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ABSTRACT The perception of slip is one of the distinctive abilities of human tactile sensing. The sense of
touch allows recognizing a wide set of properties of a grasped object, such as shape, weight and dimension.
Based on such properties, the applied force can be accordingly regulated avoiding slip of the grasped
object. Despite the great importance of tactile sensing for humans, mechatronic hands (robotic manipulators,
prosthetic hands etc.) are rarely endowed with tactile feedback. The necessity to grasp objects relying on
robust slip prevention algorithms is not yet corresponded in existing artificial manipulators, which are
relegated to structured environments then. Numerous approaches regarding the problem of slip detection
and correction have been developed especially in the last decade, resorting to a number of sensor typologies.
However, no impact on the industrial market has been achieved. This paper reviews the sensors and methods
so far proposed for slip prevention in artificial tactile perception, starting frommore classical techniques until
the latest solutions tested on robotic systems. The strengths and weaknesses of each described technique are
discussed, also in relation to the sensing technologies employed. The result is a summary exploring the whole
state of art and providing a perspective towards the future research directions in the sector.

INDEX TERMS Force, grasp, manipulation, prosthetics, robotics, sensor, slip, slippage, tactile.

I. INTRODUCTION
The human hand emblematically represents the evolution of
the human race. To have an idea of its impressing dexterity,
one may think that the human hand’s number of Degrees
of Freedom (DoF), i.e. twenty-one, is higher than the sum
of the DoFs of lower and upper limb (including wrist).
No similar biological structure can be found in the Regnum
Animale [1].Moreover, the sense of touch is also crucial when
considering the capabilities of human hand. By exploiting
different kinds of sensing units, this sense allows recognizing
a great quantity of properties of a touched object: roughness,
shape, dimension, weight, hardness, humidity, temperature.
Based on this set of properties, the human hand is able to
regulate the applied force of each finger when grasping an
object. This gives the hand the possibility of carrying out
a fundamental action, i.e., to avoid slip when the contact
condition modifies disadvantageously. A sudden movement
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between the finger and the object can be promptly detected by
specialized receptors, which indeed transduce the mechanical
information into electrical signals. Such signals are collected
by peripheral nerves innervating the hand, and then trans-
mitted to the brain very quickly. Elaboration and response,
in terms of force adjustment, are quick as well, taking even
less than 100 ms [2].

These skills are still difficult to reproduce into artificial
systems. Industrial robotic manipulators rarely rely on tac-
tile data [3], as artificial tactile sensors have a number of
drawbacks. For instance, hysteresis and non-linearity are
highly common. Although human tactile receptors embed-
ded in human skin are hysteretic and non-linear [4], these
(as well as other) drawbacks somehow complicate the use
of tactile information by artificial control software. Also,
high-power consumption, temperature susceptibility and dif-
ficulty in real-time elaboration of large amounts of tactile data
hindered, through the past decades, the identification of one
or more solutions that can have an impact on the industrial
market. At the beginning of 1990s, tactile sensors were still
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absent in the industrial domain [5], yet they were envisaged
to characterize robots in a near future, allowing them to act in
unstructured environments.

At the dawn of the new millennium, even though progress
was reported w.r.t. the preceding decade, tactile sensing had
no meaningful application in any industrial scenario [6].
Nowadays little has changed, as artificial touch remains less
reliable and developed than as e.g. artificial vision [7].

As a result, although there exist commercial robots
endowed with force/torque (F/T) sensors, robot manipula-
tors are principally found in structured environments, relying
on a priori knowledge rather than on active tactile sensing.
In other words, robots can deal with predefined items with
e.g. known mass, also measuring the contact force, but they
cannot correct the grasp under unexpected circumstances.
Moreover, robot sensors do not provide other tactile prop-
erties such as shape, roughness and temperature. This is in
contrast with the large number of tactile sensors that can be
found in literature, as witnessed by several reviews in the
last years [4], [7]–[11]. Further, the combination of static
and dynamic sensing is not straightforward. The detection
of dynamic events like slip often requires the exploitation of
a dedicated sensing unit resorting to a different transducing
principle (unless using multiaxial force sensors, commonly
rather bulky). A direct consequence is the difficulty to endow
robotic end effectors with slip sensors, as their encumbrance
can be problematic if added to the presence of e.g. a force
sensor. The routing of the power and signal cables, together
with the sensors embedment within themanipulator structure,
represent unneglectable issues. Also, the complexity in the
design of algorithms for real time functioning would rise.
This applies to all domains of robotics, e.g. prosthetics.

Surprisingly, prosthetic hands are still devoid of tactile sen-
sory systems in spite of the large prosthetic market. A recent
report [12] points out the almost total lack of tactile feed-
back, including slip detection, in commercial prostheses. The
property of detecting slip events with as fast response as
to promptly react is one of the most advanced capabilities
that distinguishes the human upper limb from non-human
ones. Notwithstanding the considerable amount of research
carried out on this topic, to provide robotic handswith reliable
anti-slip perception remains unsolved. This problem gained
higher attention in the latest ten years, as confirmed by the
trend in the number of related scientific publications (Fig. 1).
Before, academia and industry were devoting major effort
towards the development of tactile sensors which were com-
monly unsuitable for detecting dynamic events. As amatter of
fact, the first review on the topic of artificial slip sensing came
out in 2013 [13]. This might be interpreted as a demoralizing
statistic, given that the first attempt to mount slip sensors onto
an artificial hand dates back to 1967 [14].

In light of the above considerations, the present paper
intends to collect the main techniques and sensors proposed
over the last decades for slip detection in robotics. The idea
is to deliver a comprehensive survey of the state of the
art, providing the reader with satisfactory insights about a

FIGURE 1. Number of scientific publications per year. Keywords:
‘‘Robotic slip sensor’’. Source: Web of Science.

field of robotics whose potential is still overly underesti-
mated. Many of the existing reviews on tactile sensing aim
at classifying tactile sensors and their potentialities; this also
applies, somehow, to the reports dealing with slip detection.
E.g., the aforementioned [13] focuses only on the different
sensing modalities rather than on techniques and approaches.
A fresher report [15] concentrates on friction estimation and
on the best sensor solutions to achieve this goal.

Hence, the objective of the present paper is twofold: I)
to go beyond the conventional review approach, which led
to a plurality of valuable reviews focusing exclusively on
sensing principles, fabrication techniques, pros and cons of
the specific sensor technology and so on; II) to provide the
reader with a detailed analysis of the slip detection procedures
which were so far experimented in robotics, regardless of the
tactile sensors involved in each work. Nevertheless, sensor
technologies are cited throughout the text when explaining
the various detection approaches.

We also would like to specify that all the remaining well-
known problems in the state of the art of robotic grasping
are not solved in the present survey. Such problems include:
object drop, object damage, control algorithms for force regu-
lation or minimization, vibration suppression, grasp stabiliza-
tion, measurement of stiffness or other physical properties of
the grasped object.

The article is organized in this manner: in this Section,
we gave some general hints about both human and artificial
tactile sensing, introducing the subproblem of slip identi-
fication, i.e. the core of the paper. The human hand con-
stitutes a substantial inspiration for the design of robotic
hands [16]: therefore, Section II briefly explains the human
sense of touch, concentrating on its slip perception and cor-
rection modalities. Section III presents the methods based
on the friction coefficient and on multi-axial forces, whereas
Section IV deals with vibrations-based approaches. After
these two Sections, which contain the majority of works,
Section V offers an overview on methods resorting to other
physical quantities. Section VI terminates the methods cat-
egorization by illustrating alternative approaches, including
e.g. neural networks whose applications lately extended to
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TABLE 1. Basic properties of human mechanoreceptors.

slip identification. A profound discussion of all the methods
is available in Section VII; finally, Section VIII

concludes the paper and refers the authors’ point of view
about the future directions in this research area.

II. HUMAN SENSE OF SLIP: PHYSIOLOGY
The human sense of touch is composed of a wide range of
sensations. The human skin is commonly solicited by diverse
kinds of stimuli, which might be mechanical, thermal or
even electrical (e.g. electrostatic discharge, ESD). Accord-
ing to the nature of the stimulus, as it is delivered to the
skin, one or more typologies of receptors activate. These are
responsible for transducing the stimuli into electrical signals,
i.e. sequences of spike potentials; such potentials are then
collected by the afferent nerves, which relay them to the
brain. Interestingly, the most rapid fibers (i.e. myelinated) are
the ones conveying the mechanical stimuli from the related
receptors, i.e. mechanoreceptors. These are known for their
high sensitivity, thanks to which even very weak mechanical
perturbations (e.g. light touch) may elicit their response. For
this reason, mechanoreceptors are also called low-threshold
receptors [17].

Table 1 summarizes the main features (retrieved
from [18], [19]) of the four types of mechanoreceptors that
are embedded in the human skin. It is worth mentioning that
Fast Adapting (FA) units, both I and II (according to the size
of the receptive field), respond only to dynamic stimulation.
In particular, FA II units exhibit high sensitivity to accelera-
tion and quick transients [20]. A similar property makes them
the most adequate receptors to sense the relative movement
between the hand and the grasped object. This is also due to
their sensitivity to higher frequency vibrations, from 50 to
500 Hz [19] with a significant peak between 200 Hz and
300 Hz [18], [21]). When the stimulus frequency overcomes
100 Hz, displacements as little as 1 µm can lead to activation
of FA II units [20]. FA I units instead produce strong firing
especially for skin vibrations at frequency lower than 40 Hz
and higher than 5 Hz. They are excited particularly by the

skin indentation. However, it has been suggested that FA I are
involved in grip adjustment when a stable grasp is disturbed
with sudden loads [21], [22]. Moreover, FA I units play a role
in determining the direction of the slip [13]. This information
is also provided by the Slow Adapting (SA) receptors, which
continue firing during static pressure but have also dynamic
sensitivity. There is evidence that SA II units respond to
skin stretch and have a clear directional sensitivity, as the
discharge rate tended to increase/decrease when applying
stretches in a direction or in the opposite one [23]. Such a
property of SA II was found in animal models too [24]. Thus,
SA II can be viewed as actual physiological stretch sensors.
Consequently, their function can intervene in the adjustment
of applied forces during tasks in which shear stresses are
subject to frequent variation (e.g. tools manipulation) [18].
In other words, it is reasonable to imagine that there might be
a contribution of SA II receptors in slip avoidance processes,
despite their reduced sensitivity to high frequency vibrations.

The sensations related to fine touch and slip notoriously
ascend to the Primary Sensory Cortex (S1) via the Dorsal
Column-Median Lemniscal (DCML) pathway of the spinal
cord. Before being relayed to the Central Nervous System
(CNS), tactile signals need to be transduced at the skin by
means of the mechanoreceptors and then sent through the
peripheral nerves (e.g. forearm nerves). Once the signals are
received by S1, they are elaborated and then a reaction can
take place at the involved body area. Such a reaction may be
faster than 100 ms, as observed in pioneering studies in the
1980s [2], [25]. Specifically, when a grasped object tends to
slip, a time interval extending up to 90 ms can elapse before
the first grip correction is applied. The same finding was later
confirmed a decade later [26]. It is fundamental to highlight
the automatic nature of the efferent signals activating the
muscles in response to slip phenomena. Naturally induced
slip may lead to delay in the force correction as low as around
70 ms. Conversely, voluntary reaction to externally induced
stimulation of the fingers skin can produce changes in the grip
forces even after 200ms [25]. Therefore, modification in both
finger position and pressure required to prevent a slip event
might be regarded as spontaneous. That is, efferent signals
involved in immediate reactions for slip compensation prob-
ably originate unconsciously. They are likely to be yielded
by predictive strategies exploited by the CNS to perform
advanced manipulation. Indeed, humans are able to store in
memory information about object properties, e.g. weight, and
to use such information to successfully lift the object and to
eventually modify the contact conditions in order to maintain
a stable grasp. However, this process resorts to visual cues
as well, which are important for gaining insights about the
object properties. Nonetheless, it is the tactile input that deter-
mines the entity of the error between expected sensory inputs
and the real available ones. If the latter do not correspond
to the former, the stored information will be updated. For
more explanations about the predictive schemes underlying
the skilled manipulation, see e.g. [27].
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FIGURE 2. Forces acting on a grasped object. The two fingers apply a
normal force that, in absence of any disturbance, compensates for the
weight of the object. The friction cone must contain the resultant force
vector to prevent slip. Note that the two cones have different dimensions,
as the applied forces are independently applied by each finger.

