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ABSTRACT In the past, Nyquist filters have been studied by many researchers. A pair of filters are said
to be biorthogonal partners of each other if their cascade forms a Nyquist filter. The theory and design
of traditional biorthogonal partners have been studied extensively. In this paper, we extend these results
to depth-L Nyquist filters and biorthogonal partners. Two potential applications of them are discussed in
fractionally spaced equalizer (FSE) and filter bank multicarrier (FBMC) systems. Moreover, the necessary
and sufficient condition is derived for the existence of an finite impulse response (FIR) depth-L biorthogonal
partner. We find out that the existence depends on the cardinality of the largest so-called congruous-zero set.
In addition, we will show how to design these filters by using the eigenfilter method. Finally, performance
comparisons are carried out to demonstrate the advantage of depth-L biorthogonal partners. It is shown that
the depth-L version is more robust against inter-symbol interference (ISI) and timing synchronization error
compared to the traditional biorthogonal partner.

INDEX TERMS Biorthogonal partner, filter bank multicarrier, fractionally spaced equalizer, Nyquist filter.

I. INTRODUCTION
Adigital filterP(z) is called a Nyquist(M ) filter1 if its impulse
response p(n) satisfies the property [1], [2]

p(Mn) = δ(n) (Nyquist(M ) property), (1)

where δ(n) = 1 if n = 0 and 0 if n 6= 0. Nyquist(M )
filters have found many applications in perfect reconstruction
filter banks, nonuniform sampling, interpolation, communi-
cations and so on. Various design methods for Nyquist(M )
filters have been proposed in [3]–[6], [7], [8]. The theory
of biorthogonal partners was first developed in [9] for the
single-input-single-output (SISO) case. Two digital filters
H (z) and F(z) are said to be biorthogonal partners of each
other with respect to an integer M if their cascade H (z)F(z)
forms a Nyquist(M ) filter. Biorthogonal partners have been
studied in a variety of digital signal processing techniques,
e.g., filterbank theory [1], [10], [11], exact and least-
squares digital interpolation [12], sampling theory [13], and
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1Amore general definition of Nyquist(M ) filter is p(Mn−k) = cδ(n−n0)
for some nonzero c, integer n0, and integer k , 0 ≤ k ≤ M − 1. One can use
simple delay and scaling operations to reduce it to the simplified form in (1).

fractionally spaced equalizers (FSE) in digital communica-
tions [14]. Then in [15], the idea of Nyquist(M ) and biorthog-
onal partners was extended to the multiple-input-multiple-
output (MIMO) case. However, as we will see in this paper,
biorthogonal partners can only achieve inter-symbol interfer-
ence (ISI) free transmission for additive white Gaussian noise
(AWGN) channel when applied to FSE systems. When the
channel is frequency selective, they suffer from ISI.

As of today, orthogonal frequency division multiplexing
(OFDM) systems have been the dominant technology for
broadband multicarrier communications [16]. They have the
great advantage of being robust against ISI and simple one-
tap equalizers can be used at the receivers for channel equal-
ization. However, it is also known that OFDM systems suffer
from severe out-of-band spectral leakage and they are sensi-
tive to carrier frequency offset. Therefore, in recent years fil-
ter bankmulticarrier (FBMC) systems have been promoted as
an alternative to OFDM systems [17]–[19]. The transmitting
and receiving filters in FBMC systems have good frequency
responses inherited from filter bank designs. Nevertheless,
when the transmission channel is frequency selective, FBMC
systems suffer from ISI and additional equalizers are often
needed at the receiver to remove inter-carrier and intra-carrier

75512 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4108-420X


C.-F. Pai et al.: Depth-L Nyquist (M) Filters and Biorthogonal Partners

interference. Therefore, it is desirable to have FBMC systems
that can achieve ISI-free transmission for frequency selective
channels with simple one-tap equalizers, likeOFDMsystems.
In this paper, we will explore the connection of depth-L
biorthogonal partners with ISI-free FBMC systems.

Our paper offers two main contributions:
1)We extend the concept of Nyquist(M ) filters and develop

depth-L Nyquist(M ) filters. A digital filter P(z) is called a
depth-L Nyquist(M ) filter if its impulse response p(n) satis-
fies the property

p(Mn− k) = γkδ(n), k = 0, 1, · · · ,L, (2)

where {γk} are constants, not all zeros. We then have the
corresponding definition of depth-L biorthogonal partners.
When the depth L is equal to 0, depth-L Nyquist(M ) filters
and biorthogonal partners reduce to traditional Nyquist(M )
filters and biorthogonal partners respectively. Moreover,
the necessary and sufficient condition is derived for the exis-
tence of a finite impulse response (FIR) depth-L biorthogonal
partner. It turns out that the existence depends on the zero
locations rather than the length of the filter. In addition,
the eigenfilter method is adopted for the design of depth-L
Nyquist(M ) filters and biorthogonal partners. Performance
comparisons are provided to demonstrate the advantage of
depth-L biorthogonal partners. It is shown that the depth-L
version is more robust against ISI and timing synchronization
error compared to the traditional biorthogonal partner.

2) Two potential applications of depth-L biorthogonal part-
ners are discussed. One is for FSE systems. We will show
that when the transmitting and receiving filter in an FSE
system are depth-L biorthogonal partners of each other, then
it achieves ISI-free transmission for any FIR channel of
order≤ L. Another application is for FBMC systems.We first
extend the theory of depth-L biorthogonal partners to the
N -pair case. Then it is shown that when these N -pair depth-
L biorthogonal partners are applied to FBMC systems,
they can achieve ISI-free transmission for any FIR channel
of order ≤ L.
The remainder of this paper is organized as follows.

