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ABSTRACT The classification and segmentation of pathologies through intelligent systems is a significant
challenge for medical image analysis and computer vision systems. Diseases, such as lung problems and
strokes, have a serious effect on human health worldwide. Lung diseases are among the leading causes
of death worldwide, lagging behind strokes that in 2016 became the second leading cause of death from
illnesses. Computed tomography (CT) is one of the main clinical diagnostic exams, linked to Computerized
Diagnostic Assistance Systems (CAD), which are becoming solutions for health technologies. In this work,
we propose amethod based on the health of things for the classification and segmentation of CT images of the
lung and hemorrhagic stroke. The system called HTSCS - Medical Images: Health-of-Things System for the
Classification and Segmentation of Medical Images, uses transfer learning between models based on deep
learning combined with classical methods for fine-tuning. The proposed method obtained excellent results
for the classification of hemorrhagic stroke and pulmonary regions, with values of up to 100% accuracy.
The models also achieved outstanding performances for segmentation, with Accuracy above 99 % and Dice
coefficient above 97% in the best cases with an average segmentation time between 0.095 and 1.7 seconds.
To validate our approach, we compared our best models for the segmentation of lung and hemorrhagic
stroke in CTs, with related works found in state of the art. Our method brings an innovative approach to
classification and segmentation through the use of the Health of Things for different types of medical images
with promising results for medical image analysis and computer vision fields.

INDEX TERMS Health of things, classification and segmentation, CTs lung and stroke, transfer learning,
fine-tuning.

I. INTRODUCTION
Various pathologies have a serious effect on human health
worldwide, and the main ones are related to the lungs, brain,
and heart. Chronic Obstructive Pulmonary Disease (COPD)
is the main causes of respiratory mortality worldwide [1], and
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it was the third leading cause of death globally, according to
the World Health Organization (WHO), in 2016 [2]. Also,
according to the WHO, about 3.2 million deaths were caused
by COPD in 2015, a total of one-twentieth of all deaths glob-
ally in that year, and over 90% of these deaths were in low and
middle-income countries. Now, in 2020, 200 million people
worldwide have been diagnosed with COPD, and many more
are living with undiagnosed diseases [3].

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71117

https://orcid.org/0000-0002-8422-9288
https://orcid.org/0000-0002-1878-5489
https://orcid.org/0000-0003-3886-4309


T. Han et al.: Internet of Medical Things—Based on Deep Learning Techniques for Segmentation

COPD involves obstructive bronchiolitis, emphysema,
or characteristics of both. The first causes a permanent state
of inflammation of the airways, causing swelling inside the
breathing tubes, interfering with the airflow capacity and
efficiency of the lungs, while the second destroys the alveoli,
structures that promote gas exchanges in the organ [4].

The condition is dangerous because, in addition to the
potential of inhibiting breathing altogether, it decreases the
circulation of oxygen in the blood and triggers other inflam-
matory responses throughout the body, causing the risk of
heart attack and stroke to double. Patients may also suffer
from muscle weakness, impaired reasoning and even become
more subject to depression.

Although the majority of COPD are caused by tobacco
smoke (85%) [5], other harmful compounds such as heavy
exposure to certain dusts at work, chemicals, and indoor
or outdoor air pollution (including wood smoke or biomass
fuels) and genetic factors (inherited) can contribute to COPD.
The first challenge to identify and classify COPD is to
carry out an accurate segmentation. Bearing in mind that
this disease visually alters the appearance of the lung in the
CT examination, and partially alters the sharpness of the lung
boundaries [6].

Like COPD, a Cerebral Vascular Accident (CVA), also
known as a stroke, is a significant cause of mortality and
disability with considerable economic costs for post-stroke
care, on a global scale [7]. Strokes are a group of disor-
ders that involve sudden interruption of the blood flow in
the brain. Obstruction of the cerebral arteries may cause
neurological deficits. Hemorrhagic and ischemic strokes are
the two most common type of stroke. A hemorrhagic stroke
occurs when an artery in the brain ruptures, causing wide and
devastating bleeding in the brain; whereas an ischemic stroke
occurs when a blood vessel that carries blood to the brain is
blocked [8].

In 2016, stroke was the second leading cause of death
globally (5.5 million). The number of women who died
from a stroke was slightly lower than the number of men
(2.6 million and 2.9 million, respectively). The number of
deaths from ischemic stroke was 2.7 million, somewhat less
than the number of deaths due to hemorrhagic stroke which
was 2.88 million [9]. In 2015, according to the American
Heart Association (AHA) and the American Stroke Associ-
ation (ASA), approximately 800.000 strokes occurred in the
United States, and these were responsible for one in every
20 deaths [10]. In addition to the high mortality rate, most
people who survive a stroke end up with some kind of disabil-
ity in relation to their basic activities, compromising quality,
and life expectancy [11]. Disability varies according to the
degree of neurological recovery, the location of the injury,
the patient’s pre-morbid status, and environmental support
systems [8].

Currently, various medical areas carry out diagnoses using
images [12]. Computed tomography (CT) stands out as the
most important equipment used to acquire these images [13]
due to its availability in almost all emergency units and its

fast acquisition of the results. Also, CT has gained increasing
importance as the diagnosis is less invasive, than some other
systems, and gives precise results [14]; in addition, it can
be used to acquire images of lung, heart, brain, arteries, and
bones, among others [15].

The diagnosis of COPD through CT helps to evaluate the
extent and distribution of COPD [16], estimated by visual
quantification or by analyzing the distribution of lung den-
sity [17], providing a more accurate and objective assessment
of the disease [18]. Unlike COPD, stroke is considered a
medical emergency and needs to be diagnosed and treated
promptly to minimize the implications that may occur [19].
Thus, CT presents itself as the most adequate and financially
viable technique, due to its low cost, and agility [20].

Diagnoses by CT exams can be improved through
computer-aided diagnosis (CAD) systems. Thanks to the per-
formance of CAD systems in improving the efficiency and
accuracy of clinical diagnostics by detecting and/or automati-
cally classifying abnormalities and/or diseases in radiological
medical examinations, many commercial systems have been
developed, with specialized systems for specific areas. For
example, many CAD systems are aimed at detecting breast,
lung, or colon cancer using X-rays, CT, or magnetic reso-
nance imaging. To assist in the diagnosis, the first challenge
of the system is to locate and segment the region of inter-
est. Segmentation techniques are applied to find regions of
interest in an image. In the case of medical images, it is
common to use segmentation methods to demarcate organs
and associate them with the study of pathologies. Given this,
a significant number of studies are produced emphasizing the
use of CAD systems in the diagnosis of diseases. Among the
techniques developed to automate the task of segmentation
of pulmonary regions, we have the traditional segmentation
techniques based on region growing [21], region growing
with local thresholds, and watershed [22] approaches. How-
ever, these traditional techniques do not obtain consistent seg-
mentation for regions with low contrast parenchyma, leading
to inappropriate results when applied on CT exams [23].