III. ROBOTICS: FRICTION COEFFICIENT AND
MULTI-AXIAL FORCES
Grasp stability unavoidably depends on friction, which is a
crucial element of grasp stability [15]. As a consequence,
the knowledge of friction inspired multiple approaches for
slip prevention. The following subsections present methods
mainly based on what can be judged as a gold standard: the
estimation of friction. This can be pursued e.g. by means
of multi-axial force components, or else through specific
sensors. Using more force sensors allows avoiding slip even
without knowledge of friction.

A. FRICTION-BASED METHODS
A fundamental parameter in the detection of slip is the static
friction coefficient. The tactile receptors of human body can
sense frictional variations during a grasp action, allowing the
CNS to program the response in order to adjust the grasping
forces. Several studies [28], [29]) have demonstrated that the
applied forces are considerably conditioned by the weight
of the object and the static friction coefficient µs, which is
defined as:

µs = Ft/Fn (1)

where Ft and Fn are the tangential force and normal force,
respectively. If two bodies in mutual contact start moving
against each other, the static friction coefficient assumes
a new value µd , which is generally lower than µs [30].
Equation (1) is a limit condition; to ensure stable grip of an
object, the ratio Ft/Fn should be lower than µs (Coulomb’s
model). Such a condition defines the friction cone, which
must contain all the resultant forces acting on a grasped
object [31]. Consider e.g. the schematization of Fig. 2. The
two normal forces Fni and Fnt should balance the weight
W of the held object in such a way that the ratio with the
corresponding tangential loads Fti and Ftt is littler than (1).
This way, the resultant force vectors Ri and Rt will be located
inside the cone, whose vertex semi-angle is α = tan−1(µs).

If the tangential force grows until (1) holds true, the resultant
force will be located on the cone surface. This would lead
to incipient (or initial) slip, whereas further augmentation
of tangential load would yield global (or gross) slip when-
ever it is not adequately compensated by increasing normal
load. Referring to a practical situation in which external
disturbance is missing, slip can happen if e.g. the friction
coefficient (or else the object weight) is underestimated,
leading to insufficient normal force. In general, given a con-
stant Fn, a diminishment of the static friction coefficient
is accompanied by an increment of the tangential force;
these effects have to be mitigated by increasing Fn to pre-
vent object from slipping. Intuitively, the lower is the static
friction coefficient, the more slippery is the corresponding
surface.

Thus, the straightest methodology to prevent slip is to mon-
itor the force ratio at the surface-object interface. This can be
accomplished by measuring both the tangential and normal
loads and computing their ratio. To this end, a three-axial
force sensor is needed, as in [32]. This approach may be
pursued through more sensing technologies, such as piezore-
sistive (Force Sensing Resistor, FSR, [33]) and capaci-
tive [34]. The first technology exploits the variation of an
electrical resistance produced by an exerted force, while
the second is based on electrical capacitances which value
depends on geometrical properties, electrical properties (such
as dielectric permittivity) and to compression due to pressure.
Electrical resistance variation might be exploited to sense
three-axial forces with a vast quantity of fabrication processes
and materials, including organic ones [35] and micro-electro
mechanical systems (MEMS) [36], [37]. Capacitive sensors
allow reconstructing shear forces even if the sensing unit is
covered with plastic material such as silicone skin [38]. Both
technologies are widely utilized in the construction of tactile
sensors, though the first one is often preferred. Three-axial
force sensors might be achieved by means of further trans-
ducing modalities, such as Quantum Tunnel Effect. Relevant
examples can be found in [39], [40] where a Quantum Tun-
nel Composite (QTC) sensor capable of detecting normal
and tangential forces was mounted onto an anthropomorphic
mechatronic hand to provide forces information and slip
correction. Notwithstanding their very high sensitivity and
their high conductive behavior if pressed, QTC materials
still constitute a quite uncommon solution for sensorization
of artificial manipulators. Further, the detection of slip by
means of three-axial force information and knowledge of the
static friction coefficient was lately proposed with optical
sensors [41].

The use of six-axis F/T sensors, generally relying on resis-
tive transduction, is not rare. In [42] a six-axis sensor was
mounted on the thumb of an articulated hand (i.e. Salisbury
Hand) so as to measure shear and normal forces applied onto
the grasped objects. In case of inconvenient variation of the
friction ratio, the normal force could be augmented to prevent
slip of the object. A very similar method was adopted in [30]
and in [43], where the torque sensors output of a two-fingered
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robot hand was used to retrieve the applied forces and to
determine the friction coefficient.

The force signals provided by these sensors might also
be employed in combination with other systems, e.g. cam-
eras. This was done in [44] where a camera and a six-axis
force/torque sensor were mounted on a single DOF gripper.
The Hertzian model was employed; this is able to mathe-
matically represent the contact between an elastic spherical
surface and a rigid plate under the effect of a normal pressure.
Such a model was extended to find out a solution for the case
in which a tangential force was applied too. A slip margin
γ was defined as γ = 1 − 8 where 8 is equal to Ft /µsFn.
Intuitively, when 8 is little the slip margin has a value close
to one, meaning that the contact region is in a stick-state.
As 8 increases, γ becomes lower and slip is more likely to
happen. The maximum value allowed for 8 is one, i.e. (1) is
satisfied thus leading to object slip. The following equation
was studied:

δ = 3ft (2− ν) [1−
(
1−82/3

)
]
/
16aG8, (2)

in which δ is the displacement of a reference point on the
contact surface, a is the radius of the contact area, ft is the
tangential force, ν is the Poisson ratio of the elastic surface
and G is its shear modulus. Last two quantities are known a
priori. Once δ and a are estimated through the camera and ft
is known thanks to the F/T sensor, two solutions 8a and 8b
could be derived by solving (2) both for incipient and gross
slip, respectively. Grip force can be controlled based on such
solutions, thus not requiring knowledge of the static friction
coefficient to prevent slip.

Additionally, torque information may be included into a
stiffness control for multi-fingered manipulators, in order to
maintain the grasping force within the friction cone [45].
Torques information was combined with the trend of the
normal force measured by a four-axis MEMS piezoresistive
sensor embedded into a soft fingertip. It was reported that
normal force and moment around one of the two planar direc-
tions could provide useful insight about the onset of gross
slip without the information of the static friction coefficient
at the contact interface. The variation in standard deviation
of torques measured by a six-axis F/T sensor integrated into
the fingers of a robotic hand (Universal Robot Hand II) was
utilized to predict slip in [46]. A more recent technique was
proposed in [47], where a three-fingered end effector was
endowed with six-axis F/T sensors to estimate the Break
Away (BF) friction ratio. This was studied through the LuGre
model, which considers the tiny irregularities of a surface
as elastic bristles. An applied friction ratio depending on
the disturbing force, on the normal force and object gravity
was defined. The implemented controller compared the actual
friction ratio µa with a threshold µsl obtained from normal
force measurements and from the variation of the applied
friction ratio. If the difference betweenµa andµsl was greater
than a safety margin, the grasping force and the hand joints
position were adjusted by the controller. Even though the
applicability and performance of this approachwere extended

by the same authors [48], it suffered from certain drawbacks
that will be discussed later (see Section V). Quite recent is
the six-axis F/T optoelectronic sensor proposed in [49] as
well, yet the slip avoidance was carried out in a classical
manner, i.e. relying on (1). Two voice coil actuators, each one
equipped with one sensor, were used to grasp an object, while
a third actuator served to disturb it. Preliminary experiments
showed the feasibility of estimating the friction coefficient
and controlling grip forces through the developed optoelec-
tronic sensors.

B. ALTERNATIVE ESTIMATION OF FRICTION
Alternatively, it is possible to compute the friction coefficient
with an ad hoc sensor, i.e. a sensor purposely conceived for
this task. For instance, a clutch disk sensor was mounted
on the right finger of a two-fingered robotic hand [50]. The
static friction coefficient could be found as a function of the
torque applied to the disk by a DC motor and of the disk
radius, permitting normal force adjustment when required
thanks to a force sensor based on strain gage (one sensor
per finger). A singular approach was proposed in [51] with
the idea of estimating the friction coefficient through an
acoustic resonant tensor cell (ARTC). An ARTC sensor is
composed of a cavity contained into an elastic packaging
which possesses an ultrasound transmitter and a receiver. The
sound propagates inside the cavity at a resonant frequency
depending on the cavity shape, which in turn is influenced by
the applied stresses. By knowing the vertical strain and the
tangential stress of the cavity, the friction coefficient could
be obtained. In this way, slip might be contrasted before it
actually happened as the friction coefficient was measured
without requiring any movement of the object contacting the
sensor. However, to effectively use the sensor, the touched
object had to be harder than the elastic sensor material and
with a smaller curvature. The static friction coefficient can
be inferred also by means of piezoresistive doped beams
embedded in an elastomeric material [52]. The coefficient
depended on the electrical resistance changes of the beams
due to vertical and tangential strains met by the elastomer,
whereas such stresses were proportional to the normal force.

Moreover, the ratio of normal and tangential loads exerted
by a robotic finger is mathematically estimable starting from
a monoaxial force information, provided that joint angles
and dimensions of links are available. This was done on a
fingertip mechanism constructed as in [53]. Slip was detected
by observing changes in the force ratio. To compute such a
ratio, more sensors are required, e.g. FSR force sensors for
the monoaxial force and potentiometers for the joint angles.

C. FRICTION-INDEPENDENT METHODS
As in some of the previously described approaches, the cal-
culation of the static friction coefficient may be completely
avoided. Structured environments, where objects properties
are a priori known, do not require sophisticated algorithms
for the estimation of the surface features of the manipulated
objects. In this sense, the Mindlin’s model offers a good
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solution, allowing arithmetic prediction of the shear traction
trend in the case of contact between a flexible spherical
surface and a rigid flat one. The shear traction can be written
as:

τ (r) = 3µP
√
(1− r2/a2)/b−3µsPc

√
(1−r2/c2)/b, (3)

where P and Pc are normal and critical normal load, r is the
radial coordinate of the contact point, c is the radius of the
stick area, a is the radius of the whole contact area, µs is
the static friction coefficient (known a priori) and b = 2πa2.
Even though the Mindlin’s model involves µs, we put this
approach in the present Subsection as it does not require the
coefficient computation. According to the model, gross slip
happens when the tangential load equals the shear traction
τ (c), i.e. when r = c and the second part of the right
term in (3) goes to zero. Pre-sliding can be detected as the
tangential load reaches a critical value τ ’ (lower than τ (c)).
In [54], τ ’ was set to 0.8τ (c), whereas normal and tangential
forces were measured with multi-axial piezoresistive sensors
inserted into some semispherical parts made of polydimethyl-
siloxane (PDMS). The sensors were mounted on the fingers
of a robotic hand, and slip tests were performed with a ball.
The model proved ability to detect both incipient and gross
slip of the ball.