In Section II, Nyquist(M ) filters and conventional biorthogo-
nal partners are briefly reviewed. In Section III, the concept
of Nyquist(M ) filters is first extended to that of depth-
L Nyquist(M ) filters. We then have definitions of depth-
L and N -pair depth-L biorthogonal partners. After that,
two potential applications of them in communications are
described. In Section IV, the concept of congruous zeros
is discussed. Then we derive the necessary and sufficient
condition for the existence of an FIR depth-L biorthogonal
partner. In Section V, we adopt the eigenfilter method for
the design of depth-L Nyquist(M ) filters and biorthogonal
partners. In Section VI, performance comparisons are carried
out to demonstrate the advantage of depth-L biorthogonal
partners. The conclusion is given in Section VII.
Notations: Boldfaced lower case and upper case letters are

used to denote column vectors andmatrices, respectively. The
notations AT denote the transpose of the matrix A. For any

FIGURE 1. (a) Nyquist(4) filter. (b) Depth-2 Nyquist(8) filter.

positive integerM and any integerm, the notation ((m))M rep-
resentsmmodulo M, which is a number between 0 andM−1.
E[X ] stands for the expected value of the random variable X .
The notation [x(n)]↓M denotes theM -fold decimated version
of x(n), i.e., [x(n)]↓M = x(Mn), and [X (z)]↓M denotes the
z-transform of [x(n)]↓M . An empty set is denoted as φ.

II. REVIEW: NYQUIST(M) FILTERS AND BIORTHOGONAL
PARTNERS
The definition of a Nyquist(M ) filter p(n) is given by (1), i.e.,

p(Mn) = δ(n).

That is, in the time domain, it has regular zero-crossings at
nonzero multiples of M and moreover p(0) = 1. Fig. 1(a)
shows an example of a Nyquist(4) filter. In other words,
a Nyquist(M ) filter satisfies [p(n)]↓M = 1, i.e., in the
z-domain [P(z)]↓M = 1. Express P(z) in the polyphase form
with respect to M :

P(z) =
M−1∑
k=0

zkPk (zM ). (3)

Then equivalently, a filter P(z) is said to be Nyquist(M ) if its
0-th polyphase component is equal to one, i.e.,

P0(z) = 1.

An important property [2] of Nyquist(M ) filters is that an
M -fold decimated version of the interpolated signal with
ratio M using a Nyquist(M ) filter returns the original signal
without distortion.

Two transfer functions H (z) and F(z) are said to form a
biorthogonal pair [9] with respect to an integer M if their
cascade P(z) = H (z)F(z) forms a Nyquist(M ) filter, i.e.,

[P(z)]↓M = [H (z)F(z)]↓M = 1.
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We say that H (z) is a biorthogonal partner of F(z). Note that
if M is changed, the two filters may not remain partners.
Also H (z) and F(z) can be interchanged without altering this
property. We can regardH (z) and F(z) as any pair that defines
a factorization of a Nyquist(M ) filter P(z). The theory and
design of biorthogonal partners have been studied extensively
in [9]. In particular, the necessary and sufficient condition for
the existence of an FIR biorthogonal partner is proved therein:
Theorem 1: [9] Suppose F(z) is an FIR filter. Let F(z) =∑M−1
k=0 z−kFk (zM ). Then there exists an FIR filter H (z) such

that [H (z)F(z)]↓M = 1 if and only if the greatest common
divisor D(z) of the M polyphase components {Fk (z)}

M−1
k=0 is

trivial, i.e, D(z) has the form D(z) = dz−N for some nonzero
constant d and integer N . �

III. DEPTH-L NYQUIST(M) FILTERS AND BIORTHOGONAL
PARTNERS
The definition of depth-L Nyquist(M ) filters is given by (2),
i.e.,

p(Mn− k) = γkδ(n), k = 0, 1, · · · ,L.

That is, in the time domain, it has a group of L+1 consecutive
zero-crossings separated by M samples. Fig. 1(b) shows an
example of a depth-2 Nyquist(8) filter. Note from the fig-
ure that the impulse response has zero crossings at p(8n),
p(8n − 1) and p(8n − 2) for nonzero n. Express P(z) in the
polyphase form as in (3). Then equivalently, a filter P(z) is
said to be depth-L Nyquist(M ) if its first L + 1 polyphase
components are constants, not all zeros, i.e.,

Pk (z) = γk , k = 0, 1, · · · ,L. (4)

Note that (4) is also equivalent to

[P(z)z−k ]↓M = γk , k = 0, 1, · · · ,L.

From the above discussion, it is clear that a depth-L
Nyquist(M ) filter reduces to a traditional Nyquist(M ) filter
when L = 0.

Having the definition of depth-L Nyquist(M ) filters, we are
ready to define depth-L biorthogonal partners. Two filters
H (z) and F(z) are said to be depth-L biorthogonal partners
of each other with respect to an integer M if their cascade
P(z) = H (z)F(z) forms a depth-L Nyquist(M ) filter, i.e.,

[P(z)z−k ]↓M = [H (z)F(z)z−k ]↓M = γk (5)

for k = 0, 1, · · · ,L, where {γk} are arbitrary constants, not
all zeros.
Extension to the N -pair Case: The definition of depth-
L biorthogonal partners can be extended to N pairs of
filters. Two sets of filters {F0(z),F1(z), · · · ,FN−1(z)} and
{H0(z),H1(z), · · · ,HN−1(z)} are said to form an N -pair
depth-L biorthogonal partners if they satisfy

[Hj(z)Fi(z)z−n]↓M =

{
0, i 6= j
γi,n, i = j

(6)

for i, j = 0, 1, · · · ,N − 1 and n = 0, 1, · · · ,L, where
{γi,n} are arbitrary constants, not all zeros for a fixed value

FIGURE 2. The block diagram of the FSE system.

of i. Notice that Hi(z) and Fi(z) form a pair of depth-L
biorthogonal partners for each i = 0, 1, · · · ,N − 1. Below
we will describe two potential applications of these filters in
communications.