Recent works using Convolutional Neural Network tech-
niques for classification [24], segmentation [25] and detec-
tion [26] of objects of interest in images have been proposed
with a fair amount of success. However, when dealing with
medical images, this technique becomes a challenge [27],
because to perform an effecient training of these deep models
requires a large set of medical images [28]. To overcome
this, a strategy called transfer learning [29] suggests that the
resources learned to solve a specific problem can be used to
solve problems in other domains [30].

Despite this, several studies using deep learning meth-
ods for segmentation in medical images have been devel-
oped [31]. Hu, Qinhua et al. [32] proposed the Convo-
lutional Neural Network (CNN) Mask R-CNN combined
with supervised and unsupervised machine learning meth-
ods for automatic segmentation of the lungs in CT images.
Medeiros et al. [33] proposed a new approach using the
Mask R-CNN to segment the left-ventricle with success.
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Zhang, Rongzhao, et al. [34] proposed an automatic seg-
mentation of acute ischemic stroke using fully convolutional
DenseNets.

Several techniques have received a lot of attention from
researchers. Techniques using fine-tuning have come up with
new possibilities in the field of computer vision [35] and data
science [36]. In parallel with the use of transfer learning,
different monitoring systems in themedical area based on IoT
principles [37] have been proposed. These systems, called
Health of Things, work with the rapid exchange of medical
information concerning the conditions of patients, medical
images and diagnostics, and they, thereby optimize the work
of health professionals and generate significant improvement
in the quality of medical treatments, in addition to decreasing
medical costs per consultation, follow-up and diagnosis [38].

Motivated by the success of the Health of Things sys-
tems, we propose a system to aid medical diagnosis called
HTSCS - Medical Images: Health-of-Things System for the
Classification and Segmentation of Medical Images, using
principles of IoT, transfer learning, deep learning and fine-
tuning. Specifically, this work aims to:

• Extract deep features from Lung Image Databases and
Stroke Databases using two different CNN models
pre-trained on the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) such as: Xception [39] and
VGG16 [40].

• Apply a Support Vector Machine (SVM) for each
extracted feature set.

• With pre-trained classifiers, classify the CT images of
the lung and hemorrhagic stroke and separate the CT
images that contain or not the region of interest (RoI)
for segmentation step.

• Having detected the pulmonary region, or hemorrhagic
stroke in a CT image at the classification stage, segment
the area of interest using the Detectron2 network.

• Apply three fine-tuning techniques based on Region
Growth [41], K-means clustering [42], and Parzen Win-
dow [43] to improve the edges of the region considered
as a region of interest.

• Compare the results between the proposed methods and
other works in the literature through five evaluation
metrics: Accuracy (ACC), Dice coefficient (Dice), Sen-
sitivity (Sen), Specificity (Spe), and Time.

II. RELATED WORKS
In this section, we will present several works in the research
areas covered by this article, as well as works related to the
theme in different contexts.

A. MEDICAL IMAGE PROCESSING USAGE
Image processing techniques have become increasingly com-
mon in the medical field, especially methods using filters in
computer vision with CAD systems. These techniques are in
demand due to the fast results, effective segmentation and
classification of medical images [44].

Understanding the importance of the medical applicability
of DPI systems, Bouchet et al. [45] proposed the use of
fuzzy [46] mathematical morphology in the segmentation of
branches in angiographic images. The results were visually
superior when compared to conventional PDI techniques for
the same cases. However, the analysis was only visual, and
without comparison with the results provided by a specialist
doctor containing the ground truth.

Aware of the power of the region growth technique,
Duan et al. [47] proposed a method of segmenting the pul-
monary vessels in CT images using computational operations
to filter anisotropic diffusion and region growth. Their results
obtained a sensitivity of 92.9% and specificity of 91.6%.
However, the developed algorithm is only able to successfully
segment the vessels of a healthy lung, in addition to the fact
that the method had difficulties in finding the ideal filtering
parameters, which consequently may have reduced the values
of the evaluation metrics.

Raja et al. [48] proposed a method of segmenting MRI
T1 images of sick brain and breast, using the integration of
the Chaotic Bat algorithm, Tsallis-based threshold, and the
region growth technique. After testing the algorithm in the
BRATS Brain Tumor Segmentation Challenge, the method
obtained an 97.5% Accuracy and 90.36% Dice. The method
encountered difficulties only in segmenting some slices of the
brain. However, themethod is not automatic, requiring human
input to adjust the parameters for each image.

Pei et al. [49], developed a technique based on the density
of non-automatic CT images, for pre-defining the number
of clusters aiming at an automatic clustering that helps in
the segmentation of medical images. The authors used a
simple threshold to separate the clustered region of interest.
The results using different datasets, such as Ecoli and iris,
obtained an average accuracy of 83.15%. It remains to be
seen whether the proposed method is capable of effectively
clustering brain CT images.

B. IoT SYSTEMS IN MEDICAL IMAGES
The medical monitoring systems, called Health-IoT [50],
perform a quick exchange of information about the conditions
of patients, medical images and diagnoses, to optimize the
work of professionals in the clinical area and generate a
significant improvement in the quality of treatments [38].
Santos et al. [51], proposed in their work an architec-
ture that encompasses the use of different types of health
managers and gateways. In addition to the interoperability,
through the use of adopted standards, their architecturemakes
data exchange between machinery much faster, thus mak-
ing management much more effective. However, as it is a
recent technique, its method still has some security flaws
and interface problems. Following the same line of thinking
Al-Hamadi and Chen [52] proposed a communication pro-
tocol between the Health IoT systems based on decision
making. This protocol enables the creation of a collective
knowledge database between the devices, which will later
make it possible to make decisions by the devices scheduled.
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Hassana et al. [53] carried out a study on systems based
on Health of Things [54] aimed at monitoring health with the
aid of sensors and visualization devices. In their conclusions,
the authors stressed the effectiveness of these systems in
monitoring the health of patients from a distance, which
reduces the need to go to the doctor’s office, consequently
reducing costs and providing a significant improvement in
health monitoring.