Further, it is possible to detect slip events analyzing the
information from multiple force sensors. This is supposed to
add some robustness to the sensory system but might com-
plicate the system itself. For example, [55] performed slip
detection integrating the output of a number of strain gages.
A ridged structure embedding five strain gages was used as a
slip sensor while additional gages positioned onto a posterior
double-leaf spring structure measured normal and tangential
forces, thus forming a force sensor. The increment in both the
output of the slip sensor and the force ratio Ft/Fn obtained
through the force sensor was viewed as an indication of partial
slip, i.e. the slip of only a part of the touched object (the
remaining part sticks). Strain gages might also be mounted
on a rubber skin to measure the strain when utilized to cover
robotic fingers. If the inner side of the skin is in contact with
a solid structure (bone) and the grasping force is insufficient,
the consequent strain sensed by the gages can be addressed to
the control system as a pre-slip warning. Hence, the grasping
force can be increased avoiding the total slip at the external
surface of the skin which holds the grasped object. Similarly,
strain distribution [56] is evaluated to infer the presence of
incipient slip on the surface of an elastic finger-shaped sensor.
Albeit the friction coefficient is not needed, the last two
approaches featured a high number of sensors (from five to
fifteen gages).

Alcazar and colleagues [57] combined the signals from tac-
tile capacitive matrices integrated in a three-fingered robotic
hand (Barrett Hand). There were forty-six units on each
finger and twenty-four on the palm. A convolution matrix
was computed for each finger phalanx and for the palm by
convoluting the current vector of raw tactile data with the
previous vector (i.e. at the previous acquisition). Slip indexes

were obtained based on such matrices and on the tactile units
position in the array. A final slip vector was calculated by
subtracting the slip indexes with the previous value, in both
planar directions. Besides, the study of the gradient and rotor
of such slip vectors enabled the detection of rotational slip.

In [58], the covariance matrix built on the differences di
of the recorded force at two consecutive time instants was
set. A stable grasp would result in a diagonal matrix, as all
covariance would be null. To do so, the infinity norm C∞ of
a matrix C having null diagonal and the covariances off the
diagonal, was evaluated. The littler was C∞, the more stable
was the grasp. A binary slip signal was generated depending
on C∞. Experiments were performed on two bidigital robotic
hands. The first had one FSR sensor per finger whereas
the second had a 4×4 tactile array on the left finger. Grasping
force could be successfully regulated, avoiding slip in the
majority of the cases with both fragile and rigid objects.

IV. VIBRATIONS
The idea to add slip measurement into artificial hands began
being considered during the second half of the 1960s. Sal-
isbury and Colman [14] integrated a piezoelectric crystal
into the thumb of a mechanical hand (namely USAMBRL
Hand). Baits and colleagues replicated soon after this choice
on a two-dimensional gripper [59]. The purpose was, in both
cases, to detect vibrations due to slip and to insert a related
signal into the control loop of the manipulator. However,
no experimental studies were executed to prove the capa-
bility of the so sensorized systems to detect slip. Nonethe-
less, vibrations generated by sliding movements between two
surfaces in contact were often exploited as a slip indicator
even in the successive years. The following sections describe
methods that were conceived to exploit the vibration-slip
relation. Theywere divided, in the present work, in these three
main groups: piezoelectricity-based methods, frequency and
time-frequency transform techniques, and filters.

A. PIEZOELECTRICITY AND ACOUSTIC SIGNALS
Piezoelectric materials started being considered for slip
detection at a very early stage in the process of robotic
hands sensorization. In this context, they constitute a hugely
widespread solution. The physical principle at the basis of
piezoelectricity is rather intuitive.When a piezoelectric mate-
rial undergoes mechanical stimulation, such as a pressure,
it produces electrical charges on its opposite faces. This
results in an electrical field whose voltage is associated with
the exerted pressure. Such an effect is reversible, given that
the application of an electrical field gives place to a deforma-
tion of the piezoelectric material.

The described physical process reminds how the human
mechanoreceptors transduce mechanical stimulations into
voltage signals. That is, the human skin exhibits a piezo-
electric behavior [60]. This makes piezoelectric materials
particularly adequate for the realization of artificial tactile
sensors. Due to their large frequency response, piezoelectric
tactile sensors work more easily as dynamic sensors [4].
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Their sensitivity to high frequencies (even higher than 5 kHz)
outperforms the one of FA II mechanoreceptors and, as a
consequence, renders piezoelectricity-based tactile sensors
particularly suitable for slip detection.

As already referred at the beginning of the current Section,
the first attempts to endow artificial hands with piezoelectric
slip sensors were done in [14], [59]. Such sensors, based
on unspecified piezoelectric crystals, were expected to sense
vibrations generated by the sliding of the grasped object.
The signal from the sensors was fed back to the controller
which could regulate the grasping forces. Mingrino et al. [33]
employed a polyvinylidene-fluoride (PVDF, also named as
PVF2) film as a dynamic sensor and mounted it on the end
effector of a robotic arm (PUMA 560). Vibrations due to
object motion activated the sensor, which response showed
quick spikes, i.e. the slip signal. The PVDF sensor was placed
above a three-axial force sensor for static force measurement
(described in previous Subsection). A similar approach was
followed in [61], where authors showed that the amplitude
of the piezoelectric signal grew with the slip speed. Differ-
ently from [33], the PVDF transducer was collocated under
a (hemispherical) three-axial force sensor. Discrimination
of translational slip from rotational slip was preliminarily
demonstrated, though it required the study of the curl of the
tangential force measured with the force sensor.

PVDF is probably the most utilized piezoelectric poly-
mer in the artificial slip sensing, as reported in a recent
survey [62]. It was also exploited in the fabrication of syn-
thetic ridged finger skin, of which each ridge embedded
two PVDF strips [63]. Both the filtered and differentiated
output of the strips were used as inputs for an artificial neural
network (ANN), which decided whether the touched object
was sliding or not. Designing the skin of sensorized fingertips
with external nibs [64] or knobs [65] enhances the frequency
response of the PVDF element.

In the newmillennium, PVDF found increasing application
in prosthetics. The possibility to construct flexible and low-
cost sensors attracted many researchers in the last decade.
Examples are illustrated in [66]–[68]. Very thin layers of
PVDF (<100 µm) were integrated into prosthetic fingers to
achieve dynamic force information. The methodology was
basically common: the magnitude of the PVDF response
increases when a sliding movement induces vibrations on
one of its surfaces. A threshold can be applied to the voltage
output of a piezoelectric sensor, as depicted in Fig. 3 [68].
Chuang and colleagues [69] proposed instead a structural
electrode, obtained by sandwiching a PVDF layer with two
flexible printed circuits (FPC). A plastic microstructure was
put between the electrode surface and the polymeric encase-
ment of the sensor to convey the applied force from the
sensor surface to the PVDF element. The twomicroelectrodes
patterned on the FPCs could detect compressive and tensile
stresses when a pressure acted on the microstructure. Oppo-
site peaks in the voltages of the two microelectrodes were
judged as a slip event. The sign of the two signals provided
the movement direction.

FIGURE 3. Signal obtained from the mean of more PVDF sensor outputs
as in [68]. Peaks over threshold (dotted line) are associated with slip.

The state of the art includes some other piezoelectric mate-
rials adopted for the construction of slip sensors. The most
common is the lead zirconium titanate (PZT), which belongs
to the ceramic domain. This material, as the PVDF, exhibits
fast voltage fluctuations when its surface moves against
another one, or vice versa. Such a property was exploited
in [70], where a flat bimorph PZT sensor was mounted in
the distal part of a cantilever structure (acting as a fingertip)
of a prosthetic hand (Southampton REMEDI Hand). Slip
could be identified following the same logic as in Fig. 3.
Meaningful frequency content during slip was observed in the
range 200-1000 Hz. Piezoresistive (FSR) units were placed
close to the PZT element in the fingertip in order to provide
static force information. This approach was followed by other
authors in the sensorization of myoelectrically controlled
prostheses [71], [72], where slipwas detectedwith a threshold
mechanism on the rectified piezoelectric signal and contact
forces were measured by FSR sensors. The sensors were not
integrated in the prosthesis fingers but simply attached to
them.

An older example of sensorized robotic fingertip featuring
force sensors and a dynamic piezoelectric sensor is described
in [73]. Here, a ceramic bimorph element was added to a
piezoresistive array structure to sense microvibrations pro-
duced by slip. The piezoceramic bandwidth extended up
to 500 Hz. The combination of piezoresistive (often FSR)
force sensors with piezoelectric elements for dynamic events
detection is frequently considered.

As an alternative, microvibrations that originate during
a sliding movement might be perceived through acoustic
sensors. Microphones opportunely placed below an air-filled
structure are able to collect the mechanical energy released
when an object slips on the structure surface. For instance,
a sensor composed of a void tube and a microphone located
beneath it was proposed in [74] with a myoelectric prosthesis.
The so constructed sensor was mounted on the thumb of
the Southampton Hand [75] and on the Oxford Intelligent
Hand [76]. Vibrations at frequencies up to 1 kHz were con-
sidered significant in slip identification.

Finally, Acoustic Emission (AE) yielded by slip events
may be evaluated. AE is characterized by high frequencies,
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i.e. 50-1000 kHz [77], and travels within the material where it
is induced in the form of elastic waves. These can be revealed
by piezoelectric transducers, provided that an appropriate
acoustic coupling medium is put between the transducer and
the investigated material. An attempt to measure slip endow-
ing one finger of a gripper with an AE sensor was carried out
in [77]. However, acoustic and AE transducers received less
attention than piezopolymers such as PVDF.

B. TRANSFORM TECHNIQUES
Slip vibrations usually occur at high frequency. Therefore, the
relating signal may be analyzed in terms of spectral features.
This way, when the tactile signal shows high frequencies,
an indication of incipient or gross slip can be extracted. The
idea to measure slip by studying the tactile signals in the fre-
quency domain paved the way to several works, particularly
in the last decade. Although the first attempts date back to
the 1990s, the availability of greater computational power
in computers progressively induced researchers to privilege
transformation of temporal signals into frequency signals
(see Fig. 4). To this purpose, one of the most popular tech-
nique is the Fast Fourier Transform (FFT). The Cooley-Tukey
algorithm [78], not covered here, is the most common FFT
algorithm and allows fast computation.

FIGURE 4. Basic approach for transformation of non-deterministic signals
into the frequency domain. An operator, e.g. FFT, can be applied to the
force signal f (t) to extract its spectral content. The resulting signal f (ω) is
now a function of the frequency f or angular frequency ω =2πf.

Among the first, Holweg et al. [79] showed a comparison
between two slip detection algorithms based on the FFT. The
first one utilized the center of force distribution, calculated
on the pressure outputs of a 16 × 16 piezoresistive matrix.
The second performed the FFT and the Power Spectrum
Density (PSD) of the normal pressure gathered from the
elements of the tactile matrix. The suitability of the two
algorithms was demonstrated on two different setups. In the
first the tactile matrix was held still, and the object was
moved between the sensor and a lever by means of a weight.
In the second, a robotic gripper with sensorized fingers was
horizontally translated upon a surface. Different frequency
contents, achieved with and without slip, were observed.
However, events quicker than 60 ms could not be detected
by evaluating the changes in the center of force distribution.
This was attributed to computational hardware limitation.