A. APPLICATION OF DEPTH-L BIORTHOGONAL PARTNERS
IN FSE
Consider the FSE system shown in Fig. 2. The channel,
transmitting filter, and receiving filter are respectively given
by C(z), F(z), and H (z). Using the polyphase identity in
multirate theory [1], [2], we know that the system from x(n)
to y(n) is linear time-invariant (LTI) with transfer function

T (z) = [H (z)C(z)F(z)]↓M . (7)

For AWGN channel, we have C(z) = 1. In this case, one
can see that the FSE system is free of ISI if and only if F(z)
and H (z) are birothogonal partners of each other with respect
to M . This is because the overall transfer function from x(n)
to y(n) is T (z) = [H (z)F(z)]↓M = 1 for a biorthogonal pair
{F(z),H (z)}.

On the other hand, when the channel is frequency selec-
tive, in order to achieve ISI-free transmission, H (z) needs
to be designed as the biorthogonal partner of the product
C(z)F(z). In this case, H (z) will become dependent on the
channel C(z). However in practice, it is often desirable to
have channel-independent transmitting and receiving filters
that can achieve ISI-free transmission [20]. Below we will
see how this can be achieved.

Let C(z) be an FIR channel of order ≤ L, i.e., C(z) =∑L
n=0 c(n)z

−n. Substituting C(z) into (7), we get

T (z) =
L∑
n=0

c(n)[H (z)F(z)z−n]↓M . (8)

Thus the FSE system is ISI-free for any FIR channel C(z) of
order ≤ L if and only if

[H (z)F(z)z−n]↓M = γn, n = 0, 1, · · · ,L, (9)

where {γn} are constants, not all zeros. From (5), the ISI-free
condition (9) is equivalent to that H (z) and F(z) are depth-L
biorthogonal partners of each other. In this case, the transfer
function is

T (z) =
L∑
n=0

c(n)γn.

We conclude that H (z) and F(z) form a pair of depth-
L biorthogonal partners if and only if the FSE system is
ISI-free for any FIR channel of order ≤ L.
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FIGURE 3. The block diagram of the FBMC system.

B. APPLICATION OF N-PAIR DEPTH-L BIORTHOGONAL
PARTNERS IN FBMC
Fig. 3 shows the block diagram of the FBMC system with
transmitting filters Fk (z) and receiving filters Hk (z) for k =
0, 1, · · · ,N − 1. In the design of FBMC systems, the num-
ber of subcarriers N is usually smaller than the decima-
tion or interpolation ratio M [2], [20]. Let us look at the
system from the i-th input to the j-th output. From polyphase
identity, we know that it is LTI with transfer function
Tji(z) = [Hj(z)C(z)Fi(z)]↓M for i, j = 0, 1, · · · ,N − 1.

To achieve ISI-free transmission, the transfer functionmust
satisfy

Tji(z) =

{
0, i 6= j
αi, i = j

, (10)

where αi is the gain of the i-th subcarrier. In practice, it is
often desirable to have channel-independent transmitting and
receiving filters that can achieve ISI-free transmission, like
OFDM systems. Let C(z) be an FIR channel of order ≤ L.
Then the transfer function from the i-th input to the j-th output
can be rewritten as

Tji(z) =
L∑
n=0

c(n)[Hj(z)Fi(z)z−n]↓M . (11)

Wewould like to have ISI-free transmission for any c(n). This
is achieved if and only if the filtersHj(z) and Fi(z) satisfy (6).
Substituting (6) into (11) and (10), the i-th subcarrier gain
would be

αi =

L∑
n=0

c(n)γi,n.

In conclusion, the FBMC system achieves ISI-free trans-
mission for any FIR channel C(z) of order ≤ L if and only
if its transmitting and receiving filters form N -pair depth-L
biorthogonal partners.

IV. EXISTENCE OF AN FIR DEPTH-L BIORTHOGONAL
PARTNER
In this section, we will discuss the existence of an FIR depth-
L biorthogonal partner. It turns out that the existence depends
on the zero locations rather than the length of the filter. As we
will see below, the existence of an FIR depth-L biorthog-
onal partner is closely related to the so-called congruous
zeros [2], [21].

A. DEFINITIONS AND EXAMPLES
Definition 1 (Congruous zeros): Distinct zeros α1, α2,
· · · , αρ of F(z) are called congruous zeros with respect to
an integer M if

αM1 = α
M
2 = · · · = α

M
ρ .

Congruous zeros are distinct. Their phases differ by an
integer multiple of 2π

M but their magnitudes are identical.
They can be considered as rotations of each other. We can
express each as a rotation of α1:

αk = α1 W nk , 0 ≤ nk < M ,

where

W = e−j
2π
M .

Because the congruous zeros are distinct by definition,
the integers nk are also distinct. Note that the largest possible
number of zeros that are congruous is M .
Definition 2: Let an arbitrary set S = {s1, s2, · · · , sρ}.

Define the following notation

W nS , {s1W n, s2W n, · · · , sρW n
}

for some integer n. In other words, each element inW nS is a
rotated version of the corresponding element in S.

Let Z denote the set of all distinct zeros of F(z). We can
partition Z into disjoint subsets {Z (k)

} containing congruous
zeros with respect to M . That is,

Z =
⋃
k

Z (k),

where the subsets {Z (k)
} satisfy

Z (i)
∩W nZ (j)

= φ

for i 6= j, n = 0, 1, · · · ,M − 1. The subsets {Z (k)
} are

called congruous-zero sets of F(z) with respect to M . More-
over, a congruous-zero set Z (k) is said to be complete if its
cardinality is equal to M , i.e.,

Z (k)
= {α, αW , · · · , αWM−1

}

for some α ∈ C. As we will show later, the necessary and
sufficient conditions for the existence of an FIR biorthogonal
partner (Theorem 1) and depth-L biorthogonal partner are
closely related to congruous zeros. Below we first provide
two examples to illustrate the concept of congruous zeros.
Example 1: Suppose the set of all distinct zeros of F(z) is

given by

Z =
{
3e−j

2π
7 ,

2, 2e−j
2π
8 3,

4e−j
2π
8 2, 4e−j

2π
8 3, 4e−j

2π
8 4, 4e−j

2π
8 7
}.

