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ABSTRACT An unsaturated stochastic resonance (USR) method to overcome the output saturation
phenomenon observed in the classical bistable stochastic resonance (CBSR) method has been examined.
However, the parameters of USR models can lead to inaccurate results while identifying the characteristic
frequency amid high levels of background noise. To overcome this limitation, an adaptive piecewise hybrid
stochastic resonance (APHSR) method that introduces a parameter µ to improve the performance of fault
characteristic detection is proposed. The optimal parameters are determined automatically using both 3D
reverse positioning and least-squares methods, combing with signal-to-noise ratio and spectral value as
evaluation criteria. The significance of parameter µ is demonstrated by analyzing the critical amplitude
and Kramers’ escape rate. When the results were evaluated through comparison with the CBSR and USR
methods via a simulation and two experiments on a motor and a parallel gearbox, it was demonstrated to be
more capable of diagnosing the early faults of rotating machinery especially in high levels of background
noise.

INDEX TERMS Early fault detection, weak characteristic extraction, piecewise hybrid stochastic resonance.

I. INTRODUCTION
The early detection of bearing faults can help to ensure
the safety and reliability of machinery [1]. However, early
detection is not straightforward as the impulse energy caused
by a fault only represents a small proportion of the total
vibration energy of a bearing system and is distributed across
a wide frequency range. Moreover, these vibrations are typi-
cally masked by a large amount of environmental interference
in the form of noise and the other vibrations produced by
adjacent mechanical components and systems [2], thereby
making early fault detection more difficult. To overcome this
challenge, various weak signal detection approaches have
been introduced to extract the features of faults from the
noise, such as wavelet decomposition [3], [4], singular value
decomposition [5], fractional-order entropy infograms [6],
spectral kurtosis [7], [8], the local outlier factor [9], and
time-frequency analysis algorithms [10], [11], and machine
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learning [12]–[14], all of which are designed to remove noise
from signals so that the fault characteristics can be recog-
nized. An alternative approach is to recognize the noise as
a type of signal energy that can be assist in the extraction
of periodic signal features. This approach is adopted in the
noise-assisted data processing method known as the stochas-
tic resonance (SR) method. Unlike conventional denoising
techniques, the SRmethod can be used to detect weak signals
by utilizing noise to enhance the features of weak signals.

The term SR was first coined by Benzi et al. and has
been used to explain variations in the Earth’s climate between
the ice ages and periods of relative warmth over a roughly
100,000 year cycle [15]–[17]. Fauve and Heslot [18] and
McNamara et al. [19] observed the SR phenomenon in
Schmitt-trigger circuits and in a bidirectional ring laser,
respectively, thereby confirming the validity of the SR
approach. Several studies have investigated the conditions
under which SR is observed or the signal-to-noise ratio (SNR)
is maximized. Tan et al. [20] proposed a frequency-shifted
and re-scaled SR method to reduce the influence of a high
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sampling frequency and a large number of sample points.
Chapeau-Blondeau et al. presented a generic dynamic model
with saturation for neural signal transduction at the synaptic
stage [21]. He and Wang [22] explored a new mechanism
of SR that is induced by noise at multiple scales to enhance
the detection of weak signals under heavy background noise.
It should be noted that these studies only investigated sat-
urated SR. Zhao et al. [23] demonstrated that unsaturated
stochastic resonance (USR) overcome the limitation of output
saturation of classical bistable stochastic resonance (CBSR)
while extracting weak signal characteristics. Qiao et al. [24]
discovered that USR system without output saturation can
improve the output SNR. Wang and Xia [25] demonstrated
that output saturation produces a local optimal output signal.
Guo et al. [26] investigated the steady-state properties of
a piecewise nonlinear bistable model driven by multiplica-
tive and additive Gaussian colored noise with colored cross
correlation. Although these studies focused on reducing the
influence of output saturation in the CBSR approach, it is
desirable to improve the performance of this method while
avoiding the saturation phenomenon during the extraction of
the characteristics of weak faults amid high levels of back-
ground noise.