Aware of the effectiveness of Health of Things-based
systems in health monitoring, Ray [55] developed H3IoT,
an architectural framework based on the Internet of Things
Home Health Hub [56]. Its architecture focuses on moni-
toring the health of the elderly in their homes. The authors
concluded that the system is light and easy to install, but that
it needs some adjustments to work in a clinical setting.

C. COMPUTER VISION APPLIED TO IMAGES in
PULMONARY REGIONS
Knowing the importance of segmentation of the lungs for the
detection of lung diseases, Hu et al. [32] proposed an auto-
matic method using the Mask R-CNN network and Machine
Learning [57] along with the aid of Transfer Learning to
segment lung CT images. The method obtained excellent
results (Accuracy of 97.68%) in comparison with the seg-
mentation of a specialist doctor. The technique performed the
segmentation in an average time of 11.2 seconds, which is
considered a reasonable time for the segmentation of lung
CTswhen dealing with deep learning networks and automatic
processes.

With the same purpose Wang et al. [58] used CNN [59]
with Machine Learning for the segmentation of pulmonary
nodules. The method obtained only 80%Accuracy, due to the
difficulty of the method to segment small nodules, and the
different sizes of the lung in the various CT images. These
differences in size are due to the process of the respiratory
system (breathing) during the performance of the exam.

Duraisamy and Duraisamy [25] developed an approach
to segment MRI images of stroke and lung. His technique
involved the use of CNN, fuzzy logic C, and K nearest
neighbors; and his results were visually superior to the use
of only CNN in the segmentation. The method obtained
95% in Accuracy. However, the dataset flow of lung images
can influence the metric values. The Transfer Learning
process [60] has been increasingly used which makes the
model more robust and efficient, while the demand for data
decreases for training.

Based on the above, Shin et al. [27] proposed a study with
the most commonly used CNNs such as CifarNet, AlexNet,
GoogleNet, and others. Although all of these networks are
able to classify the most varied types of objects, they were
trained to target lung diseases, such as Tocaro-Abdominal
Lymph Nodes and DIPs. The study proposed by the authors
consisted of using Transfer Learning between these networks
so that the segmentation process is optimized. However,
the method only obtained 85% sensitivity. Also, the models

proved to be limited as the weights were reused, and their
sensitivity was surpassed by more modern methods.

Wang et al. [61], proposed an approach to the interactive
segmentation of medical images using deep learning [31]
with Fine-tuning [62] at the end of the process. Even though
the results are not robust and accurate enough for clinical use,
which was probably due to the insufficient variation of the
samples, the proposed method obtained cutting-edge results
in the automatic segmentation of medical images.

D. COMPUTER VISION APPLIED TO IMAGES OF BRAIN
REGIONS
Aware of the importance to segment brain quickly and effec-
tively, Havaei et al. [63] proposed a method for segment-
ing brain tumor MRI images with the help of a cascading
architecture CNN. The results obtained a Dice of 87% in
comparisonwith the segmentation of the specialist doctor; the
average segmentation time per image was 25 seconds. How-
ever, the method had difficulties in detecting small tumors in
the brain.

Chen et al. [64] developed an architecture composed of
CNN EDD Net and MUSCULE Net for the automatic seg-
mentation of a database of 741MRI-DWI images of Ischemic
stroke of different patients. The results achieved a detection
rate of 94% and DICE of 67% when compared to the gold
standard. However, the authors admit that the method had
limitations in the segmentation of small lesions.

Haan et al. [65] elaborated a method of the semi-automatic
segmentation of CT and MRI images of Ischemic stroke,
based on clustering techniques. The results were encourag-
ing with Jaccard of 87%. However, as it is semi-automatic,
the method requires operator intervention to configure the
initial parameters. Sun et al. [66] also proposed a 3D segmen-
tation method for Intra-Cranial Hemorrhage in CT images
with the aid of a Supervoxel algorithm, which in turn is
based on Simple Linear Iterative Clustering, and refined
with the algorithm Graph. The proposed method obtained a
True Positive Fraction of 97.94% and False Positive Fraction
of 92.26%.

In the study by Rebouças et al. [43], the authors proposed a
method of semi-automatic segmentation of cranial CT images
through the use of a Parzen’s Window. The method obtained
an accuracy of 99.84% in comparison with the results of a
radiologist (ground truth), and surpassed the results based on
nebula C, watersheds, and region growth that were used to
validate this method. However, since the method is not fully
automatic and the user needs to select the initial point of
growth in the injured region up to its edge.

Aiming to compete with state of the art works found in
the literature, this study proposes a method based on health
of things to classify and segment lung computed tomog-
raphy (CT) and hemorrhagic stroke images. The system
called HTSCS - Medical Images: Health-of-Things System
for the Classification and Segmentation of Medical Images.
The classification makes use of a VGG16 for the extrac-
tion of attributes and an SVM-RBF for the classification.
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Segmentation is based on the use of transfer learning between
models and is based on deep learning using Detectron2,
combined with the classic methods for fine-tuning.

III. MATERIALS AND METHODS
A. DATASETS
This subsection presents the datasets used in the experiments
of this study.

The CT lung images dataset contains 1,265 images, in the
Digital Imaging and Communications in Medicine (DICOM)
format, with dimensions of 512 x 512 pixels and 16-bit depth,
containing the golden pattern. The images were acquired in
partnership with the Walter Cantídio Hospital of the Federal
University of Ceará (UFC), Brazil, and approved by the
Research Ethics Committee. Committee - COMEPE (Proto-
col No. 35/06).

The CT stroke dataset consists of 100 axial images of hem-
orrhagic stroke in different patients. The Heart Hospital of
Fortaleza, Brazil, provided the images, which were generated
by aGEMEDICALSYSTEMCTmodel OptimaCT660. The
images setting (parameters) were a slice thickness of 0.7 mm,
230 mm field of view, 120 kV tube voltage, and 80 mA
electrical current. The dimensions of the image are 512 pixels
high by 512 pixels wide, with a voxel of 0.488 x 0.488 x
1.5 mm. The quantification of the images is in the 16-bit
standard, saved in the DICOM (Digital Imaging and Com-
munications in Medicine) format.

B. DEEP EXTRACTION AND CLASSIFICATION
This subsection presents the deep extractors and classi-
fiers responsible for extracting the attributes and classifying
images of CT lung and CT stroke.