Let M = 8 and W = e−j
2π
8 . Then the zeros of F(z) can be

partitioned into the following three congruous-zero sets:

Z (1)
= {3e−j

2π
7 },
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Z (2)
= {2, 2W 3

},

Z (3)
= {4W 2, 4W 3, 4W 4, 4W 7

}.

One can verify that Z =
⋃3

k=1Z (k) and Z (i)
∩W nZ (j)

= φ,
for i 6= j, n = 0, 1, · · · , 7.
Example 2: Suppose the set of all distinct zeros of F(z) is

given by

Z =
{
3e−j

π
7 , (3e−j

π
7 )e−j

2π
3 2

3e−j
2π
7 , (3e−j

2π
7 )e−j

2π
3 , (3e−j

2π
7 )e−j

2π
3 2}.

Let M = 3 and W = e−j
2π
3 . Then the zeros of F(z) can be

partitioned into the following two congruous-zero sets:

Z (1)
= {3e−j

π
7 , (3e−j

π
7 )W 2

},

Z (2)
= {3e−j

2π
7 , (3e−j

2π
7 )W , (3e−j

2π
7 )W 2

}.

One can verify that Z =
⋃2

k=1Z (k) and Z (i)
∩W nZ (j)

= φ,
for i 6= j, n = 0, 1, 2. Note that 3e−j

π
7 and 3e−j

2π
7 do not

belong to the same congruous-zero set because their phases
do not differ by an integer multiple of 2π

M . Also note thatZ (2)

is a complete congruous-zero set because its cardinality is
equal to M = 3.

B. NECESSARY AND SUFFICIENT CONDITION
Using congruous zeros, we will first derive an equivalent
necessary and sufficient condition for Theorem 1.
Theorem 2: Suppose F(z) is an FIR filter. Let F(z) =∑M−1
k=0 z−kFk (zM ). The greatest common divisor D(z) of the

M polyphase components {Fk (z)} is trivial, i.e, D(z) has the
form D(z) = dz−N for some nonzero constant d and integer
N if and only if the cardinality of the largest congruous-zero
set of F(z) with respect to M is smaller than M . �

Proof: We first prove the ‘‘only if" part. Suppose the
cardinality of the largest congruous-zero set of F(z) with
respect to M is M . This means that F(z) has M congruous
zeros, say α, αW , · · · , αWM−1, where W = e−j

2π
M . Thus

F(z) has a factor

(zM − αM ) = (z− α)(z− αW ) · · · (z− αWM−1),

i.e., F(z) = (zM − αM )F̂(z) for some FIR F̂(z). Consider
the polyphase form F̂(z) =

∑M−1
k=0 z−k F̂k (zM ). Multiply both

sides by (zM − αM ) and we obtain

F(z) =
M−1∑
k=0

z−k (zM − αM )F̂k (zM ).

One can see that the polyphase components of F(z) are given
by Fk (z) = (z− αM )F̂k (z). Obviously, these polyphase com-
ponents {Fk (z)} have a nontrivial common factor (z − αM ).

Conversely, suppose the greatest common divisor of {Fk (z)}
is nontrivial, say D(z), i.e., Fk (z) = D(z)F̂k (z). Then

F(z) =
M−1∑
k=0

z−kFk (zM ) =
M−1∑
k=0

z−kD(zM )F̂k (zM )

= D(zM )
M−1∑
k=0

z−k F̂k (zM ).

Note thatD(zM ) has at least one factor of the form (1−cz−M )
for some nonzero constant c. This implies that F(z) has M
congruous zeros c

1
M e−j

2πk
M for k = 0, 1, · · · ,M − 1. In other

words, the cardinality of the largest congruous-zero set of
F(z) is M .

In the following, we will discuss the necessary and suffi-
cient condition for the existence of an FIR depth-L biorthog-
onal partner. Suppose an FIR F(z) is given. An FIR H (z) is a
depth-L biorthogonal partner of F(z) if

[H (z)F(z)z−k ]↓M = γk , k = 0, 1, · · · ,L, (12)

where {γk} are constants, not all zeros. (12) can be formulated
into the matrix form as


F(z)

z−1F(z)
...

z−LF(z)

H (z)


↓M

=


γ0
γ1
...

γL

 , γ . (13)

Express F(z) and H (z) in their polyphase form: F(z) =∑M−1
k=0 z−kFk (zM ),H (z) =

∑M−1
k=0 zkHk (zM ). By substituting

the polyphase forms of F(z) and H (z) into (13), we obtain

FL(z)h(z) = γ , (14)

where FL(z) is shown in (15), as shown at the bottom of the
page and h(z) =

[
H0(z) H1(z) · · · HM−1(z)

]T . We can see
from above that finding an FIR depth-L biorthogonal partner
H (z) is equivalent to solving (14) for an FIR vector h(z). Note
that the existence of an FIR solution for h(z) is not always
guaranteed. Later we will derive the necessary and sufficient
condition on FL(z) such that an FIR solution for h(z) exists.
Now suppose the (L+1)×M matrix FL(z) has an FIR right

inverse G(z), i.e.,

FL(z)GL(z) = IL .

Then a solution to (14) can be obtained by simply taking a
nonzero linear combination of the columns of GL(z), given
by

h(z) = GL(z)γ . (16)

FL(z) ,


F0(z) F1(z) F2(z) · · · FM−1(z)

z−1FM−1(z) F0(z) F1(z) · · · FM−2(z)
...

...
...