The FFT was reproposed several times in the following
years. In [80], it was performed on the output of a tactile
sensor based on strain gages. The selected time window for
implementing the Cooley-Tukey algorithm was comparable
with [79], i.e. 64ms. The sensor, coveredwith a hemicylindri-
cal metallic piece, allowedmeasuring forces along the normal
and tangential directions. The tangential force appeared to be

the most important in terms of high frequency fluctuations,
thus the slip detection algorithm was applied onto it. Power
spectrum was then computed by multiplying the FFT result
by its complex conjugate and then dividing by N (samples of
the window).

The use of the power spectrum proved to be more reli-
able than the FFT when applying a threshold mechanism.
The applicability of the algorithm for slip identification was
demonstrated with commercial strain gages, six-axis F/T sen-
sors of a robotic hand (Barrett Hand) and a piezoresistive
tactile matrix. Another robotic hand was covered with a
ridged, silicone skin embedding in the palmar area a large,
flat piezoresistive FSR tactile sensor [81]. Slip was deemed to
occur whenever the FSR signal peak frequency, retrieved via
FFT, fell between 1 Hz and 20 Hz. The hand was controlled
in such a way that the grip force was proportional to the
frequency peak. Success rate in maintaining cylindrical and
rectangular objects decreased with increase of sliding speed.

A technique combining statistical parameters with fre-
quency analysis was introduced few years ago in [82]. The
signals taken from two tactile arrays mounted on a robotic
manipulator were used to compute the correlation coefficient.
The FFTwas subsequently calculated on a temporal sequence
of correlation coefficients, considering slip to happen when
the first frequency component was higher than an exper-
imental threshold. In this way, slip could be inferred by
observing the variation in the correlation between the two
tactile sensor arrays. Statistical tools were also employed
in [83], where a principal component analysis (PCA) was
executed on the signals gathered from tactile piezoelectric
sensors. The tactile sensors were used to sensorize the fingers
of a robotic hand. The Short Time Fourier Transform (STFT)
was utilized to achieve time-frequency information about the
tactile signals. STFT can be regarded as a FFT shifted by a
predefined window function. For each STFT obtained over
eight FFTs, a feature extraction procedure was done and
the features were classified with a nearest neighbor classi-
fier. Three states could be distinguished: slip, non-slip with
tactile signal and noise (no tactile signal). Very recently,
the STFT was also adopted to preliminarily investigate the
presence of high-frequency vibrations with FSR force sen-
sors integrated in the thumb of a prosthetic hand [84]. Yet,
the slip associated with vibrations was verified by means
of the Hilbert-Huang Transform, which decomposes a given
signal into a set of Intrinsic Mode Functions (IMF) thanks
to an Empirical Mode Decomposition (EMD). As the first
IMF overcame a pre-established threshold, a slip event was
found. Furthermore, PCA was employed in [85] to select the
prevailing elements of a vector composed of both frequency
features, such as FFT, and temporal ones such as mean and
standard deviation. All the features were computed on the
three-axial force measured by a force sensor attached to the
fingertips of a robotic hand.

Several works were centered on the concept of spectral
power. In [86] arrays of small capacitive pressure sensors
were inserted in the skin of a robotic hand. Considering the
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voltage output of all the capacitive units, an estimation of
the center of pressure (CoP, conceptually analogous to [79])
could be achieved. The CoP power spectrum grew as slip was
automatically induced under various load and velocity condi-
tions, on different test surfaces. Heyneman and Cutkosky out-
lined that signal power ratio and signal coherence are usable
to distinguish between object/world slip and object/hand
slip [87]. Signal power ratio was defined as the ratio between
the local power L(f,ω) and the ensemble power E(f, ω). The
first was the power of the signal calculated within a given
frequency band ω centered at a frequency f , and summed for
all the sensing units in contact with an object. Conversely,
the second was the sum of all the power contributions of
each unit, computed in for the same frequency interval as for
L(f,ω). The ratio was written as

0 (f , ω) = E(f, ω)
/
NL(f , ω), (4)

where N is the number of units involved. The Group Square
Coherence (GSC), calculated as the average of the normal-
ized power taking into account the signal from each sensing
unit, was combined with the power ratio. Results indicated
good classification of object/world slip and object/hand slip
in experiments on plates with various roughness and sensors
(i.e. biomimetic fingertip as in [88], capacitive tactile sensors
and PVDF sensors).

Another operation which lately attracted the attention of
researchers is the Discrete Wavelet Transform (DWT). This
transformation method decomposes the original signal into
a set of subbands through a series of filters, both low-pass
(LP) and high-pass (HP), yielding the so-called approxima-
tion coefficients and detail coefficients respectively. To avoid
redundancy, the coefficients are subsampled by 2 at each
level. This has the effect of enlarging the temporal window,
thus shrinking the frequency resolution. For more extensive
discussion on DWT, the reader is invited to consult [89].

The high-frequency components (details) of the DWTwere
exploited to detect slip events in [90] and [91]. In the first, the
DWT was performed on the output of a slip sensor made of a
pressure conductive rubber laying on two spiral electrodes.
The sensor was mounted on a two-fingered parallel hand
for experimental tests, though a supplementary force sensor
(six-axis F/T) was required on one of the fingers to measure
forces for grasping control. The frequency components of
slip, 1 kHz or above, were identified by means of the Contin-
uousWavelet Transform (CWT). In the second, the DWTwas
instead applied on the signals of a three-axial tactile force sen-
sors arranged into a 3×3 matrix fashion. Thus, no additional
sensors for load measurement were needed. Each sensitive
unit of the matrix featured a pressure conductive rubber layer,
attached on an electrode substrate and covered by a PDMS
dome. The thumb of a prosthetic hand was endowed with the
tactile sensor to evaluate its functioning. In both works, when
the high frequency signal produced by the tested sensors was
greater than a threshold, slip could be revealed (even in its
initial phase [90]). A slightly different approachwas proposed
in [92] where the DWT was computed on the output of a

FIGURE 5. Pairwise high frequency components from a trial (readapted
from [92]). When a load is applied onto the object, variation from negative
to positive value occurs. Slip is represented by opposite variation trend.

capacitive tactile sensor. A system comprising a dynamome-
ter and a clamp exerted the force onto the sensor and slid
several objects above the sensor surface. Rather than apply-
ing a threshold logic, the trend of the pairwise details was
studied to infer the occurrence of slip. Specifically, thanks
to the properties of the employed DWT (Haar Wavelet) two
consecutive components of the DWT had the same absolute
value but different sign. It could be distinguished the load
phase from the slip phase as in the former case the sign
of pairwise components switched from negative to positive,
while the contrary happened in the latter case. Fig. 5 depicts
the outcome of a trial.

Other publications report the use of the Haar Wavelet as a
tool for slip identification in artificial hands. The DWT power
can be estimated utilizing the Haar Wavelet on the same
sensor as in [90], mounted on one finger of a three-finger
robotic hand [93]. The adoption of a Centre of Pressure sensor
avoided the necessity of using force sensors in addition to the
slip one. Moreover, the wavelet coefficient energy calculated
on the force signal obtained through an FSR sensor provided
useful information about slip events [94]. The FSR sensor
was placed on the thumb of a single DOF prosthetic hand and
the wavelet signal was included into a fuzzy-logic control to
manage the grasping force of the held object.

Finally, DWT is applicable on acceleration data to detect
incipient slip as well as gross slip, e.g. if accelerometers are
located on a prosthetic fingertip and yield high frequency
outputs when relative movement with an object occurs [95].
The threshold mechanism on the DWT signal was a common
element when using both DWT power andwavelet coefficient
energy, as well as accelerometers.

A DWT-derived technique is the StationaryWavelet Trans-
form (SWT), which works similarly to the DWT except for
the absence of downsampling. An up-to-date example of
SWT application to slip identification is provided in [96],
where a biomimetic fingertip was moved at different force
and velocity levels upon naturalistic surfaces. Slip could be
found with very high accuracy, regardless the experimen-
tal conditions (i.e. varying velocity and exerted force), thus
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suggesting the SWT as an effective tool to solve the problem
of slip detection.

Notwithstanding the DWT can be viewed as a sequence of
filtering operations, it was chosen to deal with DWT-based
methods in the present subsection together with the other
transform operations. The next subsection will summarize
approaches relying on filter functions.

C. FILTERS
In the previous subsections, the concept of high frequency
vibrations as indicator of slip emerged. During the last ten
years, a further manner to extract such vibrations arose.
It consists in filtering the tactile signal with purposely
designed functions or circuits. Cut-off frequencies and filters
order should be carefully defined to enhance the signal com-
ponents within a certain band.

Being the slip frequency content much richer at high values
of frequency, the most convenient way to conceive a filter is
to penalize low frequencies. These usually prevail when slip
does not occur; hence, HP filters do appropriately fit this task.
However, band-pass (BP) filters are also suitable as they allow
selecting only a particular range of frequency. Very subtle
bandwidth might be chosen in order to discern meaningful
frequencies from the rest of the spectrum. Probably due to
this property, they were chosen more often with respect to the
HP filters. In this concern, in [97] a flexible, piezoresistive
tactile sensor based on conductive nanocomposite (carbon
nanotubes, CNT) was developed and used for force and slip
measurement. Slip events could be identified by filtering
out from the sensor output all the frequencies higher than
45 Hz and lower than 40, as the most accentuated difference
between signals of slip and nonslip events was observed
in a very narrow band (i.e. 40-45 Hz). To this purpose,
a fourth-order BP Chebyshev filter was implemented. Obvi-
ously, higher orders correspond to higher efficacy of the filter,
though its complexity increases. For example, [98] illustrates
a control scheme of a prosthetic hand (Motion Control Hand)
based on a network composed of seven fourth-order BP fil-
ters. Each filter resonated at frequencies in the interval 20-
50 Hz, with a 5 Hz pace. In this way, it was possible to
isolate the slip frequencies from the tangential force signal of
some strain gages located on the thumb of the prosthetic hand
(covered with a cosmetic glove). A LP filter was added to
the seven fourth-order functions so as to penalize frequencies
above the meaningful bandwidth. This was identified through
FFT of the force signals, as well as in the previously described
work [97]. In both cases, the absolute value of the filtered
signals was computed to obtain a monopolar signal, and
then sent to the control. Force signal filtering was performed
in [99] as well. Two jaw grippers (mounted on the arms
of a PR2 robot), whose fingers featured a tactile matrix,
were used to execute grasp experiments with a broad set of
objects. To ensure slip avoidance, the force values fn from
all the matrix elements (twenty-two) were HP filtered and
summed, achieving the following index (readapted for sake

of simplicity):

Ff =
15∑
n=1

Hhp(z)fn, (5)

where Hhp(z) is the Butterworth filtering function designed
to cut off frequencies below 5 Hz from the force signals.
This was done for both the gripper fingers. Only the sensing
elements placed in the main surface of the gripper, i.e. fifteen,
were included in the calculation of Ff . Additionally, the force
summation was filtered with a Chebyshev BP filter from 1 to
5 Hz in order to reduce the influence of too quick force
variation. A slip event was detected whether Ff was higher
than a threshold (depending on the force summation) and,
contemporarily, the BP signal was lower than an empirical
threshold.

Higher frequencies were accounted for in [88], where the
pressure signal from two biomimetic fingertips was filtered in
the band 60-700 Hz. Subsequently, the absolute value of the
filtered signal was compared with the signals of an inertial
measurement unit (IMU) in terms of latency from the slip
onset. The filter-based detection offered better performance
than the IMU (attached to the tested objects). This was prob-
ably due to the textured skin covering the fingertips, which
contained a conductive fluid. Textures with very small pace
were responsible for the high frequency vibrations of the
fluid; such vibrations were relayed to the pressure transducer
when the touched object started slipping against the fingertips
surface. Interestingly, rotational slip could be distinguished
from linear slip through a neural network with 80% accuracy.