In this study, a novel adaptive piecewise hybrid stochas-
tic resonance (APHSR) method is proposed to improve the
performance of weak signal detection in the fault diagnosis
of rolling bearings. Specifically, the method is designed to
realize the adaptive extraction of periodic signal features
even when they are buried under high levels of noise. In this
method, the parameterµ leverages the critical amplitude (Ac)
and Kramers’ escape rate, both of which contribute to the
high processing ability of the SR method, and the optimal
model parameters are obtained automatically using the 3D
reverse positioning and least-squares methods with the SNR
and spectral value (SV) as evaluation criteria. The results
of the simulations and experiments presented in this paper
demonstrate that the proposed APHSR method can effec-
tively extract periodic features for bearing fault diagnosis.

A. CONTRIBUTIONS
The key contributions of this work are as follows.

1) An APHSRmethod with the introduction of the param-
eter µ is proposed to extract weak fault characteristics
from early defects of roller bearings.

2) 3D reverse positioning and least-squares methods are
established and the SNR and SV are defined as evalu-
ation criteria to obtain the optimal parameters.

3) The proposed APHSR method is demonstrated by
using two experiments including a motor and parallel
gearboxes in which it outperforms the CBSR and USR
methods.

B. OUTLINE
The remainder of this paper is structured as follows. The
CBSR and USR models are briefly introduced in Section 2.

The APHSR model for extracting incipient fault character-
istics is described in Section 3. A simulation of the APHSR
method when used in the fault diagnosis of a rolling bearing
is provided in Section 4. The proposed method was vali-
dated using experiments on a motor bearing and a parallel
gear bearing, the results of which are detailed in Section 5.
Finally, the conclusions drawn from this study are discussed
in Section 6.

II. THEORETICAL BACKGROUND
In the CBSR system, a particle is driven by both periodic and
random forces, and a moderate amount of noise can be used
to supplement the periodic motion, which is described by the
Langevin equation expressed as [27]–[29]:

dx/dt = −dUo(x)/dx + s(t)+ ξ (t) (1)

where the weak periodic signal s(t) = A cos(2π f0t + ϕ), f0 is
the characteristic frequency,A is the amplitude of the periodic
signal, ϕ is the corresponding phase, x is the output signal of
the classical bistable system, ξ (t) is the zero mean Gaussian
white noise, E[ξ (t)ξ (t+τ )] = 2Dδ[t−τ ], andD is the noise
intensity. If there is no input signal, i.e. when A = 0V and
D = 0V, the potential function can be written as follows [30]:

Uo(x) = −
a
2
x2 +

b
4
x4 (2)

where a and b are non-zero theoretical parameters.
To illustrate the saturation characteristics of CBSR,

a numerical simulation was conducted using the following
conditions: the input signal was s(t) = A cos(2π ft), the theo-
retical parameters were a = b = 1, the signal frequency was
f = 0.01 Hz, the sampling frequency was fs = 10 Hz, and
the A values were 0.4, 0.8, 1.2, 1.6, and 2.0 V. The model was
initially applied in a no-noise state, i.e., D = 0 V. As shown
in Fig. 1(a), when the amplitude A = 0.4 V, there was no
transition between the bistable states and the particles only
moved in one potential well. Subsequently, as A increased,
the output amplitude did not vary significantly and exhib-
ited a stable value of approximately 1.5 V, which indicated
saturation. As shown in Fig. 1(d), under heavy background
noise, i.e. D = 20 V, only a rough outline of the output of
the bistable model can be seen along with distinct saturation
behavior.

To overcome the inherent output saturation of the CBSR
and improve the performance of signal detection, the USR
theory was introduced by Zhao et al. [23]. It can be expressed
as follows:

U (x) =



−
a2

4b
(

x + c

c−
√
a/b

), x < −
√
a/b

−
a
2
x2 +

b
4
x4, −

√
a/b ≤ x ≤

√
a/b

a2

4b
(

x − c

c−
√
a/b

), x >
√
a/b

(3)

where a and b are positive real values, and c =
√
2a/b.

The same simulation was conducted to illustrate the unsat-
urated characteristics of the USR and its shortcomings under
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FIGURE 1. Outputs of the different methods with varied amplitudes and
noise intensities: (a) CBSR theory with D = 0 V, (b) USR theory with
D = 0 V, (c) APHSR theory with D = 0 V, (d) CBSR theory with D = 20 V,
(e) USR theory with D = 20 V, and (f) APHSR theory with D = 20 V.

heavy background noise. The parameters were as follows:
a = b = 1 and c =

√
2. Fig. 1(b) shows the output

time-domain diagrams of the model with no noise. Unlike
the CBSR model, the output amplitude of the USR model
increases with the increasing signal amplitude, and there is no
output saturation phenomenon. As shown in Fig. 1(e), when
the noise intensity D = 20 V, although the outline can be
recognized, it is blurred by the noise, which may lead to an
inaccurate bearing fault diagnosis.