Deep attribute extractors are a transfer learning technique
responsible for transforming the problem into a different
domain space to increase the power of discrimination of a
generic dataset. In the specific case of CNNs, a pre-trained
model on a large data set is used to perform the extraction on
an unseen data set. The last layer of the model is removed,
and the model output will be of a size equivalent to the size
of the last remaining layer remodeled into a one-dimensional
vector [67], [68].

With the new extracted features dataset obtained via trans-
fer learning, we can use the classic machine learning algo-
rithms to carry out training and generalization of knowl-
edge. The classification step is responsible for classifying the
images and determining whether they contain an object of
interest to segment or not.

1) DEEP FEATURE EXTRACTORS
Extreme Inception (Xception) is a CNN model that contains
the Depth wise Separable Convolution layer, as proposed
by François Chollet [39], in which is presented the Depth
wise Separable Convolution layer. The model obtained good
results using the JFT dataset [69], which contains 350 mil-
lion images. Although Xception has the same number of

parameters as Inception V3, this CNN uses the same model
parameters more efficiently.

Visual Geometry Group (VGG) (Oxford University) [40]
was runner-up in the 2014 ILSVRC challenge [70]. Its archi-
tecture consists of 16 uniform convolutional layers. Factor-
ized Convolutions were the strategy used to increas depth,
without causing overfitting of the model.

2) SUPPORT VECTOR MACHINES (SVM) CLASSIFIER
SVM with the Radial Basis Function (RBF) Kernel, also
known as the Gaussian kernel, emerged to correct other ker-
nels that did not adapt well to a large number of samples.
The idea of the method is simple; the model establishes a
boundary at the most extreme points of each class to create
separation, thereby providing support vectors to define each
class.

C. DEEP LEARNING
This subsection presents the deep neural network Detectron2,
a state-of-the-art Mask R-CNN proposed by Facebook Arti-
ficial Intelligence Research (FAIR) [71].

1) DETECTRON 2
The deep neural network Detectron2 comes from the Mask
R-CNN framework [72], proposed by Facebook Artificial
Intelligence Research (FAIR). In order to perform object
detection and segmentation, Detectron2 requires, in addition
to the set of images and their respective ground truths (GT)
that the data set be specified in a list of annotations. The
format of the annotations for Detectron2 follows the format
adopted by the COCO dataset [73]. The annotations must
contain all the individual objects of all the images in the data
set. In general, these annotations contain a list of vertices
of polygons around each object of interest, their respective
bounding box, category, and area. Thus, to conduct the train-
ing of Detectron2 with the sets of medical images studied in
this paper, a function was created to analyze and prepare the
images for the standard format of Detectron2. The function
receives the category, an image and its respective ground
truth (GT) and generates bounding boxes and masks of the
objects present in the image. During training, the optimizer
adjusts the parameters so that the predictions of the model
correspond to the desired GTs.

After training, the neural network receives a new image
and performs the generalized detection step, demarcating
the possible regions of interest through the bounding boxes.
These boxes demarcate the regions with the largest number
of pixels whose characteristics are quantitatively similar to
the characteristics of the regions of interest learned during
the training stage. The specialized detection step consists of
scanning the regions inside the bounding boxes pixel by pixel,
and then the pixels of the image are classified as belonging
or not to the region of interest. The result of classification is
a binary mask composed of white pixels whose coordinates
coincide with the pixels classified as belonging to the region
of interest [72].
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D. FINE-TUNING
Fine-tuning is understood to be a set of techniques used on
the already consolidated techniques of Machine and Deep
Learning in order to increase the effectiveness of the method
with respect to classification or segmentation [74].

The fine-tuning techniques used in this article are based on
Digital Image Processing, in which the Result Generated by
Mask has its edges re-processed by combining the techniques
Region Growth [41], K-means clustering [42] and Parzen
Window [43], in order to improve the edges of the region
considered to be the region of interest.

Region growth is a technique in which the set of pixels
is incorporated as belonging, according to a given rule of
adhesion based on gray levels [41]. The initial seed for the
adhesion of the method is the result of Mask itself, so the
trend of Region Growth over the Region of interest is only to
increase its size.

K-means clustering, changes the gray levels of the image
pixels, reducing their values to a K number of pre-defined
average values [42]. This technique works by normalizing
the pixel values of the exam, which can, help in other PDI
techniques.

Finally, the Parzen Window is an advanced technique for
adjusting the edges of the region of interest based on the
probability density convoluted with a Gaussian Structuring
Element [43].The borders of the region of interest go through
a process of expansion or contraction according to the likeli-
hood that the neighboring pixels belong to it or not as part of
the region to be segmented.

E. EVALUATION METRICS
Evaluation metrics are important tools to analyze the effi-
ciency and effectiveness of segmentation. Taking into account
that each metric is responsible to evaluate a specific criterion
of the segmentation, the set of metrics chosen covers the
most important criteria. The main items to be evaluated are
the background, the region of interest, the similarity with the
specialist doctor and the number of correct answers in relation
to the total [75]. The evaluation metrics adopted were:

Accuracy: Accuracy is a classification metric and is
directly related to the number of pixels that were correctly
segmented over the total number of pixels segmented in an
image [76]. Its formula is given by:

ACC =
TP+ TN

TP+ TN + FP+ FN
(1)

Dice coefficient: The Dice Coefficient is an overlapping
metric that analyzes the similarity between the region seg-
mented by the algorithm and the region segmented by the
specialist doctor, with a good segmentation being the one that
most closely matches that of the specialist [77]. Its formula is
given by:

Dice =
2VP

2VP+ FP+ FN
(2)

Sensitivity: Sensitivity is a classification metric responsi-
ble for evaluating the number of pixels correctly segmented

as belonging to the region of interest among all the pixels
actually belonging to that group [78]. Its formula is given by:

Sen =
TP

TP+ FN
(3)

Specificity: Specificity is a Classification metric responsi-
ble for indicating the number of pixels correctly segmented
as belonging to the background region among all the pixels
actually belonging to the background [78]. Its formula is
given by:

Spe =
VN

VN + FP
(4)

F. KOLMOGOROV-SMIRNOV TEST
Statistical tests are important tools to compare metric val-
ues, considering that in some situations, the values may dif-
fer visually, but from the statistical point of view, they are
equivalent. Using statistical tests, two quantities of samples
can be compared as being greater, lesser, or equal, but this
conclusion can only be drawn after the proper statistical test
has been carried out [79].