Lately, filter networks were also exploited in [100]. A
robotic finger was endowed with a biomimetic fingertip fea-
turing four MEMS tactile sensors, which in turn had four
sensitive units (i.e. sixteen channels). Filtering stage included
a fourth-order Butterworth BP filter, with the two cutoff
frequencies at 10 Hz and 50 Hz. Two additional stopband
(SB) filters were cascaded to the BP filter to attenuate all the
useless frequency content, e.g. due to contact of the fingertip
before the sliding movement. The filtered signal was rectified
to make it unipolar; exponentiation was also performed in
order to augment the difference between the portion of signal
associated with slip and the peaks due to false positives
(contact and release). Finally, the signal was enveloped with
a 40-ms window to eliminate the quick and discontinuous
spikes, achieving a smooth curve. The result of the various
computational blocks is given in Fig. 6 for a test signal. All
the sixteen outputs were jointly analyzedwith logic operators.
A final ON/OFF signal was obtained through a threshold
mechanism on the enveloped signals. 100% in slip detection
was achieved, whereas only around 1% of false positives
in the worst case. The algorithm was formerly evaluated in
a simpler configuration [101]. A single, second-order HP
filter was built to cut off frequencies below 700 Hz from the
normal force signal gathered by an FSR sensor, acting as a
force/slip sensor. Such a sensor was placed on the index of a
mechatronic hand (IH2 Hand), while two other FSR sensors
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FIGURE 6. Signal elaboration according to [100].

were placed on the thumb and middle fingers for force mea-
surement only. The ON/OFF signal was fed back to the hand
control, which increased the grip force avoiding the grasped
objects (e.g. egg and plastic cup) fall when automatically
disturbed by the end effector of a robotic arm. In this work,
an ad hoc hardware, i.e. a PCB, was devoted to the algorithm
implementation. A further development of this method was
successfully employed in an in-vivo experimentation [102].

Likewise, an ON/FF signal was generated by means of a
purposely designed chip in [103]. The chip architecture was
based on circuits composed of a number of silicon retinas
(ST), whose transfer function was comparable with the one
of a HP filter. STs are 2-D arrays of processing elements.
Such elements are locally interconnected and are able to sense
microvibrations and to carry out real-time processing. The
chip functioning was proven on the raw force signal from a
linear array of sixteen piezoresistive sensors.

A filtering tool which lately draw the attention of some
researchers for the realization of slip prevention algorithm
is the Kalman Filter (KF). It allows measuring unknown
variables based on previous estimations which are affected
by a certain amount of noise. As such, it can be regarded
as a statistical tool. Remarkably, the KF works properly on
dynamic systems, usually linear, and hence might be used to
observe the dynamic behavior of rapidly changing quantities.
Therefore, over the last years, KF filters began being consid-
ered for slip identification in the robotic field, especially in
prosthetics.Wettels and colleagues utilized a KF in a classical
framework, retrieving both tangential and normal forces by
means of a biomimetic tactile sensor array [104]. The array
was integrated into the thumb of an anthropomorphic robotic
hand (Ottobock M2), forming an antecedent version of the
biomimetic fingertip used in [88]. The KF took inputs from
four electrodes (i.e. voltage) of the fingertip core, whereas
a fifth input was given by the previous value of the tangen-
tial force. Once the tangential force was estimated through
the KF, the force ratio was computed as in (1) being the
normal force arithmetically reconstructed through the elec-
trodes voltage output. Adjustments in grasping actions were
carried out according to the force ratio; a Styrofoam cup

FIGURE 7. Flow chart of the algorithm developed in [104] (readapted).
Normal force was reconstructed from the fingertip electrodes output.
Tangential force was estimated on the electrodes output through the KF.
Force ratio determined whether to correct the grip force or not.

was correctly handled even when rapidly filled with water.
Schematization of the algorithm is drawn in Fig. 7.

Furthermore, slip identification was possible utilizing the
residual of KFs applied to the tangential component of the
applied force. In [105], an optoelectronic six-axis tactile sen-
sor was employed to perform incipient slip detection. The KF
residual was integrated with the Tustin’s method. The static
friction coefficient was also involved in the KF residual anal-
ysis, and was obtained by means of an exploring phase of the
surface object. Likewise, friction coefficient estimation and
KF residual were combined to infer slip occurrence in [106].
KF residual was this time LP filtered (5 Hz cut-off) to achieve
a slip signal, which was compared with a threshold. The
algorithm was tested on a commercial six-axis F/T sensor.
Extensive dissertation about KFs is findable in [107].

V. PHYSICAL QUANTITIES
Slip can be inferred from physical quantities relating to
peculiar physical phenomena, which have to be observed
with proper sensors. Piezoelectricity-based transducers were
referred in the precedent Section as they represent a con-
solidated solution for slip detection, and strongly depend on
vibrations. Here, we report works investigating the additional
physical quantities that might relate to slip.

A. OPTICS
The investigation of optical sensors as slip sensors initiated
during late 80s. Hopkins and collaborators [108] suggested
that macropixels, i.e. groups of single pixels captured with
RAM cameras, were able to reduce computational times,
storage memory required and noise (given the filtering effect
of averaging many pixels). The basic idea was to compare the
output of such macropixels and to recognize slip as a certain
difference appeared in such an output. To do so, the camera
collected the light reflected by a photoelastic element with a
reflective layer, against which the object was slid. Photoelas-
ticity was also used in [109], however the emitted light hitting
the photoelastic layer was not reflected but rather caught by
a receiver with a modified intensity. This descends from the
fact that light is divided into some components following the
directions of the so called principal stresses, originated when
an external load is applied onto the photoelastic material.
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The intensity of the received light is expressible as a function
of the principal stresses, which in turn are function of normal
and tangential loads. Hence, said intensity is modified by the
object slip, as it yields variation in such stresses. Disadvan-
tageously, if the principal stresses remain constant during the
object slip, this one cannot be observed.

In [110], a hemispherical optical sensor was built featuring
concentric rubber ridges, with an optical fiber positioned in
each groove between two adjacent ridges. The developed
sensor had sixteen fibers providing as many channels. Exper-
iments were performed mounting the sensor on one side of
a gripper interfaced with a PUMA 560 robotic arm, which
lifted an object and gradually released it. Light intensity in the
fibers changed as a ridge deformation, even partial, occurred
during contact with the object. Slip was detected before it
could totally happen in 85% of cases.

Further, optical sensors were integrated in the fingertips
of a robotic hand (DLR/HIT) connected to the right arm
of a mobile robotic platform (TUM-Rosie) [111]. The sen-
sor consisted of a miniature camera and a laser emitter,
and a microcontroller was dedicated to computation. The so
equipped fingertip permitted recognition of slip events when
the grasped object surface translated w.r.t. the sensor lens.

Other sensors comprising a camera and a light source are
available: one is the GelSight. This has an elastomeric body
covered with an opaque membrane which reflects the light,
allowing to reconstruct the geometry of the contacted surface.
In a recent version [112] tested on a gripper, the membrane
was provided with randomly distributed markers which could
track the deformation of the elastomer. The displacement
tracked by means of the markers correlated with the shear
force during grasping of items, e.g. a metallic can. Regions of
pre-slip and total slip could be identified studying the entropy
of the shear field magnitude. Besides, Ito et al. [113] showed
a tactile sensor which could detect slip events by collecting
images through a CCD camera. The images were obtained as
the light emitted from a LEDwas captured by the camera after
being reflected by contacted objects. A spherical, transparent
body of silicone rubber acted as a contact mean; such a
body was patterned with a 21× 21 matrix of dots. Checking
the brightness of each recorded pixel allowed understanding
which rubber area was in contact with a certain object, and a
stick ratio could be calculated. The displacement of the dots
w.r.t. a reference dot was studied to localize the slip region.
The stick ratio R was defined as Ns/Nc, where Nc was the
number of dots enclosed by the contact region and Ns was
the quantity of dots for which |dk -dref | <τ . That is, if the
difference between the displacement dref of the reference
dot and of the k-th dot dk was smaller than a threshold τ ,
this dot was then aggregated to Ns. Additionally, tangential
load, normal load and to the moment around normal axis
could be retrieved from dots displacement. Very recently,
a camera was used to monitor the position of some pins
located hexagonally in an optical tactile sensor [114]. Such
a sensor was interfaced to a robotic arm (UR5); the position
of the pins was processed in real time through a support vector

machine (SVM) classifier to analyze the slip presence as the
sensor contacted a test object.

Another technique employing a sensor made with one
photodiode (PD) and two phototransistors (PT) was presented
in [115]. The infrared light emitted by the PD is reflected
by an object and then gathered by the PTs. Forces were
sensed with a pressure sensitive rubber, which completed the
sensor structure. By computing the cross-correlation between
the voltage outputs of the two transistors, slip velocity was
retrieved and the applied force was corrected proportionally
to such a velocity. A drawback concerning this sensor resided
in that it allowed measuring movements only of polychro-
matic and patterned surfaces.

An optical sensor comprised of a LED and a PT was
mounted on the middle finger of a prosthetic hand (i-Limb),
which was in turn interfaced to a robotic arm [116]. The raw
data from the sensor were first LP-filtered at a rather low
frequency (i.e. 10 Hz) to reduce noise, and the difference
between two consecutive filtered samples was continuously
stored and summed to the previous difference value, being the
initial difference set to 0. When such a sum was higher than a
threshold, a spike signaling slip was generated. The threshold
was dynamically adapted basing on the difference of each
pair of consecutive samples. This algorithm produced good
response time in slip detection when the hand was grasping a
bottle gradually filled with 500 ml of water.

Finally, we report the PapillArray slip sensor [117], which
consisted of a silicone pillar mimicking the papillae in the
human finger pad skin. The pillar had a 15-mmdiameter and a
20-mm height: it was constructed with an inner cavity hosting
a diffusive reflector illuminated by two LEDs installed on
the opposite side of the cavity. Between the LEDs there was
a pinhole aperture, below which a quadrant PD collects the
inverted image projected by the reflector. The PD signals
were mapped into 3D force and displacement.

B. VELOCITY AND ACCELERATION
Intending slip as a movement, its detection can be associated
to the detection of a velocity. A Laser Doppler Velocime-
ter (LDV) was adopted in [118], whose principal components
were a laser diode (LD), a PD and micromirrors. The LDV
had very little dimensions: 7.8 mm2 large and 1 mm thick.
The two laser beams, emitted from the LD and reflected by
the micromirrors (made of aurum), were scattered by the
slipping object and then collected by the PD. By observing
the resultant shifts of the peak frequency in the PD voltage,
velocities from 10 µm up to 2 cm/s could be caught. The
movement of plastic, metallic and cardboard objects was pro-
duced by means of a voice coil actuator. However, the tested
objects were not in contact with the LDV, but simply put in
front of it. This does not represent a proper slip condition.