III. PROPOSED APHSR THEORY
TheUSRmethod has been applied to rotatingmachinery fault
diagnosis for years and has achieved good results. In the early
stage of bearing faults, however, using USR theory to detect
the signals is difficult since potential periodic impulses are
often overwhelmed by unexpected heavy noise. Therefore,
the proposed APHSR theory introduces the parameter µ to
improve the performance of bearing fault diagnosis.

A. PIECEWISE HYBRID POTENTIAL BISTABLE MODELS
The potential function is as follows:

U(x) =


−

√
a3/b

4 (µ− 1)
(x + µ

√
a/b), x < −

√
a/b

−
a
2
x2 +

b
4
x4,

√
a/b≤x≤−

√
a/b√

a3/b
4 (µ− 1)

(x − µ
√
a/b), x >

√
a/b

(4)

where a > 0, b > 0, µ > 1. The critical amplitude and
Kramers’ escape rate are used as evaluation criteria to clarify
the importance of µ. In Eq. (4), when the periodic signal s(t)
exists and the noise signal n(t) = 0, the theoretical potential
function is periodically modulated by the characteristic signal
from U (x) to V (x):

V (x) = U (x)− xA cos(2π f0t + ϕ) (5)

As shown in Fig. 2, the two potential wells of the potential
function are periodically raised or deepened. Moreover, there
is a critical amplitude, which maintains the bistable structure.

FIGURE 2. Periodic variation of the potential function of CBSR theory due
to modulation by a periodic signal.

At this critical amplitude, the modulated potential function
V (x) changes from a bistable structure to a monostable struc-
ture when A cos(2π f0t + ϕ) is at its maximum or mini-
mum value. This means that the position of a potential well
changes from a pole to an inflection point. Therefore, the gen-
eration of stochastic resonance requires a smaller critical
amplitude. Taking the maximum value of A cos(2π f0t) at the
time t = −ϕ/(2π f0) as an example, V (x) needs to satisfy the
following relationship [31]:

dU (x)
dx
= −ax + bx3 − A = 0

d2U (x)
dx2

= −a+ 3bx2 = 0
(6)

The critical amplitude of the CBSR theory is obtained
through Eq. (7).

Ac0 =

√
4a3

27b
(7)

Similarly, the critical amplitude of the APHSR theory
should be satisfied:

Ac =



√
a3/b

4(µ− 1)
, x < −

√
a/b√

4a3

27b
, −

√
a/b ≤ x ≤

√
a/b√

a3/b
4(µ− 1)

, x >
√
a/b

(8)

As depicted in Fig. 3(a) where a = 0.5∼2, b = 1 and
µ =

√
1.5,
√
2.0,
√
3.0, the Ac of the APHSR method

decreases as µ increases. It is noted that the Ac is lower
than the CBSR and USR methods only in case of the optimal
parameter µ. With the same parameters a and b, the value
of Ac is calculated using Eq. (8) and it is lower than CBSR
method when µ < 1 + 3

√
3/8 and lower than USR method

whenµ >
√
2. The results of analysis demonstrate the impor-

tance of parameter µ to the critical amplitude and further
influence the effectiveness of stochastic resonance system.

To further validate the usefulness of the µ parameter,
the Kramers’ escape rate of the APHSRmethod was deduced
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FIGURE 3. Critical amplitudes and outputs of the CBSR, USR, and APHSR
theories with different µ parameters.

via adiabatic approximation. The Kramer’s escape rate as per
the CBSR method can be expressed as follows [32]:

rk =
a
√
2π

exp(−
a2

4bD
) (9)

The potential function of the CBSR method as per Eq. (2)
can be replaced with the potential function of the APHSR
method shown in Eq. (4). According to the adiabatic approx-
imation, the mean first passage time τ± of the process x(t) to
reach the state x± is given by Kramers’ time:

r−1− (t) =
1
D

[∫
−
√
a/b

−µ
√
a/b

exp

[
−

√
a3/b
4D

(
x + µ

√
a/b

1− µ
)

]
dx

]