The Kolmogorov-Smirnov Statistical Test is a parametric
test whose functionality is to test the equality between two
distributions of continuous samples of the same size. The
hypotheses of this test are: Ho - the two samples are statis-
tically identical, H1 - the two samples are different, one of
which may be larger or smaller than the other [80].

The reliability coefficient (α) is a determining factor in
deciding which hypothesis will be in force on the data
because after the calculations performed on these samples.
The final product will be a coefficient called P-Value. This
P-value will be compared with the value α. This comparison
defines the current statistical hypothesis according to the
equation 5 [81].

K Test

{
P > α = Ho−Statistical Equality
P < α = H1−Statistical Difference

(5)

The value of the reliability coefficient (α) commonly
adopted is 5%, and formore rigorous tests, a value of 3% [81].
To perform the test with the metric values, we adopted α with
a value of 3%.

IV. METHODOLOGY
In this section, we present our methodology, which consists
of Three Steps; Step1- Classification of input images in the
model. Step2 - Beginning of the segmentation process of the
input images (Lung or hemorrhagic stroke). Step 3: Use of
fine-tuning for segmentation (Lung or hemorrhagic stroke)
and the final result.

A. HEALTH OF THINGS
The Health of Things Internet of Things (IoT) systems are
being applied in the healthcare field to connect computer
vision systems with the end-user, health experts, and even
patients who can use the application. In the proposed study,
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the API - HTSCS - Medical Images: Health-of-Things Sys-
tem for the Classification and Segmentation of Medical
Images aims to communicate through the Representational
State Transfer (REST) protocol, via JavaScript Object Nota-
tion (JSON). In this way, applications via WEB or applica-
tions can acquire the system because the API was developed
in such a way as to interaction through IoT.

The model code is organized in nodes. The central part of
the control is implemented in Java, where it controls the pro-
cessing requests of the nodes implemented in python, which
are the extraction and classification APIs using sklearning
libraries, tensorflow and others.

B. CLASSIFICATION
Step 1 corresponds to the detection of two problems in a
binary way, one is related to the lung (has lung or does not
have lung in the image) and another related to the brain (has
Hemorrhagic Stroke or does not have Hemorrhagic Stroke in
the image).

In order to develop the Health of Things tool, which
corresponds to step 1, we used the computational solution
tool Lapisco Image Interface for Application Development
(LINDA) [28]. Step 1 covers the beginning of the model as
shown in Figure 1. LINDA is a cloud application; any device
with Internet access can use it.

In order to find the best extractor-classifier combination,
we follow the flow indicated in Figure 2. Registration is
required to use the tool. After the login screen, the user must
create his project by defining the project name and parame-
ters, the amount of class and the desired action (extraction,
classification). In the next stage, extractors and classifiers
are chosen for training. Set the class number and upload the
images in the PNG format. The images were initially in the
Digital Imaging and Communications in Medicine (DICOM)
format, which is the standard for medical images, the entire
database is converted to Portable Network Graphics (PNG).
When loaded, data extraction is started and then sorted.
Finally, the best extractor-classifier combination is analyzed
using graphs and confusion matrices.

The first step in image pre-processing is to normalize the
image size to avoid very large or very small sizes, in addition
to adjusting the color depth of the images, especially in the
Dicom-type (DCM) images. Once the best combination has
been defined, we can encapsulate the model trained to predict
new image data in the cloud and thus proceed with the Health
of Things model as shown in Figure 1.

Figure 1 Step 1 item (1) is when the user uploads the
image to be classified and segmented after training the model.
In (1.a) the image is classified, and the Health of Things
generates an output, as shown in item (1.b), showing whether
or not it contains the object of interest. If it does not contain
the object of interest, the computational model is closed,
as shown in Figure 1. If the object of interest is detected
in the network, the Health of Things model advances to
Step 2 (segmentation of the object of interest), and in the

case of this study, proceeds to the lung or hemorrhagic stroke
segmentation process.

C. SEGMENTATION
After classification in Step 1, Figure 1, which identifies
the object of interest (pulmonary or hemorrhagic effusion)
according to the choice of images to classify and segment
at the beginning of the processing system as shown in the
Figure 1 - label (1). The result is given in item - (1.b),
if (YES), then the model moves on to Step 2 of the system.
Step 2 represents the first phase of segmentation, as shown in
item (2), representing the Detectron2 deep learning network
as explained previously in Section III-C. The Detectron2 net-
work identifies the real region belonging to the bounding
boxes of the object of interest, and generates a characteristic
map of (a lung or hemorrhagic stroke), as shown in the
Figure 1 located in item (2.a). In item Detection in (2.a),
the network detects the region or regions of interest in a gen-
eralized way through Bounding Boxes. These boxes detect
the regions that are the most similar to the region of interest
learned in the training stage. In the lung data set, the bounding
boxes form around the lungs, in the Hemorrhagic Stroke data
set, the bounding boxes form around the lighter region of
the brain region, considering that this is possibly the region
affected by leakage. The result of the detection process in
this stage through the Detectron network is seen in Figure 3,
which presents different results, for the CT images of the lung
and the CT images of hemorrhagic stroke.

Figure 3 shows the segmentation instance of Detectron2.
The network detects and demarcates each object of distinct
interest that appears in an image.

In this segmentation stage, called specialized segmenta-
tion, the pixels of the region demarcated by the bounding box
are classified according to their attributes; thus, the network
performs the construction of the region of interest. These clas-
sified pixels are used to create a binary mask represented in
the Figure 1 item (2b); this mask is responsible for detection.
Subsequently, it is used to target the region of interest in the
(3) Health of Things model stage.

D. FINE-TUNING
Fine-tuning is the last step of the Health of Things system and
is used as a segmentation adjustment, in order to improve the
segmentation efficiency of the region of interest.