. . .
...

z−1FM−L(z) z−1FM−L+1(z) z−1FM−L+2(z) · · · z−1FM−L−1(z)

 (15)
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Therefore, a sufficient condition for the existence of an FIR
depth-L biorthogonal partner H (z) is that FL(z) has an FIR
right inverse GL(z). The existence of an FIR right inverse
of FL(z) has been studied in [22] and the result is stated as
follows. Let Z denote the set of all distinct zeros of F(z).
It was proven in Corollary 2 [22] that the (L+ 1)×M matrix
FL(z) with 0 ≤ L < M has an FIR right inverse if and only if⋂

0≤`0<`1<···<`L≤M−1

(Z`0 ∪ Z`1 ∪ · · · ∪ Z`L ) = φ, (17)

where Z`k = W `kZ , k = 0, 1, · · · ,L.
From the above discussions, we conclude that a sufficient

condition for the existence of an FIR depth-L biorthogonal
partner is given by (17), which says that the intersection of
the unions of any L + 1 sets of all M rotated zero sets of Z
with angles 2π

M `, ` = 0, 1, · · · ,M−1 of F(z) is an empty set.
In fact, this seemingly complicated condition is equivalent
to a simpler one related to congruous zeros as stated in the
following theorem:
Theorem 3: Let Z denote the set of all distinct zeros of

F(z). Let us partition Z as Z =
⋃

k Z (k), where {Z (k)
}

are congruous-zero sets of F(z) with respect to M . Then the
(L + 1) × M matrix FL(z) in (15) has an FIR right inverse
if and only if the cardinality of the largest {Z (k)

} is less than
M − L.

Proof: See Appendix.
Using Theorem 3, we conclude that if the cardinality of

the largest {Z (k)
} is less than M − L, then an FIR depth-L

biorthogonal partner H (z) exists, i.e., h(z) is given by (16).
It turns out that this sufficient condition is also a necessary
condition as stated in the following theorem:
Theorem 4 (Existence of an FIR Depth-L Biorthogonal

Partner): Suppose F(z) is an FIR filter. Then there exists an
FIR filter H (z) such that H (z) and F(z) are depth-L biorthog-
onal partners of each other if and only if the cardinality of the
largest congruous-zero set of F(z) with respect to M is less
than M − L. �

Proof: The ‘‘if" part has been proved in the pre-
vious discussions. Here we prove the ‘‘only if" part. Let
Z ′ = {αWm1 , αWm2 , · · · , αWmρ } be the congruous-
zero set of F(z) with the largest cardinality ρ. Also let
{n1, n2, · · · , nM−ρ} = {0, 1, · · · ,M−1}\{m1,m2, · · · ,mρ}.
Note that from the discussions in section III-A, we know
that H (z) and F(z) are depth-L biorthogonal partners of each
other if and only if [F(z)C(z)H (z)]↓M is a nonzero constant
for all C(z) of order ≤ L. Suppose ρ ≥ M − L. Let
us choose an Lth order C(z) as C(z) = (z − αW n1 )(z −
αW n2 ) · · · (z − αW nM−ρ )Ĉ(z) for some FIR Ĉ(z). This is
possible because L ≥ M − ρ. In this case, the cardinality of
the largest congruous-zero set ofC(z)F(z) will beM . Then by
Theorem 2, there does not exist H (z) such that
[F(z)C(z)H (z)]↓M is a nonzero constant. Therefore, we con-
clude that when ρ ≥ M − L, an FIR depth-L biorthogonal
partner does not exist.
ANote on the Existence of FIR N -Pair Depth-L Biorthog-
onal Partners: The necessary and sufficient condition on

the existence of N -pair depth-L biorthogonal partners is still
an open problem. Hopefully, our results on the single-pair
case will inspire some other breakthroughs in solving this
challenging problem.

V. DESIGN METHODS FOR DEPTH-L NYQUIST(M)
FILTERS AND BIORTHOGONAL PARTNERS
In the past, the design of Nyquist(M ) filters have been studied
extensively [3]–[6], [7], [8]. Many of these methods can be
extended to the case of depth-L Nyquist(M ) filters. In this
section, we will adopt the eigenfilter method [5] due to its
capability to incorporate various time and frequency-domain
constraints easily. Below we will show the design of depth-L
Nyquist(M ) and biorthogonal partners using the eigenfilter
method. As the necessary and sufficient condition for the
existence of N -pair case is still unknown, only the single-pair
case will be considered.

A. DESIGN OF DEPTH-L NYQUIST FILTERS
Suppose we want to design a depth-L Nyquist(M ) low-pass
filterP(z). To prevent phase distortion, we constrainP(z) to be
a linear-phase filter. Due to the coefficient symmetry, it can be
shown that for even L, only Type-1 and Type-3 linear phase
filters can satisfy the depth-L Nyquist(M ) constraint, whereas
for odd L, only Type-2 and Type-4 linear phase filters can
satisfy the depth-L Nyquist(M ) constraint. Below we will
describe our design method for even L and Type-1 linear
phase filters, which can easily be modified for other cases.

Suppose L is even and P(z) is a Type-1 linear phase filter
of even order Np = 2Kp. For notational simplicity, we con-
sider zero phase filter P(z) =

∑Kp
n=−Kp p(n)z

−n, where p(n)
satisfies the symmetry condition p(n) = p(−n). As a result,
the frequency response P(ejω) is the same as the amplitude
response PR(ω), given by

P(ejω) = PR(ω) =
Kp∑
n=0

bncos(ωn), (18)

where

bn =

{
2p(n), 1 ≤ n ≤ Kp
p(n), n = 0

. (19)

For the coefficient symmetry and notational simplicity,
the depth-L Nyquist(M ) constraint is chosen as p(Mn− k) =
γkδ(n) for k = −L

2 ,−
L
2 + 1, · · · , L2 . One can obtain the

condition in (2) by applying a simple delay operation. Hence,
the coefficients {bn} in (19) must satisfy

bMn−k = 0

for n = 1, 2, · · · and k = −L
2 ,−

L
2 + 1, · · · , L2 . Thus the

amplitude response in (18) can be expressed as

PR(ω) = bT c(ω), (20)

where b and c(ω) is shown respectively in (21) and (22), as
shown at the bottom of next page.
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Consider approximating a low-pass filter with passband
edge ωp and stopband edge ωs. The cost function for the
eigenfilter design can be written as

ε = (1− α)
∫ ωp

0
[PR(0)− PR(ω)]2

dω
π

+α

∫ π

ωs

[0− PR(ω)]2
dω
π
,

where 0 ≤ α ≤ 1. The first and second terms on the
right hand side represent the passband and stopband error
respectively. Substituting (20) into the above equation, we get

ε = bT [αCs + (1− α)Cp]b , bTCb, (23)

where the matrices Cs =
∫ π
ωs
c(ω)cT (ω) dω

π
, Cp =

∫ ωp
0 (1 −

c(ω))(1 − c(ω))T dω
π

and 1 is the column vector of all 1’s
with appropriate size. The matrix C is real, symmetric, and
positive definite, so by Rayleigh’s principle [23], the optimal
b which minimizes ε in (23) subject to a unit norm constraint
(bTb = 1) is simply the eigenvector corresponding to the
minimum eigenvalue of C.