×

[∫ 0

−
√
a/b

exp
[
1
D
(−

a
2
x2 +

b
4
x4)
]
dx
]

(10)

When A � 1,D � 1, the final results can be obtained as
follows:

r−1− (t) ≈
4(µ− 1)

a
exp(

a2

4bD
) (11)

Similarly,

r−1+ (t) =
1
D

[∫ √a/b
0

exp
[
1
D
(−

a
2
x2 +

b
4
x4)
]
dx

]

×

[∫ µ
√
a/b

√
a/b

exp

[√
a3/b
4D

(
x + µ

√
a/b

1− µ
)

]
dx

]

≈
4(µ− 1)

a
exp(

a2

4bD
) (12)

Therefore, the Kramers’ escape rate of the APHSRmethod
is as follows:

rk =
a

4(µ− 1)
exp(−

a2

4bD
) (13)

To compare the CBSR, USR and APHSRmethods, the dis-
tribution of Kramers’ escape rates is shown in Fig. 4, where
a = 0.5∼2, b = 1 and µ =

√
1.5,
√
2.0,
√
3.0. It is

apparent that the Kramers’ escape rate of the APHSRmethod

FIGURE 4. Kramers’ escape rate obtained through the CBSR, USR, and
APHSR theories with different µ parameters.

decreases as µ increases and is higher than the CBSR and
USRmethods only when the value ofµ is optimal. According
to Eq. (13), the APHSR Kramers’ escape rate value is higher
than the CBSR method when µ < 1 +

√
2π/4 and is

higher than USR method when µ <
√
2. The data indicate

that parameter µ influences the Kramers’ escape rate and
contributes to SR generation.

Similar simulations were used to analyze the APHSR
method proposed in this study using parameters a = b = 1
andµ= 2. The output time-domain diagrams of the proposed
model are shown in Fig. 1(c) and (f). It should be noted that
the output of the APHSRmethod is both larger and less noisy
than those of the CBSR and USRmethods, thereby indicating
that the proposed method is more robust and better able to
detect weak signals amid high levels of noise.

B. APHSR SYSTEM FOR WEAK BEARING
FAULT DETECTION
In the proposed APHSRmethod, the SNR and SV are used as
evaluation criteria [33] to determine the optimal parameters
via the least-squares and 3D reverse positioning methods.
A flowchart of the approach is shown in Fig. 5, where a, b
and µ are the parameters for the cycles of n1, n2, and n3,
respectively. The SNR is computed as SNR = 10log

(
ps/pn

)
in the form of a matrix (n1, n2, n3), where ps and pn represent
the effective powers of the signal and noise, respectively.
When the values of a, b and µ have been selected, the output
SNR of the model is computed and stored in the matrix.
Then, the maximum SNR is calculated and stored before
its corresponding SV is calculated and stored in a column
vector. Finally, the maximum SV (SVmax) of the model is
calculated. Using the value of SVmax, the optimal parameters
a, b and µ can be determined automatically using the 3D
reverse positioning method [34].

A diagram of the proposed APHSR method for extract-
ing weak fault characteristics from a noisy signal is shown
in Fig. 6. It should be noted that the output signal can be
optimized by tuning the parameters.
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FIGURE 5. Flowchart of the APHSR method.

FIGURE 6. Proposed APHSR system for mechanical fault diagnosis.

To quantitatively evaluate the influence of parameter selec-
tion, the SNR was calculated for the envelope spectrum of
repetitive transients. The SNR is defined as follows [35]:

SNR = 10 log10(
Ad

N/2∑
i=1

Ai − Ad

) (14)

Here, i (0, 1 . . .N) denotes the order of the harmonic, Ai
represents the amplitude of the ith extracted harmonic, and

the denominator
N/2∑
i=1

Ai − Ad represents the power amplitude

sum of the noise in the output power spectrum. A higher SNR
implies that the amplitude of the fault characteristic frequency
and its harmonics are more dominant in the envelope spec-
trum, indicating a fault in the rotating machinery. The process
of detecting a weak fault signal using the APHSR theory is
as follows:

(1) Signal preprocessing: First, the envelope signal is
obtained via Hilbert transform demodulation. Because
the original signal is extremely noisy, the empiri-
cal mode decomposition denoising method is used
to remove the high-frequency noise [36], [37], and
a Chebyshev filter is applied to remove any low-
frequency noise from the signal [38]. Then, the remain-
ing components are reconstructed to obtain a filtered
signal.