Three fine-tuning techniques were proposed together with
the Detectron2 network as shown in the Figure 1 item(3),
based on the PDI techniques for Region Growth, K-means
clustering and Parzen Window. The technique Detectron2
+ Parzen Window (Detectron-fλ) item (3.1), consists of the
direct application of the Parzen Window technique on the
result generated by the network in order to improve the
contours of the region segmented smoothly by the Gaus-
sian structuring element. The probability density calculations
performed to contract or expand the borders of the region
are obtained from the pixels of the original CT examination
image.
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FIGURE 1. Presentation of the HTSCS - Medical Images (Health-of-Things System for the Classification and Segmentation of Medical
Images). The figure illustrates the steps of the method based on the Health of Things; * represents the initial training stage of the
method for classification and segmentation of CT images of lung and hemorrhagic stroke, as well as access via the internet. Step 1,
consists of the classification of the input image (with the detection or not of the lung or hemorrhagic stroke. In step 2,
the Detectron2 network starts the segmentation process of the lung or hemorrhagic stroke, generating characteristic maps through
the bounding boxes. Step 3 continues of the segmentation process using fine-tuning, and finally presents the best result.
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FIGURE 2. LINDA framework 1- Login and password screen. 2- Project
creation, which includes defining name, number of classes, and what
action (data extraction, classification of, or prediction from the trained
network) the user wants to perform. 3- If the user decides to train a new
model, the images separated by classes will be uploaded. 4- When
uploading the images, the user chooses which descriptors and classifiers
will be used in training. 5- Analysis of results after training with bar
graphs and confusion matrices.

The second technique, Detectron2 + Parzen Window +
K-means clustering (Detectron-fδ) item (3.2), it is the direct
application of the Parzen Window technique over the seg-
mented region. In this way, the clustering that acts to normal-
ize the image aims at improving the boundaries of the region
of interest in relation to the background of the image, which
makes the Parzen Window more effective.

The third technique, Detectron2 + Parzen Window +
Region Growth + K-means clustering (Detectron-fµ)

item (3.3), consists of the reconstruction of the region of inter-
est initially by the region growth technique on the clustered
image with a K= 3 of the CT exam, where the network result
itself serves as a seed for growth, in order to adjust the edges.

In item (3.a) of Figure 1, the segmentation results are
presented with the different models based on fine-tuning,
including the direct results (without the fine-tuning process).
In item (3.b) and (3.c), only the results of the models that
obtained the best performance in the segmentation are pre-
sented. Both models work in parallel for each input image in
the proposed system.

V. RESULTS AND DISCUSSION
This section presents the results and discussions of the pro-
posed method, according to the Methodology in Section IV.
It presents the model based on Health of Things for classifi-
cation and segmentation of Lung and hemorrhagic stroke in
computed tomography using a deep learning network com-
bined with fine-tuning methods.

The results are in three stages. In the first step, they present
the classification of the input images after training the net-
work, using the SVM method and extractors based on deep
learning to define whether there is lung or stroke in the CT
images presented at the network entrance. The classification
is in the first step, then, in the second stage, it is subdivided
into two phases; pulmonary segmentation and hemorrhagic
stroke. In the first experiment, the metric values presented
are for the segmentation of pulmonary CT. In the second
phase of Step 2, the metric values presented are for the
segmentation the hemorrhagic stroke. Finally, the Third Stage
of Results are to validate the method proposed in this study,
and we present our best results of pulmonary segmentation
and stroke compared to the results of the methods reported in
the literature.

A. FIRST EXPERIMENTAL STAGE - CLASSIFICATION
All the datasets used were pre-processed in the same way.
Ten interactions were applied in which the patterns were arbi-
trarily divided into two groups, 80% for training and the rest
for testing. The training sets were normalized (mean zero and
unit variation), and the test sets were also normalized using
the same normalization rules as the training sets. In order
to find the best set of hyperparameters for the classifier,
cross-validation of the k-fold with the grid search technique
was applied. The hyperparameters that reached the highest
precision in the validation set were stored, and the most
repeated values at the end of the ten iterations were chosen
as the best hyperparameters.

The grid search technique with cross-validation with
10-folds was adopted to choose the best hyperparameters of
the SVM classifier with kernel RBF C and γ . The range of C
and γ varied between [2−5, 215] and [2−15, 23], respectively.
Tables 1 and 2 present detailed data of the two best

extractors-classifiers combinations for stage 1 of the model,
based on the proposal of Health of Things. Various extractors-
classifiers combinations were tested to find the combination
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FIGURE 3. Result of the segmentation instance of the Detectron2 network in CT images of the chest and CT images of the skull,
respectively. The detected instances were overlaid with various colors.

TABLE 1. Table with the two best results of the extractor-classifier combination for the detection stage, whether there is a lung in the image or not. As can
be seen, the combination of the VGG16 extractor and the Xceptron extractor, both with the SVM-RBF classifier, scored 97% in all evaluation metrics.

TABLE 2. Table with the two best results of the extractor-classifier combination for the detection of hemorrhagic or non-hemorrhagic stroke in images of
the skull. As can be seen, the best combination is the use of the VGG16 extractor with the SVM-RBF classifier, which scored 100% in all the evaluation
metrics.

that solves the proposed problem. However, for the classi-
fication of lungs or not, two information descriptors were
highlighted: Xception and VGG 16 with the SVM classifier
configured with the RBF kernel. The Xception descriptor
had an accuracy of 96.63% with an average time of 14.7ms
and the VGG16 descriptor had 97.04% with an average time
of 9.44 ms. The data set was organized as follows: class 0
without lung and class 1 with lung. To detect stroke or not in
the brain, the descriptors Xception and VGG16 were applied
with the SVM-RBF classifier. The two descriptors combined
with the SVM-RBF reached 100% accuracy only with differ-
ences in the average time of image extraction with 16.10 ms
for Xception and 10.88 ms for VGG16.

B. SECOND EXPERIMENT STAGE - SEGMENTATION
All segmentation experiments were conducted on an Ubuntu
18.04 operating system with 16GB RAM, Intel Core i7 pro-
cessor, and NVIDIA GeForce GTX 1660 TI GPU as used

for neural network training and inference. Initially, the model
used was the Mask-RCNN R-50-FPN-3x, as can be seen
in the overview of this models.1 Since there were just over
1000 CT images of the lung and 80 of hemorrhagic stroke for
training, we opted for pre-trained weights. The pre-trained
weights from the model were used as initial weights in train-
ing. The neural networks were trained for 2,000 epochs with
learning rates of 0.00025. The total training time for CT
hemorrhagic stroke dataset was approximately 11 minutes,
whereas in CT lung images it was 12 minutes.

1) SECOND EXPERIMENT STAGE - LUNG SEGMENTATION
The results generated in this section are based on the dataset
presented in Section III-A; the same dataset was used in the
works of Qinhua Hu et al. [32] and Rebouças et al. [82].