Not only velocity but acceleration as well was exploited
to get insight about slip. Howe and Cutkosky [119] probably
presented the first accelerometric slip sensor for robotics
in 1989, while [32], [120] showed few years later the first
applications in robotic manipulation. A central foam rubber
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FIGURE 8. Elaboration of an acceleration signal from a slip sensor as
in [120]. The raw output can be band-pass filtered to cut off undesired
frequencies. Subsequently, amplification and calculation of RMS are
reasonable steps.

was covered with a rubber skin endowed with small protu-
berances enhancing vibrations during slip. Such vibrations
activated the accelerometer placed on the inner side of the
skin, in the contact region. A slip sensor was thus obtained,
and mounted on a two DOFs robotic finger. The RMS of
the sensor output was used as a slip signal, obtained after
filtering and amplifying the raw acceleration as depicted
in Fig. 8. By gradually reducing the force exerted by the
fingertip against an object (attached with a mass) until slip
occurred, the sensor capabilities were tested with several
materials, e.g. sandpaper, smooth paper and Teflon [120].Wet
surfaces did not worsen the sensor performance, contrarily
oiled objects could not generate slip signals. Reference [32]
described an improved version of the slip sensor, in which an
accelerometer was added on the side of the rubber foam in the
fingertip core. In this manner, noisy signals at the skin could
be more easily discarded whereas vibrations due to sliding
could be sensed by the side accelerometer. Similar experi-
ments were conducted but only with a Teflon piece covered
with sandpaper. Plus, a three-axial force sensor was placed
behind the fingertip embedding the slip sensor, throughwhich
the friction coefficient was constantly updated for optimal
grip (see Subecton III.A).

Although first demonstrations were encouraging, few other
works adopted accelerometers as slip sensors in artificial
manipulation. Previously mentioned articles [71], [95] made
use of acceleration to detect slip events. DWT on accelerome-
ters output positioned on a fingertip was computed in the first;
the amplitude of such an output was instead checked together
with the output of a PZT sensor in the second, where both
the accelerometer and piezoelectric units were attached to the
thumb surface. All the acceleration-based methods listed so
far foresaw to implement threshold mechanisms.

Differently, in [121] the acceleration information was
merely used to confirm pre-slip and gross slip sensed by an
acoustic pressure transducer. The end-effector of a robotic
arm, composed of two rectangular, flat fingers, was provided
with both the pressure transducer and the accelerometer.
Experiments regarded the grasping of a cork ball and a glass

bottle. Gross slip was also perceived with an accelerometer
integrated in a sensorized prosthetic finger [122].

Note that, even though some acceleration-based methods
resort to vibrations, this does not apply to all of them. There-
fore, we chose to place such methods in the present Section,
dedicated to physical quantities in general.

C. THERMAL, MAGNETIC AND OTHERS
In this work, quantities adopted more sporadically are treated
as well, for the sake of completeness. E.g., few attempts were
done with thermal sensors as well. When slip occurs between
two surfaces, an amount of convective heat is released and
could be marked as a slip index. This principle was adopted
in [123], where a thermal probe was electrically kept at a con-
stant temperature through amicroheater. The heat q generated
by the probe is modellable through the Fourier equation:

q = δT/δt + v∇T − α∇2T (6)

in which T is the temperature, v is the slip velocity and α is
the thermal diffusivity of the slipping body. When fast rela-
tive movements (i.e. slip) took place, heat was convectively
dissipated according to the term v∇T . Heat dissipation was
compensated by increasing the power supplied to the probe.
A temperature threshold, above which slip was signaled, was
established. Albeit it was possible to detect slip regardless the
material roughness (on plastic and wood), the sensor failed to
discard contact events from actual slip. A basically equivalent
slip identification method and sensor, this time grounded on
a flexible substrate, was illustrated in [124].

Magnetic tactile sensors were also developed to sense force
and slip. A way to create a magnetic force sensor is to assem-
bly a deformablemedium together with a rigidmedium [125].
The first hosted a permanent magnet at its center, while
the second embedded four chip inductors. A displacement of
the magnet yielded by a pressure applied on the deformable
medium induced voltage in the inductors. Such a voltage
depended on the variation of the magnetic flux, which in
turn could be expressed as a three-dimensional space-varying
function. Hence, appropriate integration of the magnetic flux
allowed reconstructing three-axial force. The voltage Vi in
each inductor was linked to the vertical component of the
magnetic flux Bzi as follows:

Vi = −MδBzi/δt

= −Mδ(a
√
(x i +1x)

2
+ (yi +1y)2 + b)/δt. (7)

In (7),M= NA is the product of the number of coils N and
the coil area A of the i-th inductor, whereas 1x and 1y indi-
cate the displacement of the permanent magnet w.r.t. to the
inductor position denoted by xi and yi. The constants a and
b depended on the displacement along the normal direction.
Slip could be identified as a fast, prominent peak in the four
induced voltages (one per inductor) during experimental tests
done on a linear rail. The same sensor wasmodified by adding
four giant magnetoresistances (GMR) in the substrate hosting
the inductors [126]. GMRs voltage output served to estimate
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FIGURE 9. CMC sensor output for a typical trial. Both R-component and
LC-component showed sudden variation when slip occurred. Readapted
from [128].

the three-axial force while slip was detected as in the previous
work. A later magnetic tactile sensor [127], recalling the one
of [125] in terms of structure and functioning, was proposed
for stick-slip identification aswell. It confirmed the capability
of the inductors voltage to exhibit significant peaks when the
stick slip led to friction force variation.

A dome-shaped silicon rubber sensor, including tiny car-
bon coils (10 µm diameter), was used in [128]. Deformation
of the so composed sensor, i.e. Carbon Micro-Coil (CMC)
sensor, produced an LCR behavior, which could be quan-
tified in terms of amplitude and phase. When the sensor
was mechanically stimulated, impedance changed in both
the R component and the LC component. Peaks greater
than a threshold in their voltages revealed the occurrence of
slip (Fig. 9).

A method based on the CoP analysis was illustrated
in [129]. Unlike previously mentioned articles where the
study of the CoP was conducted with spectral techniques,
here the voltage output of a CoP sensor was directly observed
to find correlation with slip events in the time domain. The
sensor was made of two conductive sheets sandwiching a
pressure sensitive layer. All materials were flexible; thus, two
sensors could be wrapped around the two cylindrical fingers
of a robotic gripper for experimental tests. The voltage output
was inserted into the control loop of the gripper. If significant
drop in such a voltage was found, the gripper increased the
applied force. Slip was prevented with objects of diverse
mass, though disturbance was generated manually.

Furthermore, pneumatic devices are eligible for slip detec-
tion. A pneumatic tactile sensor for sensing roughness, hard-
ness and slip was shown in [130]. The sensor was composed
of a latex tube acting as an air bladder, inside which a pressure
transducer measured the pressure changes due to external
forces on the tube surface. The tube was protected with
a plastic parallelepiped structure, and a kind of fingerprint
was attached to the tube surface in order to amplify the slip
vibrations. Indeed, slip was observed in terms of fast oscilla-
tions in the pressure transducer voltage output, recalling the
approaches described in previous sections.

VI. ALTERNATIVE APPROACHES
Hereto, a plurality of works about the most popular tech-
niques for the investigation of slip phenomena in arti-
ficial hands were summarized. Although some principal
approaches are prominent, e.g. those resorting to contact
friction or else on vibrations typical of sliding, the problem
of slip detection in artificial tactile sensing can be fit into
a larger framework. The following contains an exhaustive
synthesis of alternative methods retrieved from literature,
covering approximately the last thirty years with considerable
concentration within the last ten.

A. DIFFERENTIATION
The differentiation of the tactile signals constitutes another
option to study slip. As it does neither demand multi-axial
force sensors nor it does strictly depend on the presence of
vibrations, we chose to classify differentiation-based meth-
ods in a distinct Section. When investigating quickly varying
waveforms yielded by sliding events, the idea to calculate
derivative functions might lead to useful results. Although
differentiation took root in the last decade, the first attempt
to attain a derived measure from tactile force sensors was
done in [131]. Authors showed that a slip vector could be
derived from FSR sensors mounted on a prosthetic hand. The
FSR outputs, fifteen in total, were arranged into a 4 × 4
matrix (themissing onewas considered constantly active) and
their original analog values were combined arithmetically.
Subtraction operations were chosen to create the derived slip
vector, so that linear and twistingmotion could be recognized.
Movement of grasped items on a particular direction (left-
right) was distinguished with elevated accuracy (94%).

Lately, a growing trend about derivative methods for slip
prevention in artificial hands can be noticed. Probably, in this
sense, the most recent work exploited the differentiation of
the force signal collected from a CNT-based piezoresistive
tactile sensor [132]. FSR force sensors, which stand in the
piezoresistive domain as well, were diffusively chosen to
carry out such methods; an earlier demonstration was given
in [131]. In [133], a prosthetic hand was endowed with five
FSR sensors (one per finger), observing the slip of various
objects through the absolute value of the derivative of the
FSRs signals. The grasped objects were disturbed by attach-
ing a weight inducing vertical displacement. A fluctuating
signal, resembling the filtered (and rectified) signals, was
generated during the sliding phase. This allowed applying a
threshold logic to produce a binary slip signal, as illustrated
in a preceding work [134]. Here, the derivative was calculated
on each k-th sample of the force signal, according to the
five-point stencil. However, in [133] the average derivative
of the FSRs was computed on consecutive ensembles of
five points, and was coupled with the derivative of some
position sensors. These were mounted on the anterior part of
thumb, index and middle fingers. Non-null derivative indi-
cated a movement of the grasped object; this information was
adopted to render the slip detection procedure more robust.
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FIGURE 10. Grasping trial performed in [136]. Negative peaks in the
derivative signal produced spikes triggering the prosthesis closure.

Moreover, combined use of more sensors was tried in [135]
where a prosthetic hand (Bebionic v1) was sensorized with
a strip of five barometric force sensors and one FSR force
sensors. The sensors were encapsulated in a plastic cuff and
fixed to the prosthesis index finger. A second-order derivative
was computed on both the barometric sensors and the FSR
output, i.e. normal force. Negative peaks in the derivative
were observed to relate to slip of the object held by the
prosthesis, while positive peaks related tomere contact. Baro-
metric sensors showed capability to detect slip even with
very small change in the force signal, having a resolution as
fine as 0.001 N. Yet such sensors saturated at low pressure
levels (1 N). Conversely, FSR could measure forces up to
10 N but needed greater force changes in order to recognize
slip. However, the slip signals were not fed back to any
controller. An almost equivalent approach was soon after
presented by the same authors.([136]. It exploited only FSR
sensors purposely fabricated in cuff structures and mounted
on each prosthesis finger: one cuff on thumb and two on the
other fingers. When a negative peak was found in the (first-
order) derivative of the FSR signal, the closing action of the
prosthesis (Bebionic v2) was triggered by a 100 ms wide
spike. Fig. 10 plots the results of a grasping trial. In [137]
the derivative of the normal force square root was computed
and then evaluated through an empirical threshold. Force was
measured by FSRs attached on the thumb and index of a
prosthetic hand (IH2 Azzurra). Normal force was also differ-
entiated in [88], in addition to the aforementioned filter-based
technique (see above). Three-axial forces, including the nor-
mal one, were retrieved from the electrodes positioned in
the biomimetic fingertip core, through a weighted sum of
their outputs. As the object gripped between two biomimetic
fingertips was made to slip, the derivative of the normal
force component could reveal the movement of the object.

Nonetheless, the differentiated normal force performedworse
than the filtered pressure, though better than the IMU. This
is reasonable, given that the filtered signal could rely on the
microvibrations induced by the textured skin. Hence, initial
slip could be detected only by the filtered pressure.

Finally, literature reports differentiation of the output of
three-axial optical force sensors [138]. In this case, the deriva-
tive function was applied to the shear force. The sensor had
sensing elements with conic extrusions (feelers), and was
mounted on the tip of a robotic finger. Experiments were
limited to the exploration of a sole parallelepiped object, and
the fingertip moved along a rectangular trajectory. As the esti-
mated shear force overcame a dual (same value with opposite
sign) threshold defining a sort of band, slip was deemed to
occur. Therefore, exerted force was raised up by moving the
fingertip downwards.