In Fig. 4, the magnitude responses are plotted for
depth-L Nyquist(M ) low-pass filters P(z), where L = 0, 2, 4
and M = 16. Here, P(z) is of order Np = 120 with ωp =
0.0563π and ωs = 0.0688π . Besides, the tradeoff parameter
is chosen to be α = 0.98. One can observe that as the depth
L increases, the magnitude response becomes worse. This is
because as L increases, more filter taps are set to zeros.

In Fig. 5, the magnitude responses are plotted for depth-
L Nyquist(M ) low-pass filters P(z), where L = 1, 3, 5 and
M = 16. Here, P(z) is a Type-2 linear phase filter of order
Np = 119 with ωp = 0.0563π and ωs = 0.0688π . Besides,
the tradeoff parameter is chosen to be α = 0.98.

B. DESIGN OF DEPTH-L BIORTHOGONAL PARTNERS
SupposeF(z) is a predetermined low-pass filter. Our goal is to
findH (z), a depth-L biorthogonal partner of F(z) with respect
to M . We will describe our method for even L. To prevent
phase distortion and for simplicity, both F(z) and H (z) are
constrained to be Type 1 linear-phase filters. Assume that
F(z) is of even order Nf = 2Kf , F(z) =

∑Kf
n=−Kf f (n)z

−n,
and f (n) satisfies the symmetry condition f (n) = f (−n).
Also assume that H (z) is of even order Nh = 2Kh, H (z) =∑Kh

n=−Kh h(n)z
−n, and h(n) satisfies the symmetry condition

h(n) = h(−n). Then the cascade P(z) = F(z)H (z) is of even
order Np = Nf + Nh = 2Kp, given by

P(z) = F(z)H (z) =
Kp∑

n=−Kp

p(n)z−n,

FIGURE 4. Magnitude responses of depth-L Nyquist(M) low-pass filters
with L = 0,2,4, M = 16.

FIGURE 5. Magnitude responses of depth-L Nyquist(M) low-pass filters
with L = 1,3,5, M = 16.

where p(n) can be shown as

p(n) =
Kh∑

k=−Kh

h(k)f (n− k),−Kp ≤ n ≤ Kp. (24)

Our goal is to set P(z) as a depth-L Nyquist(M ) filter,
i.e., p(Mn − k) = γkδ(n), k = −L

2 ,−
L
2 + 1, · · · , L2 . That

is, p(n) must satisfy

p(Mn− k) = 0 (25)

for n = 1, 2, · · · and k = −L
2 ,−

L
2 + 1, · · · , L2 . We only

consider positive n since p(n) = p(−n). Using (24) and
the coefficient symmetry of h(n), the constraint (25) can be
expressed in the matrix form as

Fh = 0, (26)

b ,
[
b0 b1 · · · bM− L

2−1
bM+ L

2+1
· · · b2M− L

2−1
b2M+ L

2+1
· · ·

]T
(21)

c(ω) ,
[
1 cosω · · · cos(M −

L
2
− 1)ω cos(M +

L
2
+ 1)ω · · · cos(2M −

L
2
− 1)ω cos(2M +

L
2
+ 1)ω · · ·

]T
(22)
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FIGURE 6. Magnitude responses of depth-L biorthogonal partners with
L = 0,2,4, M = 32.

where the matrix F is given in (27), as shown at the
bottom of this page and the (Kh + 1) × 1 vector h =[
h(0) 2h(1) · · · 2h(Kh)

]T . Note that in (27) JKh is the Kh ×
Kh row-reversed identity matrix with its (i, j)th entry given by
[JKh ]ij = δ(i + j − Kh − 1). Also note that the matrix F in
general has full row rank. Thus for a given FIR filter F(z),
a nonzero solution h to the equation (26) exists only if the
number of columns of F is larger than the number of rows,
which is a necessary condition for the existence of an FIR
depth-L biorthogonal partner H (z).
Assume that the above necessary condition is satisfied.

Then let Fnull be a matrix whose columns form a basis for the
null space of F. Thus the filter coefficients h can be chosen
as a nonzero linear combination of the columns of Fnull , i.e.,

h = Fnullb, (28)

where b is an arbitrary nonzero vector of appropriate size.
Next, having h in this form, we can apply the eigenfil-
ter method introduced earlier for h(n) to approximate the

low-pass filter. The stopband error εs and passband error εp
are then obtained. The total error is of the form ε = hTCh for
some positive definite matrix C. Substituting the constraint
of depth-L biorthogonal partners (28), it follows that the total
error becomes

ε = bTFTnullCFnullb.

Since the matrix FTnullCFnull is real, symmetric, and positive
definite, we can apply Rayleigh’s principle to get b such
that the total error ε is minimized. Finally, the biorthogonal
partner h(n) can be easily obtained from (28).
In Fig. 6, we plot the magnitude responses for

depth-L biorthogonal partners low-pass filters H (z), where
L = 0, 2, 4 and M = 32. Here, the predetermined low-
pass filter F(z) designed by eigenfilter method is of order
Nf = 30 with ωp = 0.0313π and ωs = 0.0469π . The
filter H (z) is of order Nh = 90 with the same ωp and ωs
as those of F(z). Besides, the tradeoff parameter is chosen to
be α = 0.98. One can observe that as the depth L increases,
the magnitude response becomes worse. This is because as
L increases, the number of constraints in (26) increases.
Although the magnitude response of depth-L biorthogonal
partners becomes worse as L increases, the existence of more
zero crossings improves the robustness against ISI for FSE
systems with frequency selective channels and timing syn-
chronization error, as we will demonstrate below. Therefore
in practice, there is a tradeoff between magnitude response
and ISI robustness when we choose the value of L.