1https://github.com/facebookresearch/detectron2/blob/master/
MODEL_ZOO.md
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TABLE 3. Results generated by the proposed method using deep learning
and fine-tuning combinations for lung CT images. The same images were
used in the experiment of Rebouças et al. [82] and Qinhua Hu [32].

FIGURE 4. Graphic illustration of Table 3. Different models proposed
based on Health of Things with the use of deep learning combined with
the fine-tuning technique.

Table 3 presents the results generated by this study in
order to segment CTs of lung images. In this experiment
36 images of the dataset were also used in [82] and [32]. The
dataset contains the GT. The first column presents the models
Detectron2, Detectron-fλ, Detectron-fδ and Detectron-fµ.
Model Detectron-fλ is based on fine-tuning using the

Detectron2 combined with the Parzen Window technique.
Model Detectron-fδ is based on fine-tuning using

the Detectron2 combined with the Parzen Window and
Clustering.

Model Detectron-fµ is based on fine-tuning using the
Detectron2 combined with the Parzen Window, Region
Growth and Clustering.

The method was trained with 80% of the 1,265 lung
CT images used by Qinhua Hu [32], all images contained the
ground truth. This further validates our method, considering
that the model was trained based on the notes of specialists.

According to the ACC column representing the Accuracy
metric, one can see the success of the Detectron2 network in
locating and segmenting the pulmonary region effectively and
accurately. The Detectron2 network achieved an excellent
result with 99.00 ± 0.60. With the exception of the network
Detectron-fλ, the results had a slight improvement, with a
kind of adjustment generated by fine-tuning with a minimum
variation of 0.02, and then both reached 99.02% Accuracy.
This is due to the efficiency of the Detectron2 network in truly
detecting the location of the lung in the image, segmenting the
contour that belongs to the object, and even predicting the true
positives of the pulmonary region. This slight improvement
with positive variations was reflected in the two models:
Detectron-fδ and Detectron-fµ, that managed to improve the

image adjustments more precisely. This is because bothmeth-
ods used Clustering techniques, which helped to identify with
greater depth the relation of variations between the pixels
belonging to the lung in the CT image.

The Dice coefficient (DICE) column showed some pos-
itive differences in comparison to the Detectron2 model
(Model without the use of fine-tuning), except for Detectron-
fλ, which presented lower values than Detectron2 (model
without the use of fine-tuning). Detectron-fλ was not able
to overcome Detectron2, considering that only the Parzen
Window as a fine-tuning had difficulty finding the edges
of the more closed angles, as shown in the Figure 5. The
models Detectron-fδ and Detectron-fµ, had slightly better
results than Detectron2, but behaved similarly. With the
DICE assessment that analyzes the calculated performance
of the overlap, the results were relatively similar, both
with 97%±0.03 and 97%±0.01 with an approximate 1.25%
standard deviation, against 96.98%±1.21 from the network
Detectron2. Such results show the efficiency of the models in
making minor adjustments to the segmentation related to the
edge of the lung.

Regarding the Sensitivity metric (SEN) of Table 3, we can
a find similarity between the Detectron2 and Detectron-fµ
models, with relatively equivalent values. In other words,
both the networks without fine-tuning and fine-tuning were
able to predict the pixels belonging to the area of the bottom
of the lung correctly, and to classify them as a pulmonary
region. Although the difference is small between the models
Detectron-fλ and Detectron-fδ, this variation demonstrates
the effectiveness of the method for different types of lungs
in a CT image. Bearing in mind that the variation in lung
size changes with each image acquired by the CT scanner,
since the respiratory process responsible for inflating and
deflating the lungs produces different lung sizes in a CT scan,
making this variation of sensitivity somewhat complex. Not
tomention the variety of different pathologies recorded by the
CT,which show up as specific points that can be characterized
as abnormalities on a CT as shown in the Figure 5.

The Specificity metric in Table 3 for both models
achieved an excellent performance above 99%with variations
of 0.16%. The model obtained an excellent performance in
detecting the non-lung region. This means that the models
are able to point out areas that are not part of the ROI in
agreement with the excellent results of ACC predicted as the
true region of the lung. In the Figure 4 graph representing
Table 3 we can visually analyze the similarities between the
models.

Figure 5 presents the results of the segmentation of each
model in different lung formats. There was a slight improve-
ment made by the models with the use of fine-tuning in the
search to get around the object from the result of the first
segmentation step made by phase 2 of the proposed method.

Table 4 refers to the segmentation time, and also highlights
the success of the method based on the results obtained
quickly and accurately in the segmentation of the lung. The
average estimate of 1.7 seconds for the models, and excellent
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FIGURE 5. Result of segmentation with the different models based on the Detectron2 network combined with fine-tuning methods.

TABLE 4. Comparison of segmentation time between the proposed
Detectron2 models and models based on the fine-tuning techniques for
lung CT images.

performance makes the model effective and robust. Visually
we can see the similarity between the results in Figure 1,
also confirmed by the statistical test presented in Table 5.
Figure 7 presents a box chart illustrating the average segmen-
tation time of the models for CT hemorrhagic stroke images
and CT lung images.

Looking at Table 3 along with the images
in Figure 8 illustrates the average time of segmentation
per lung image, referenced in the graph with a blue bar.
Also analyzing Table 4 for segmentation time in conjunction
with Figure 5 of Segmentation Results, we can conclude
that after the fine-tuning process the Detectron-fµ model
obtained a relatively better performance in readjusting the
shape of the object, starting from the result already gen-
erated by Detectron2 given as a growth start to meet the
edges of the lung, mainly in the case of curvature points
where the ends are quite accentuated. The models are sta-
tistically equivalent, and the contour of the Detectron-fµ
model was shown to be relatively flexible at some lung
curvature points, causing the model to have slight differences
in the adjustment for the pulmonary and non-pulmonary
regions.
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FIGURE 6. Illustration of the result of the segmentation of the
Detectron2 network for the dataset of CT images of Hemorrhagic Stroke.

In order to present the equivalence between the mod-
els, the Kolmogorov-Smirnov test was performed on the
set of samples, in which each sample was tested with each
other, and together they generated the average metrics of the
Tables 4, 5, 7 and 8. Statistical equality between samples
was tested. Equation 6 explains the Figures used to indicate
the statistical situation of comparing the set of metrics.