The second derivative of the wavelength shift was studied
to infer the presence of slip. Fiber Bragg Grating, included in
fiber optics sensors, show a wavelength shift when a pressure
is applied onto them. When the second derivative of such a
shift overcame a threshold, slip was found according to the
method conceived in [139].

B. LEARNING PARADIGMS
Unlike e.g. force or position, slip has not a measurement
unit as other physical quantities. The control system should
decide whether to intervene in order to modify grasping
parameters (e.g. fingers force or position) basing on informa-
tion collected by tactile sensors. A manner to elaborate such
information is to build neural networks, which are inputted
with data from sensors and provide an ultimate slip signal.
A neural network needs a training phase to establish the
weight of its neurons; these are usually distributed in at least
two layers (sometimes only one). The network is able to
produce an output which is somehow linked to the input in
a black box fashion. Some works employing ANNwere cited
earlier [63], [88], though they showed some preprocessing of
the tactile signals. One of the first studies proposing to feed
an ANN with unelaborated tactile data is [140], where six-
teen force values were used to train a neural network whose
output was defined as a sliding coefficient S. The force values
were gathered from as many thin-film piezoelectric (PVDF)
sensors, organized in a linear array with eight sensor couples.
Each couple could measure normal stress with one sensing
unit and tangential stress with the other one. The sliding coef-
ficient approximated the ratio T/µN, with T , N and µ denot-
ing tangential force, normal force and friction coefficient,
respectively. Hence, as the output S of the ANN approached
the unitary value, slip was judged to be in its incipient sta-
tus. The network was trained with a back-propagation (B-P)
algorithm, which is a rather common choice. For instance,
B-P was used to train an ANN receiving inputs from the
scattered energy emanated by slip vibrations [141]. Such an
energy was estimated through a tactile stylus embedded into
a robotic gripper. Additionally, the falling velocity of the
grasped object acted as an input for the ANN. The optimal
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FIGURE 11. HN built in [144]. The S1. . .6 inputs from the six strain gages
activated the nodes of the tactile layer. The two gray circles represent the
vision nodes activated by image displacements along planar directions.
The output consists in the final decision about slip occurrence.

grasping force to avoid slip, which was the output of the
ANN, reached a 70% accuracy. A rather recent approach
relying on B-P algorithms was presented in [142], where the
ANN output again consisted in the optimal grasping force.
The input for the ANN was the force ratio of (1) exerting on
the distal part of the same sensorized fingertip mechanism
as in [53] (see Section IIIA). A vector of force ratio values
was converted into binary format, while the ANN output,
with the same format, activated the actuator of the hand. The
grasped objects were limited to a prism-shaped item covered
with three different materials (i.e. wood, glass and spongy
rubber). A neural network trainedwith B-Pwas also exploited
in [143] to distinguish between sliding and slipping events
in non-prehensile tasks. To this purpose, a fingertip endowed
with twelve piezoresistive cells was mounted on each finger
of a prosthetic hand (Shadow Hand), and their normalized
output (in the range 0-1) were utilized to train the network
after a preprocessing in the frequency domain. The hand was
interfaced to a robotic arm, which allowed performing trials
on plywood, PVC and aluminum surface. Accuracy was as
high as 96.4%.

Hebbian networks (HN) found application as well in slip
detection. An example is given in [144]. Here, a robotic hand
was equipped with soft sensorized fingertips and a vision
sensor. The former had six strain gages randomly distributed
within the fingertip. The latter was a CCD camera located
above the hand. The HN had two layers, i.e. one for the
tactile inputs from the gages and one for the camera (Fig. 11).
Initially, the HN could recognize slip as a variation occurred
in the displacement between the fingertip and the contacted
object. That is, slip was observable only through the camera.
After a given number of learning trials, slip could be caught
relying only on tactile sensors.

Learning methods go beyond ANNs. E.g., Long Short
Term Memory (LSTM) networks offer a worthy solu-
tion, boasting outstanding perception of spatiotemporal

correlations as proved in [145] where another camera-based
sensor was experimented. The sensor was made of an elas-
tomer, inside which some markers were located with the
aim of tracking feature points. The nearest points corre-
spondences between two consecutive frames were achieved
through the K-nearest neighborhood method. Images were
acquired from 3 channels, i.e. the two planar directions and
magnitude, and fed to the LSTM.

Spectral analysis was combined with LSTM in [146] to
process tactile data from a six-axis F/T strain-gage-based
sensor, a three-axis optical force sensor, and a biomimetic
fingertip hosting multiple sensors (e.g. an electrode array).
Millions of sensory data were processed to effectively
train slip detectors, obtaining a maximum detection time
of 60 ms.

Furthermore, Gaussian Process (GP) regression was
adopted to train the control of a robotic platform to avoid
slip [147]. The platform had two arms, each featuring a
tripod manipulator provided with a six-axis F/T sensor. The
training data for the GP were the maximum linear friction
force and rotational friction torque acquired by means of the
F/T sensors. This approach permitted determination of torque
and force limits to be exerted on a grasped object in order to
prevent slip.

Recently, a multi-channel fingertip was employed to col-
lect data used to learn some slip predictors [148]. Learning
paradigms, such as support vector machines and random for-
est classifiers, were implemented to perform slip prediction.
In [149] a Hidden Markov Model was trained to predict slip
with signals acquired by means of a six-axis F/T sensor,
several strain gages and PVDF sensing units.

Learning approaches guaranteed high accuracy in both grip
stabilization and slip prediction, on varied objects and sur-
faces. Inconveniently, such approaches require huge amount
of tactile data to train the learning algorithms.

VII. DISCUSSION
The most spread methods for slip detection in artifi-
cial manipulation were presented in the sections above.
Every described approach offers some advantages that led
researchers to investigate the relevant potential. Nonethe-
less, more undeniable drawbacks prevented the adoption of
a single solution and the development of a defined technol-
ogy/algorithm that could impact the market. Figure 12 sum-
marizes the strengths and weaknesses of the main methodolo-
gies employed in the effort to avoid slip.

A. FRICTION COEFFICIENT AND MULTIAXIAL FORCES
Friction-based methods are grounded on classical physics,
i.e. they are inspired by the well-known Coulomb’s model
of friction. Such methods were largely considered across the
last twenty years of the previous century until the first years
of the third millennium. A number of works studying slip
as a friction-dependent problem can be found in more recent
literature, though new techniques arose lastly. Friction-based
algorithms, which can be implemented resorting on various
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FIGURE 12. Summary of the main methodologies for slip detection with relevant pros and cons.

sensor technologies such as piezoresistive, capacitive, opti-
cal and QTC, allow accurate detection of slip phenomena
even at the initial stage. Indeed, they provide information
about the static friction coefficient of the contacted object,
which directly relates to the exerted forces. Bymonitoring the
value of the force ratio, it is possible to understand whether
such a value is approaching to a limit region within which
slip commences. In this situation, the tangential forces are
growing, leading the grasped object to slid w.r.t. the sensor
surface. Thus, opportune corrections in the grip force are to be
applied, i.e. the normal force should be incremented to tighten
the grip. Detecting the incipient slip allows the gripping sys-
tem to correct applied force faster, as there is no need to wait
for the gross phenomenon. Notwithstanding, to monitor the
friction coefficient implies the use ofmultiaxial force sensors.
At least two components of force are required in order to
compute the ratio as indicated in (1). This constitutes an
inconvenience also from an economic point of view, as multi-
axial sensors are often more expensive than monoaxial ones.
Alternatively, the friction coefficient might be estimated by
means of dedicated sensors, though additional constraints
can be introduced. For instance, in [51] the proposed sensor
for friction coefficient estimation had to be softer than the
touched object and with greater curvature, or else in [50] the
friction sensor functioned alongwith a force sensor in order to
control the pressure applied onto the grasped item. Estimation
of friction coefficient may also be avoided by evaluating the
strain distribution on a given surface, yet more force sensors
(e.g. strain gages) are needed [55], [56].

Furthermore, the validity of Coulomb’s model was brought
into question since the end of the 80s [150] by the fact that

its basic assumption, i.e. the proportionality between friction
coefficient and normal force, is not valid for soft materials.
When studying the interaction forces on a deformable sur-
face, e.g. the compliant skin covering a robotic finger, the
friction limit described in (1) should account for not only the
tangential force Ft but for a torsion term as well, resulting in
Ft+AMn ≤µFn, whereMn denotes an applied moment and A
is a constant. This formulation was demonstrated to improve
robustness in predicting slip phenomena especially for what
concerns soft and very soft structures [151]. Other analytical
models of contact often involve supplementary parameters,
besides multiaxial forces. Although the Hertzian model does
not depend on friction, it necessitates other sensing units
(e.g. vision sensors) to determine the radius of the contact
area and the displacement of a reference point within such
an area as in [44]. Mindlin’s model suits better structured
environments [54], as it may be applied provided that object
properties (static friction coefficient above all) are known.
LuGre model yields precise friction measurements despite
the huge number of parameters but is mainly limited in that
such measurements are satisfactory only when the object
surface is quite smooth and regular [48].

B. VIBRATIONS
Piezoelectric materials theoretically offer a high-quality solu-
tion for the development of slip sensors. This descends from
their notable sensitivity to high-frequency vibrations, a prop-
erty which mimics human FA II behavior. Whenever slid over
a surface, the output of a piezoelectric sensor will exhibit
dense fluctuations that are evident even if the sensor is slid
at low velocity. This applies to all materials, regardless the

VOLUME 8, 2020 73043



R. A. Romeo, L. Zollo: Methods and Sensors for Slip Detection in Robotics: A Survey

friction. Of course, the rougher is the surface, the stronger
will be the piezoelectric output. On the other hand, the per-
formance of piezoelectric sensors is affected by a certain
temperature dependence; for instance, the activity of the most
used piezopolymer (PVDF) in tactile systems has a variation
of about 0.5%/◦C [70]. Such a variability might lead to sig-
nificant modification in the sensor output for abrupt temper-
ature excursions. Despite the excellent flexibility of PVDF,
this possesses low sensitivity, i.e. maximum 30 pN/C (four
times less than PZT). Temperature influence on piezoelectric
voltage is considered among the major shortcomings [4].

Moreover, piezoelectric signals should be properly pro-
cessed before being fed back to the controller of a
robotic/prosthetic hand. Given their bipolar nature, at least the
signal rectification removing negative oscillations is required
to prevent signal instability. This operation is usually pre-
ceded by one or more filters, which greatly help selecting a
meaningful bandwidth or even to elude aliasing [64], [70].
Nonetheless, false positives associated with contact events
are difficult to discard as piezoelectric sensors show sharp
voltage peaks even when a contact occurs.

Due to their high frequency response, piezoelectricity-
based sensors are mainly conceived to work as dynamic
sensors. In fact, PVDF and PZT sensors found application
in conjunction with additional sensing units devoted to force
measurement [33], [61]. Piezoelectric sensors were rarely
demonstrated to be able to provide both slip and force infor-
mation. An example is given in [67], yet the tested force
range was rather limited (1.8-7.5 N). Though piezoelectric
sensors can be miniaturized and flexible, the encumbrance
caused by the use ofmore sensors formore tactile information
represents another substantial drawback.