(2) Optimizing the theoretical parameters: The optimiza-
tion ranges of parameters a, b, and µ are set as (0, 20],
(0, 20], and (1, 3], respectively. The optimal parameters
are then computed using the two evaluation criteria
(SNR and SV) and the least-squares and 3D reverse
positioning methods.

FIGURE 7. Simulated signals: (a) repetitive transients, and (b) noised
signal.

(3) Weak fault feature detection: In this step, the optimal
parameters are input into the APHSR model, the scale
is recovered, and the output signal is obtained. Then,
the weak fault features are separated from the noisy
background in the output signal. Finally, the results are
analyzed to detect the presence of faults in the bearing
of interest.

IV. SIMULATION
The following simulation model was used to generate a series
of transient signals [39], [40]:

χn(t) = B(t)
∑
q

χ (t − q/f0)+ N (t) (15)

Here, B(t) represents the amplitude of the repetitive tran-
sients (B(t) = 0.7), q is the number of transients, f0 denotes
the fault characteristic frequency (f0 = 112 Hz), N (t) rep-
resents the random noise, and χ (t) represents the periodic
impulse response function given by

χ (t) =

{
exp(−βwt) sin(2π fret), t > 0
0, t ≤ 0

(16)

Here, βw represents the structural damping ratio
(βw = 666.67), and fre represents the resonance frequency
(fre = 1683.40 Hz). In this simulated case, fs is the sam-
pling frequency with a value of 12 kHz, and the sampling
time is 1 s.

To simulate a bearing fault signal under a heavy noise back-
ground, Gaussian white noise with a noise intensity D = 1 V
was added to the pure repetitive transients, and a noisy signal
χn(t) was then obtained. The simulated bearing fault signal
is displayed in Fig. 7(a) with an impulse interval of approxi-
mately 0.009 s. It is evident that the impulse components are
completely buried in the noise as shown in Fig. 7(b), which
mimics the real working environment of the machinery. In the
envelope spectrum, the weak fault characteristic frequency
and its second harmonic cannot be clearly observed.

To verify the effectiveness of the proposed method,
the envelope signal was preprocessed, and the following
parameter values were automatically obtained using the adap-
tive algorithm, giving a = 4, b = 3.2, and µ = 1.05.
The time-domain waveform and envelope spectrum of the
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FIGURE 8. Output signals and their envelope spectra using different
methods: (a) CBSR theory, (b) USR theory, and (c) APHSR theory.

simulation signal were obtained by substituting the optimal
parameters into the APHSRmodel, as shown in Fig. 8(c). The
characteristic frequencies are clearly visible. The SNR of the
proposed model is−13.744 dB, and the maximum amplitude
is 0.676 V [41] higher than the ambient noise, thus verifying
the effectiveness of the model.

To demonstrate the superiority of the proposed method,
the simulation signal was also processed using the CBSR
and USR models so that the results could be compared. The
optimal parameters of the CBSR and USR models computed
using the adaptive algorithm were (a = 0.2, b = 0.02)
and (a = 3.4, b = 1.6), respectively. The time-domain and
envelop spectrum diagrams of the CBSR andUSRmodels are
shown in Fig. 8(a) and (b), respectively. Although the charac-
teristic frequencies are visible, their recognizable degrees are
only 0.051 and 0.533 V. When these results were compared
to those of the proposed method, the spectral peaks of the
characteristic frequencies were more distinct in the latter with
recognizable degree gains of 0.626 and 0.143 V and SNR
gains of 1.881 and 0.878 dB, respectively. Based on these
results, the proposed APHSR method effectively overcame
the saturation characteristics in the presence of high levels
of noise. The new variable µ provided a useful means to
optimize the parameters, which increased the effectiveness
and practicality of the proposed method compared to the
alternatives.

To verify the applicability of the proposed method,
the noise intensity was set in the range of 0.1∼5 V, the second
sampling frequency fs2 was set to 2 Hz, and the originally
acquired signals were provided as inputs to the CBSR, USR,
and APHSR models. As shown in Fig. 9, the output SNR and
detection sensitivity ratio of the models varied with the noise
intensity [42].