VI. PERFORMANCE COMPARISONS
In this section, we will compare the bit error rate (BER)
performance of depth-0 and depth-2 biorthogonal partners
in the FSE system shown in Fig. 7, which is the same as
in Fig. 2 with an equalizer E(z) added at the receiver. To sum
up, the advantage of depth-L biorthogonal partners is being
more robust against ISI and time synchronization error.

F ,



f (M −
L
2
+ Kh) f (M −

L
2
+ Kh − 1) · · · f (M −

L
2
− Kh)

f (M −
L
2
+ Kh + 1) f (M −

L
2
+ Kh) · · · f (M −

L
2
− Kh + 1)

...
...

. . .
...

f (M +
L
2
+ Kh) f (M +

L
2
+ Kh − 1) · · · f (M +

L
2
− Kh)

f (2M −
L
2
+ Kh) f (2M −

L
2
+ Kh − 1) · · · f (2M −

L
2
− Kh)

...
...

. . .
...

f (2M +
L
2
+ Kh) f (2M +

L
2
+ Kh − 1) · · · f (2M +

L
2
− Kh)

...
...

. . .
...





0 1
2JKh

1 0T

0 1
2 IKh


(27)
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FIGURE 7. The block diagram of the FSE system with an equalizer E(z).

FIGURE 8. BER vs SNR of FSE systems under AWGN channel, using
depth-L biorthogonal partners where L = 0,2, M = 32.

A. SYSTEM DESCRIPTION
The system in Fig. 7 is set as follows. The modulation is
64QAM, sampling ratioM = 32 and F(z) is the transmitting
filter of order Nf = 30 given in Section V-B. The receiv-
ing filter H (z) is either a depth-0 or a depth-2 biorthogonal
partner designed in Section V-B. The channel C(z) will be
set as either AWGN or a 3-tap FIR for different purposes of
performance comparison. An equalizer E(z) is employed to
recover x(n) from y(n). In the following,E(z) will be designed
as either a 5-tap minimum mean squared error (MMSE)
equalizer or simply an 1-tap equalizer. The BER values are
averaged over 6×107 bits sent by the transmitter. The signal-
to-noise ratio (SNR) is defined as Px

Pq
, where Px and Pq are

respectively the powers of the signal x(n) and noise q(n)
in Fig. 7. Because the impulse response of the transmitting
filter F(z) has unit norm, Px is also equal to the transmission
power.

B. UNDER AWGN CHANNEL
Let the channel in Fig. 7 be AWGN, i.e., C(z) = 1. For
both depth-0 and depth-2 cases, the transfer functions are
[H (z)F(z)]↓M = γ0. Therefore, zero-forcing can be achieved
by using an 1-tap equalizer, E(z) = 1

γ0
. From Fig. 8, we see

that for a fixed transmitting filter F(z), when the receiving
filter H (z) is designed as its depth-0 or depth-2 biorthogonal
partner, their BER performances are very close to each other.
This is because both depth-0 and depth-2 biorthogonal part-
ner are able to achieve ISI-free transmission under AWGN
channel.

Next we consider the scenario where the FSE system
suffers from timing synchronization error. In Fig. 9, we can

FIGURE 9. BER vs synchronization error of FSE systems under AWGN
channel at SNR = 25dB, using depth-L biorthogonal partners where
L = 0,2, M = 32.

observe that depth-0 is more sensitive to the timing synchro-
nization error. That is, the BER degradation due to timing
synchronization error of the depth-0 case is more severe than
that of the depth-2 case.

C. UNDER 3-TAP FIR CHANNEL
Let C(z) in Fig. 7 be a multipath fading channel with three
taps, where each tap c(n) is an independently and identically
distributed (iid) zero mean complex Gaussian random vari-
able with variance σ 2

n such that
∑
σ 2
n = 1. More specifically,

we take E[c(n)c(n − k)] = σ 2
n δ(k), where σ

2
n =

1
3 for

n = 0, 1, 2. A total of 103 random channels are generated
in the simulation. In this case, the depth-0 biorthogonal part-
ner suffers from ISI. Thus two different equalizers E(z) are
considered, an 1-tap equalizer and a 5-tap MMSE equalizer.
Note that the noise at the input of E(z) is colored and hence
the MMSE equalizer is designed for colored noise [2]. On the
other hand, the depth-2 biorthogonal partner continues to be
able to achieve ISI-free transmission and hence only an 1-tap
equalizer is needed.

Fig. 10 shows that the BER performance of the depth-2
case is significantly better than that of the depth-0 case when
E(z) is an 1-tap equalizer in both cases. This is because the
depth-2 biorthogonal partner can achieve ISI-free transmis-
sion under FIR channel of order≤ 2, whereas the depth-0 one
suffers from ISI. Furthermore, even with the benefit of using
a 5-tap MMSE equalizer, the depth-0 biorthogonal partner
has a worse BER performance than the depth-2 biorthogonal
partner with an 1-tap equalizer.

As for complexity, both depth-0 and depth-2 receiving
filters have the same length, so their implementation costs
are the same. Please note that depth-L filters can achieve
ISI-free transmission for any FIR channels of order ≤ L,
like OFDM systems. Thus when the channel changes, we do
not have to redesign depth-2 filters. On the other hand, for
depth-0 filters, we need a 5-tap MMSE equalizer to suppress
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FIGURE 10. BER vs SNR of FSE systems under 3-tap FIR channel, using
depth-L biorthogonal partners where L = 0,2, M = 32.

the ISI. When the channel changes, we need to design a new
MMSE equalizer for depth-0 filters.