Algorithms in the frequency domain have quite often the
same objective as the ones employing piezoelectricity: to
detect vibrations due to sliding movements. Analyzing the
frequency of a tactile signal with transform operations such as
FFT and DWT allows noticing some signal properties which
are not observable if its mere time variation is studied. A con-
siderable advantage of frequency transforms is the indepen-
dence from the material friction. Indeed, as for the piezoelec-
tric transducers, the vibrations produced by a slip event are
usually at higher frequencies than static pressure signals, and
this is true regardless the touched surface. However, a source
of concern can be identified in the scarce applicability of
FFT to normal force signals. It is well known that the most
fluctuating force components during slip are the ones tan-
gential to the surface, thus their frequency response is more
powerful. This resulted e.g. in [80] where frequencies above
100 Hz could be found in tangential force, whereas in [81]
a FFT peak between 1 Hz and 20 Hz was deemed as a slip.
This can generate some ambiguity given that the normal force
commonly shows low-frequency variation even in absence of
slip. From this perspective, the DWT may be preferable over
FFT as it offers superior performance on normal force as well
thanks to its decomposition of the signal into approximations
(low frequencies) and details (high frequencies). E.g., [91]

illustrates the application of the DWT on both normal and
tangential forces with comparable results, whereas examples
of successful functioning on monoaxial output were provided
in [94] (normal force) and [90] (monoaxial voltage). More-
over, Wavelet transform allows overcoming another widely
known disadvantage implied by FFT, i.e. the loss of time
information. FFT decomposes a signal into a sum of sinu-
soidal waves; even though this has valuable outcome in the
frequency domain, it possesses no correlation between the
individuated frequency components and the time domain.
Diversely, DWT decomposes the signal by passing it through
a series of filters which span the whole signal band, resorting
on dilatations and translations of both wavelet and scaling
functions. The resulting wavelet coefficients, which carry
the various frequency components of the original signal, can
thus be plotted on a time-scale. This is possible only in part
with the STFT, which employs a fixed temporal window to
create a spectrogram of the signal. Even if time information
is somehow preserved in this manner, a fixed window cannot
be able to detect all spectral elements of the signal. Besides,
attention must be paid to the size of the window in order
to keep computational times quite low. The transform-based
techniques performance depends on the size of the chosen
window. To perform real-time algorithms, the window should
be as short as possible. For instance, in [83] such a window
is 17 ms long, or else in [96] it is 21 ms long.

Computational burden must be taken into account as well,
especially when a number of frequential and/or temporal fea-
tures are used. As in [85], only the most significant features
should be processed in order to avoid excessive slowdown in
computation, which would compromise real-time operation.

The slip vibrations might also be isolated with the help
of filters. They constitute an alternative to FFT and DWT as
they allow obtaining a slip signal from tactile sensors output.
Filters proved to perform optimally in a wide range of appli-
cations, including normal force component [101], tangen-
tial force component [98] and hydroacoustic pressured [88].
Given that slip frequencies are normally concentrated towards
high values, ideal configurations are HP filters or else BP fil-
ters. An indisputable advantage of detecting slip by means of
filtering functions is the unnecessity to know surface proper-
ties such as friction or roughness. Although this is shared with
other techniques relying on transform operations or piezo-
electric sensors, filters allow higher precision in extracting the
relevant portion of the tactile signal spectrum. Indeed, such
a portion can be very subtle, and is identifiable e.g. through
FFT prior to the filter design [97], [98]. By combining more
filters together into a network, very accurate slip signals may
be achieved and used to control prosthetic hands [98] or even
to generate a unique, binary slip indicator from a big number
of tactile channels [100]. However, filtered signals require a
certain degree of post processing, being bipolar and unstably
fluctuating in their original form. Further, the implementation
of filters implies the property of causality, which is funda-
mental to guarantee real-time functioning. Causal IIR filters,
which depend only on past and present values of the input
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signal, introduce an unavertable delay in their output. This is
due to their nonlinear phase, which yields a variable distortion
at different frequencies. FIR (finite impulse response) filters
get around such an inconvenience as they have linear phase,
though the delay in the output cannot be avoided in any
case. Moreover, FIR filters need higher order to satisfy tight
constraints, such as fast roll-off at the transition between pass-
band and stopband. For this reason, FIR filters are not the best
choice when fine bandwidth has to be privileged and fast tran-
sition band is demanded, as in the case of slip detection. In all
cases, the main drawback of causal filters resides in the delay
that the filtered signal will show in the time domain, which
might influence negatively the performance of a filter-based
method. [100], the average delay between the onset of slip
and its detection was found to be lower than 50 ms. This is
acceptable from a physiological point of view, yet a similar
kind of analysis was rarely carried out. Consider e.g. [88]:
the developed algorithms were demonstrated to identify slip
faster than an IMU mounted on the grasped object, but it was
not stated how fast the IMU itself could recognize slip.

Few attempts to prevent slip events by means of a par-
ticular type of filter, i.e. KF, were reported as well. KFs do
provide accurate statistical measures and fit well dynamic
systems, though they usually require complicated analyti-
cal procedures, and need to be fed with multiple inputs.
Also, KF applications on slip detection often regarded the
estimation/elaboration of tangential forces [104], [105], thus
presuming the availability of multiaxial force information or
even their presence in the algorithms.

C. ALTERNATIVE APPROACHES
Differentiation was employed in the effort to figure out new
slip detection methods working without knowledge of sur-
face properties. The derivative of a force signal is compu-
tationally simple, even for a higher order than first, and
permits a certain ease in the study of the variation in the
tactile sensors output. At the slipmoment, significant changes
occur in the tactile signal; when the derivative of a force
signal overcomes a given empirical threshold, slip might
be identified. Successful application was shown on normal
force component [134], [137], [135],.([136], on tangential
force component [138] and on hydroacoustic pressure [88].
Notwithstanding, unneglectable variations happen also when
the tactile sensor touches an object, i.e. when said sensor
becomes active as force jumps from zero to another value.
Derivative functions will exhibit correspondent peaks, which
may be hard to discard without the help of other sensors.
For example, [134] does not discuss the algorithm perfor-
mance during contact and release phase of the prosthetic hand
endowed with FSR sensors. Although the sole normal force
component could be enough as an input for the derivative
method, the force derivativewas integratedwith the derivative
of position in a subsequent work [133].

Note that, in general, thresholding is widely adopted not
only for differentiated signals but for e.g. transformed and
filtered ones as well. It constitutes an immediate technique

TABLE 2. Sensor technologies with Pros and Cons.

for the generation of binary slip signals, though thresholds
are commonly determined through empiric procedures. Plus,
this technique is sensitive to false positives, and authors rarely
describe how to discard them.

Another option for predicting slip is to adopt learning
paradigms. ANNs do yield elegant implementation of slip
detection strategies enabling the control system to elude
ambiguities. These can derive e.g. from contact events, which
might be misunderstood as slip events, or from generic noise
sources (such as vibrations produced by actuators). Data
with significant variability can be correctly interpreted by
an ANN, that is able to learn and approximate complex,
nonlinear models. Although the implementation of ANNs
is theoretically simple, they usually resort on a plurality of
sensory data [140], [143], often of different types [144]. From
this, it derives a drawback relating to complexity. Neural
networks can require huge sets of data for the training phase,
which might necessitate long times. Also, more layers are
commonly needed to elaborate all the available information
and, as a result, the overall functioning of a neural network is
viewed as a black box. That is, one knows what the network
can do in terms of output but has no insights about how it actu-
ally works, in terms of information processed and exchanged
by its neurons. Generally, learning paradigms still have a
number of drawbacks. These range from the long training
phase, slow real-time execution [148] to the large quantity of
data collected from many sensing units, which are necessary
for the training. However, such approaches commonly offer
high-accuracy performance.

Finally, Table 2 summarizes the main advantages
and disadvantages of slip detection executed with tac-
tile sensors based on the physical quantities presented
in Section IVC.
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VIII. CONCLUSION
This article surveyed the state of the art regarding slip detec-
tion with artificial tactile sensors. First, the sense of slip
was described from a physiological point of view, referring
to human tactile system. Next, the literature was deeply
explored and a number of works were reported according to
the methodology employed for the slip identification. These
involved: 1) the use of multiaxial force components to study
e.g. the static friction coefficient, or else ofmore force sensors
to ensure grasp stability; 2) the piezoelectric phenomenon
(exploited since the oldest attempts to provide artificial hands
with slip sensors), as well as transform techniques and filters,
to investigate the presence of vibrations in tactile signals;
3) the differentiation of force signals containing information
associated with rapid changes occurring at the slip moment.
Finally, other rather late methods, regarded with growing
attention during the last decade, were presented to complete
the summary of the literature. Such methods resorted on:
1) neural networks, which can predict slip if opportunely
trained with tactile data; 2) physical quantities such as tem-
perature, electromagnetic induction, light intensity and accel-
eration.

From a general overview, it can be stated that the methods
and approaches employed to detect slip with tactile sensors
cover a wide range of physical principia and technologies.
Notwithstanding the number of publications in this research
field exhibits a constant growth, the feeling is that a unique,
generally accepted methodology has yet to be defined. For
example, one may think to the first slip sensors mounted on
artificial hands, which date back to half a century ago [14] and
was of piezoelectric type. Though many successive attempts
were done with disparate sensors and methods, piezoelectric
sensors did not cease being regarded as an actual possibility,
even if the number of relevant works decreased. The same
applies to friction-based techniques; despite the concept of
friction cone was already utilized at the end of the 80s,
there are still some researchers proposing algorithms which
are centered around such a concept. In other words, latest
techniques were not yet able to completely convince the
scientific community so far. Hence, experimental comparison
among performance of classical and newer techniques is
still ongoing to find out whether a real advancement sub-
sists [116], [152]. As a matter of fact, much research is being
carried out on new slip detection approaches featuring e.g.
filters and DWT application. Similar approaches allow using
monoaxial, low-cost sensors to perform both force and slip
measurement, thus simplifying the entire process. Moreover,
force calibration is not mandatory (e.g., the raw voltage can
be processed). In this scenario, differentiation is also suitable
but the discard of false positives must be better addressed.

According to our opinion, simplicity is a highly desirable
property when attempting to endow robotic hands with tactile
sensors. These should act as force sensors and slip sensors
as well, in order to achieve minimal complexity and encum-
brance. The impressive sensitivity and richness of informa-
tion of human tactile sensors would suggest the creation of

complicated sensory systems; not rarely, researchers tried
to build sophisticated solutions involving more sensors and
onerous computation. This might lead to greater performance
but reduces the ease of applicability. The more complex is the
methodology, along with the hardware required to implement
it, the more difficult is expected to be the portability of said
methodology and hardware. Moreover, human mechanore-
ceptors remain frustratingly hard to be reproduced artificially.
They are of different types, specialized for diverse tasks;
however, to achieve all their characteristics is not mandatory
for artificial tactile sensing. Albeit physiology is for sure
a great inspiration for artificial systems design, exquisite
biomimicry is not crucial [16]. A complete, bio-inspired tac-
tile system would be expected to boast a certain degree of
multimodality, i.e. to provide information about temperature
and humidity, besides pressure and slip. Therefore, obtaining
e.g. the last two information from a unique sensing unit
would be of great help, given that temperature requires an
additional unit. Nonetheless, a given subset of properties may
be selected depending on the application. For instance, if only
the estimation of the contact force and the detection of slip are
required, two different sensors can be dedicated to each of
the two quantities. However, a similar procedure will always
challenge designers in terms of e.g. bulkiness and power
consumption. Oppositely, a single sensing unit providing at
least one force component can be elaborated in such a way to
infer the presence of slip, as it can be evinced from a number
of works in the above Sections.

In conclusion, it can be stated that, in spite of the increasing
effort produced by researchers, a gold standard solution has
not been identified yet.Many approaches are still being inves-
tigated; we conjecture that a definitive convergence is quite
far, as the number of relevant publications grows and possible
directions appear multiple. By means of this survey, we give
an overview of the heterogeneous state of the art, auspicating
that it will serve as a meaningful guide for scientists and
technicians involved.
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