As shown in Fig. 9(a), the output SNR decreased as the
input noise intensity increased and the output SNR of the pro-
posedmethodwas higher than those of the other twomethods.
The highest SNR gains were 5.7 and 3.46 dB, respectively,
at D = 5 V. As shown in Fig. 9(b), (c), and (d), the SNR
curve of the proposed method was smooth, and the detection
sensitivity was less than 1.5. The detection sensitivity of the
proposed method was lower than those of the CBSR and
USR methods by a maximum of 66% and 33%, respectively.

FIGURE 9. (a) Output SNR of the three methods with different noise
intensities; the detection sensitivity of (b) CBSR theory, (c) USR theory,
and (d) APHSR theory.

FIGURE 10. (a) Experimental drivetrain diagnostics simulator (DDS)
equipment, and (b) motor bearing fault.

This indicates that the APHSR model is more efficient at
extracting the bearing fault characteristic frequency signals
in the presence of high levels of background noise.

V. EXPERIMENTAL DEMONSTRATION
As bearings are widely used in modern machinery, any faults
that arise in them may lead to the fatal breakdown of a
machine. To reduce the risk of catastrophic machine fail-
ure, fault diagnoses are conducted on bearings to reduce
breakdown loss and ensure personnel safety. In this section,
the results of two experiments conducted on a real motor
rolling bearing and a parallel gearbox rolling bearing are
described to demonstrate the effectiveness of the proposed
method.

A. MOTOR BEARING EXPERIMENT
A pitting fault on the inner ring of a motor bearing was taken
as an example to verify the effectiveness of the proposed
method. The test device was based on a real motor bear-
ing with a slight flaking fault on the inner race, as shown
in Fig. 10.

The sampling frequencywas set as fs = 12.8 kHz, the num-
ber of sampling points was 16384, and the rotational speed
was 15 rev/min. Table 1 lists the parameters of the rotor bear-
ing. Combined with the vibration theory analysis, the fault
frequency of the inner ring (finner) of the motor bearing was
calculated to be 73.98 Hz.

A time-domain waveform and envelope spectrum of the
inner ring fault of the bearing is shown in Fig. 11, where
the influence of noise on the signal is evident. Although
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TABLE 1. Rotor bearing parameters.

FIGURE 11. Input signal of (a) the time-domain waveform, and (b) the
envelope spectrum.

the characteristic frequency of 73.24 Hz is visible in the
spectrum, there is also a large amount of noise across the
frequency band, which makes it difficult to identify the faults.

B. PARALLEL GEARBOX BEARING EXPERIMENT
In the second experiment, a vibration signal from a par-
allel gearbox bearing was analyzed to further demonstrate
the effectiveness of the APHSR method. In this experiment,
a pitting fault in the secondary parallel gearbox bearing of
a gearbox diagnostics simulator (GDS) was studied. Physi-
cal drawings and a schematic of the gearbox are shown in
Fig. 13(a). The first and second gears constitute the first gear
train, while the third and fourth gears constitute the second
gear train. The faulty bearing is located in the end cover near
the third gear and the specific point of the fault is shown
in Fig. 13(b).

In this experiment, fs = 51.2 kHz, the number of sampling
points was 65,536, and the rotational speed of the primary
bearing was 40 rev/min. The parameters of the gear trains
are listed in Table 2. After the deceleration of the first gear
train, the speed of the second gear train decreased, resulting
in a bearing speed of 11.6 rev/min. Using vibration analysis,
the characteristic frequency of the fault in the secondary
bearing outer ring (fouter) of the parallel gearbox was found
to be 41.04 Hz.

The fault features were extracted using the proposed
method. After preprocessing, the following parameter values

TABLE 2. Parallel gearbox parameters.

FIGURE 12. Time-domain waveform and envelope spectrum of the output
signal for (a) CBSR theory, (b) USR theory, and (c) APHSR theory.