VII. CONCLUSION
In this paper, we extend the traditional Nyquist(M ) filters
and biorthogonal partners to those of depth-L versions. The
applications of them in FSE and FBMC systems are dis-
cussed. Using the concept of congruous zeros, we derive
the necessary and sufficient condition for the existence of
an FIR detph-L biorthogonal partner. We then show how
the eigenfilter method can be adopted for the design of
depth-L Nyquist(M ) filters and biorthogonal partners. Sim-
ulation results show that in FSE systems, depth-L biorthog-
onal partners outperform conventional depth-0 biorthogonal
partners when the channel is frequency selective or there is
timing synchronization error.

APPENDIX PROOF OF THEOREM 3
From Corollary 2 in [22], we know that FL(z) has an FIR
right inverse if and only if (17) is satisfied. Thus proving
Theorem 3 is equivalent to proving that (17) is satisfied if and
only if the cardinality of the largest {Z (k)

} is less thanM −L.
We will first prove this for the special case where Z consists
of only one congruous-zero set, i.e., Z = Z (1), where Z (1)

is a congruous-zero set. After that, the general case where
Z =

⋃
k Z (k) will be proven.

For the special case, suppose Z = Z (1)
=

{αWm1 , αWm2 , · · · , αWmρ } is a congruous-zero set.Without
loss of generality, assume that α = 1 and thus Z =

{Wm1 ,Wm2 , · · · ,Wmρ }. Define 0 = {m1,m2, · · · ,mρ} and
0′ = {0, 1, · · · ,M − 1} \ 0 = {n1, n2, · · · , nM−ρ}. In other
words, 0∪0′ = {0, 1, · · · ,M − 1} and 0∩0′ = φ. We first
prove the ‘‘only if" part. Suppose ρ ≥ M−L, i.e,M−ρ ≤ L.
Below we will first prove that (Z`0 ∪ Z`1 ∪ · · · ∪ Z`L )
is the complete congruous-zero set {W 0,W 1, · · · ,WM−1

}

for all combinations of `0, `1, · · · , `L . The proof is by

contradiction. SupposeW i
6∈ (Z`0∪Z`1∪· · ·∪Z`L ) for some

i and for some `0, `1, · · · , `L . This means that W i /∈ Z`k
for k = 0, 1, · · · ,L, that is, ((i − `k ))M ∈ 0′. Note that
((i− `0))M , ((i− `1))M , · · · , ((i− `L))M are distinct integers
in {0, 1, · · · ,M − 1}. This leads to a contradiction to the fact
that 0′ has only M − ρ (which is ≤ L) distinct integers.
Therefore, if ρ ≥ M − L, (Z`0 ∪ Z`1 ∪ · · · ∪ Z`L ) is a
complete congruous-zero set {W 0,W 1, · · · ,WM−1

} for all
combinations of `0, `1, · · · , `L . Taking the intersection of
them, we get ⋂

0≤`0<`1<···<`L≤M−1

(Z`0 ∪ Z`1 ∪ · · · ∪ Z`L )

= {W 0,W 1, · · · ,WM−1
}.

Conversely, suppose ρ < M − L. This implies that 0′

contains at least L + 1 distinct integers becauseM − ρ > L.
Using this, we will prove that the intersection on the left
hand side of (17) is an empty set. To see this, we first take
`0 = ((0− n1))M , `1 = ((0− n2))M , · · · , `L = ((0− nL))M ,
then W 0

6∈ (Z`0 ∪ Z`1 ∪ · · · ∪ Z`L ). Second, if we take
`0 = ((1− n1))M , `1 = ((1− n2))M , · · · , `L = ((1− nL))M ,
then W 1

6∈ (Z`0 ∪ Z`1 ∪ · · · ∪ Z`L ). This procedure can
be performed M times. Finally, if we take `0 = ((M − 1 −
n1))M , `1 = ((M − 1− n2))M , · · · , `L = ((M − 1− nL))M ,
thenWM−1

6∈ (Z`0∪Z`1∪· · ·∪Z`L ). Therefore, for eachW i,
i = 0, 1, · · · ,M − 1, we can find a combination of
`0, `1, · · · , `L such that W i

6∈ (Z`0 ∪ Z`1 ∪ · · · ∪ Z`L ).
Taking only the intersection of these M combinations of
`0, `1, · · · , `L then we get an empty set. This proves that the
intersection on the left hand side of (17) is an empty set.

Now we consider the general case where Z =
⋃

k Z (k).
Since Z =

⋃
k Z (k), Z`i =

⋃
k Z

(k)
`i

for i = 0, 1, · · · ,L.
Then the left hand side of (17) can be expressed as⋂

0≤`0<`1<···<`L≤M−1((⋃
k

Z (k)
`0

)
∪

(⋃
k

Z (k)
`1

)
∪ · · · ∪

(⋃
k

Z (k)
`L

))
,

which is equal to⋂
0≤`0<`1<···<`L≤M−1

(⋃
k

(Z (k)
`0
∪ Z (k)

`1
∪ · · · ∪ Z (k)

`L
)
)

(29)

because the order of union operations can be exchanged.
Moreover, due to the fact that(
Z (i)
`0
∪ Z (i)

`1
∪ · · · ∪ Z (i)

`L
) ∩ (Z (j)

`0
∪ Z (j)

`1
∪ · · · ∪ Z (j)

`L

)
= φ

for i 6= j, we can rewrite (29) as⋃
k

( ⋂
0≤`0<`1<···<`L≤M−1

(
Z (k)
`0
∪ Z (k)

`1
∪ · · · ∪ Z (k)

`L

))
.

(30)
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Therefore, the original condition in (17) is reduced to (30)
being an empty set, which is satisfied if and only if⋂
0≤`0<`1<···<`L≤M−1

(
Z (k)
`0
∪ Z (k)

`1
∪ · · · ∪ Z (k)

`L

)
= φ (31)

for all k . The condition in (31) is that every congruous-zero
set {Z (k)

} of F(z) has to satisfy the same condition as in (17)
for Z . Using the above proof for the special case, this holds
if and only if the cardinalities of {Z (k)

} are less than M − L,
i.e., the cardinality of the largest {Z (k)

} is less than M − L.
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