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FIGURE 12. Squeeznet: Comparison of training and validation accuracy of our proposed RMAF with two baseline (ReLU and Tanh) activation functions on
CIFAR100 based on Squeezenet. (a) Shows training and validation accuracy of ReLU achieving 84.85% and 82.36% respectively, (b) Training and
Validation of Tanh had 80.80% and 81.58% respectively. We show that our proposed function (c) achieves higher performance training and validation
accuracy (i.e. 90.50% and 86.45%) compared to (a) and (b) on CIFAR100 dataset. Table 3 presents other variants of ReLU performance.

achieved a comparable performance with the other transfer
functions. The differences are small because transfer func-
tions have minor influence on the training time (Jia, 2014).
We expect to improve RMAF in further implementation,
e.g. by faster exponential functions (Schraudolph, 1999).

VI. CONCLUSION AND FUTURE WORK
In this paper, a ReLU-Memristor-like activation function
(RMAF) was proposed to improve classification perfor-
mance of deep neural networks. The RMAF was based on
the properties of memristive window function, where the
function can adjust to deep networks. The RMAF consist
of a constant hyperparameter α and a threshold p making
the function smooth and non-monotonous in the network.
In addition, the threshold parameter p introduced in the
function allows for negative representations to flow through
the network during forward propagation and capable of
scaling to any given networks. These properties of RMAF
enable networks to benefit negative representation, which
achieves better performance. We investigated RMAF with
state of- the-art activation functions using MLP, ResNet
and over some benchmark (i.e. Winsconsin Breast cancer,
MNIST, Iris, Car evaluation, CIFAR-10, CIFAR-100 and
ImageNet) datasets. The performance of RMAF over MLP
achieved high accuracy than Sigmoid, Tanh, ReLU and
Swish. RMAF achieved better performance compared to
ReLU, ELU, SELU, PReLU, Tanh, Swish over ResNet50,
Alexnet, SqueezeNet, DenseNet121 and ImageNet dataset.
The experimental results confirmed the effectiveness of non-
linear nature of our proposed RMAF activation function,
which can improve deep networks performance.

Clearly, our adopted method is subject to some limitations
which will be addressed in future studies. Probably the most
relevant improvement and extension of this work would be
the consideration of further implementation of the learnable
alpha and threshold parameters, such as the modifications of
the ReLU example the learnable parameter in RelTanh [52].
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