FIGURE 13. (a) Physical drawing of gearbox, and (b) fault bearing.

were obtained: a = 3.2, b = 1.8, and µ = 1.2. The
parameters were input to the APHSR model to obtain the
time-domain waveform and envelope spectrum of the inner
ring fault signal, as shown in Fig. 12(c). The spectral peak
of the characteristic frequency is visible in the figure and
is 0.408 V higher than the ambient noise amplitude and the
output SNR is−11.012 dB. To compare the diagnostic effect
of the proposed method with the CBSR and USR methods
in engineering applications, the fault signals were processed
using these two methods, which resulted in the following
parameter values: (a = 0.1, b = 0.6) and (a = 7, b =
2.6), respectively. The time-domain waveform and envelope
spectrum are shown in Fig. 12(a) and (b), respectively. Owing
to the saturation of the CBSRoutput and the inadequacy of the
USR parameters, the recognizable degrees of the character-
istic frequencies amplitudes of the CBSR and USR methods
were only 0.058 and 0.113 V, which are 6 and 2.6 times lower
than the APHSR method; the output SNRs of the CBSR and
USRmethods were only−12.543 and−11.861 dB, which are
1.531 and 0.849 dB lower than the APHSR method. These
data indicate that the proposed method provides a higher
amplitude recognizable degree and a higher SNR, and is
better able to identify the fault signal than the CBSR and USR
methods.

To acquire the characteristic frequency of the fault, the col-
lected signals were processed to obtain the time-domain
waveform and envelope spectrum shown in Fig. 14. Note that
it is not possible to determine the characteristic frequency
of the fault from either the time-domain waveform or the
envelope spectrum due to the high levels of noise. Therefore,
the collected signals were processed via the CBSR, USR, and
APHSR methods. As per the APHSR method, the optimal
parameter values were computed to be a = 5.2, b = 2.4,
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FIGURE 14. (a) Time-domain waveform, and (b) envelop spectrum of
input signal.

FIGURE 15. Time-domain waveform and envelope spectrum of the output
signal with (a) CBSR theory, (b) USR theory, and (c) APHSR theory.

and µ = 1.3. The time-domain waveform and envelope
spectrum were obtained by inputting the parameters into the
model and are shown in Fig. 15(c), where the characteristic
frequency (41.41 Hz) is visible. Based on the values listed
in Table 2, this value is consistent with the theoretical value
(41.04 Hz) of the signal coming from the outer ring bearing
of the secondary gearbox, which indicates that the fault on the
outer ring of the secondary bearing was correctly identified,
thereby verifying the effectiveness of the proposed method.

The parameters of the CBSR and USR models were deter-
mined to be (a = 0.05, b = 0.75) and (a = 8, b =
2.4), respectively. The time-domain waveform and envelope
spectrum of the CBSR and USR methods are shown in
Fig. 15(a) and (b). In Fig. 15(a), while the characteristic
frequency can be seen, the double-frequency was distorted by
the noise caused by the saturation characteristics, vibration
complexity, and the influence of sensor noise in the signal
acquisition process. Although the USR method provided the
characteristic frequency and the corresponding double fre-
quency, as shown in Fig. 15(b), their amplitudes were only
0.752 and 0.206 V higher than the surrounding noise, and
the SNR was only −5.348 dB. Compared with the proposed
method, the recognizable degree of the characteristic and
double-frequencies decreased by 41% and 68%, respectively,
and the output SNR decreased by 6.5%. The data demon-
strates that the proposed method is effective when extracting
complex signals from noise.

These results confirm that the APHSR method is capable
of detecting weak fault characteristics buried in high levels
of noise and that the performance of the proposed method is
higher than the CBSR and USR methods when identifying
early faults in bearings.

VI. CONCLUSION
In this paper, an APHSR method was proposed to improve
the performance of fault detection using vibration signals dis-
torted by high levels of noise. The following conclusionswere
drawn from this work based on the results of the theoretical
and experimental investigations conducted in this study:

1) The introduction of parameterµ has a positive effect on
the APHSR. The proposed method included a parame-
ter denoted by µ, the influence of which on the critical
amplitude and Kramers’ escape rate is analyzed and
further of the APHSR to improve fault detection per-
formance.

2) The APHSR method is capable of identifying bearing
fault characteristics in the presence of high levels of
background noise. In the method, the SNR and SV
were selected as evaluation criteria with which the
optimal parameters were obtained automatically via the
3D reverse positioning and least-squares methods. The
method was validated using simulations and experi-
ments including a motor bearing and a gearbox bear-
ing. The results demonstrate that the proposed method
is more capability on suppressing the background
noise and extracting the weak fault characteristics from
the vibration signals when than the CBSR and USR
methods.

3) As the CBSR method is sensitive to low-frequency
components and easily affected by interference from
low-frequency noise, in the future, further research will
be conducted into the preprocessing of low-frequency
signals in the form of a theoretical analysis.
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