K test

{
� = Statistical Equality
� = Statistical Difference

(6)

FIGURE 7. Illustration of the segmentation time of models based on
fine-tuning Detectron2, Detectron-fλ, Detectron-fδ and Detectron-fµ for
the segmentation of hemorrhagic stroke and lung. The cream columns
represent the average time for segmentation of CT hemorrhagic stroke
images. The blue colored columns represent the average time for
segmentation of CT lung images.

FIGURE 8. Graphic illustration of the metrics obtained by the methods
Detectron2, Detectron-fλ, Detectron-fδ and Detectron-fµ in the
segmentation of Hemorrhagic Stroke.

TABLE 5. Kolmogorov-Smirnov statistical test Table. Results of the
metrics in the segmentation of the CT lung images, using the techniques:
A) Detectron2, B)Detectron-fλ C) Detectron-fδ, and D) Detectron-fµ.

Table 5 shows that the fine-tuning techniques developed
and applied to the result of Detectron2, even if there was a
slight increase, as there was in the values of the metrics, from
the statistical point of view, these metrics remained similar.

2) SECOND EXPERIMENT STAGE - SEGMENTATION OF
HEMORRHAGIC STROKE
In this subsection, the result of the hemorrhagic stroke seg-
mentation is presented. Also used in the study of [43],
the dataset contains the ground truth, and, with that, it was
also possible to compare with the specialist’s segmentation,
validating the study, just as it was done in the first experiment
with lung segmentation.
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TABLE 6. Results generated by the proposed method, based on the deep
learning network Detectron2 together with fine-tuning techniques.
Experiment performed with the dataset described in Section III-A,
the dataset contains CT of Hemorrhagic Stroke.

TABLE 7. Comparison of the segmentation times between
Detectron2 models and models using fine-tuning techniques. The results
were generated from the CT hemorrhagic stroke images.

Table 6 presents the results of the segmentation
of 100 hemorrhagic stroke images. The results were surpris-
ing. The Detectron2 network managed to surpass the models
in almost all metrics, with an accuracy of 99.89 ± 0.05,
DICE of 94.81± 2.11 and SEN of 92.79± 3.87. This means
that the Detectron2 network was able to detect hemorrhagic
stroke and segment the brain region of interest relatively
more accurately than models with fine-tuning. The network
managed to be equivalent to the model Detectron-fµ in
terms of metric specificity; however, both were successful in
detecting the non-stroke regions. This is extremely important
considering that the Accuracy values that represent the actual
location of the lung are similar as shown in the ACC results
with all models close to 100% accuracy.

The main difference between the models was found in
the sensitivity (SEN) metric, varying 7% between the best
and the worst case. This variation occurred only between the
Detectron2 and the Detectron-fλ models, where they had a
minor difficulty to circumvent the edge of the stroke that
was already close to the limit. Only the Parzen Window
technique to readjust to the edges of the stroke, makes the
method more difficult to readjust. This can also be analyzed
visually by observing the contour with slight deformities
in the segmented image. In the Figure 6, we can visually
analyze the results generated by eachmodel, thus showing the
evolution of each one and the similarity between the models.

The differences can also be seen in the graph in Figure 8,
where they present the values in a bar form. This bar graph
shows the great potential of the network in segmenting dif-
ferent objects. This is due to the fact that the Detectron2 net-
work has weights pre-trained in different forms of learning
in its structure, which is a kind of generalization among deep
learning models.

Table 8 demonstrates that the metric values of the
fine-tuning technique Detectron-fλ are statistically differ-
ent from the values of Detectron2, so it can be said
that this method was less effective in the segmentation of

TABLE 8. Kolmogorov-Smirnov statistical test Table. Results of the
metrics used in the segmentation of CT images of the brain, using these
techniques: A) Detectron2, B)Detectron-fλ, C) Detectron-fδ and D)
Detectron-fµ.

Hemorrhagic Stroke, as shown in Table 6 and illustrated in
the graph in Figure 8.

Figure 6 shows that the ground truth segmentation visually
approximates the segmentation performed by Detectron2.
This is because, in this specific case of hemorrhagic strokes,
Detectron2 obtained the best performance among the models.

3) THIRD STAGE - COMPARISON BETWEEN METHODS IN
THE LITERATURE
In this Section, in order to validate our method, we compared
our best approach with other methods reported in the litera-
ture that used the same databases presented in Section III-A.

Table 9 presents our best model based on this study, in com-
parison to the work of Qinhua Hu et al. [32]. The experi-
ment used the same CT lung database with different types of
methods.

Table 9 shows the results generated by our approach using
the Detectron2 network against the Mask R-CNN network.
The values are much higher compared to Mask R-CNN.
The Detectron2 network used in our approach managed to
have a better result than Mask R-CNN by more than a 23%
difference in DICE. Detectron2 with 99.00 ± 0.60 against
76.81 ± 16.90 in DICE. ACC of 96.98 ± against 89.96 ±
4.38. Sensitivity of 96.74 ± 2.69 against 87.72 ± 16.82 and
Specificity of 99.41± 0.50 against 86.70± 6.12. This shows
the high performance of the Detectron2 network in detecting
and segmenting the Lung region in the deepest layers of the
network. Compared to the methods in Table 9, our model
Detectron-fµ succeeded in performing better than all the
models studied by Hu et al. [32], such as the Mask+bayes,
Mask+SVM, Mask+K-means and Mask+EM models in all
metrics shown in the Table. All the models used deep learn-
ing with methods combined with fine-tuning techniques.
The graph represented by Figure 9 distinguishes clearly the
variation between the lung segmentation metrics performed
in [32].

Table 11 compares some results of [32] and [43], with
different automatic methods. The Hu [32] method also used
deep learning methods combined with fine-tuning to segment
CT lung images. Our model Detectron-fδ presented the best
results amongst those in the Table, and it was equivalent to
the HU method for the DICE metric with 97%. However,
our model was faster with a difference of 9.54 seconds com-
pared to the model based on the Mask R-CNN combined
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TABLE 9. Validation Table for the method proposed in the Health of Things system segmentation step with the lung image dataset. The methods used for
validation can be found in the article [32].

FIGURE 9. Comparative Table graphic illustration of Table 9.

TABLE 10. Comparison between methods reported in the literature [43], with our best approach (Detectron2) for segmentation of hemorrhagic stroke.

TABLE 11. Validation Table of the method proposed in the segmentation
stage of the Health of Things system for the lung image dataset,
the methods used in the validation can be found in the articles (HU, GVF,
VFC, SISDEP, OPS, CRAD) and [43].

with fine-tuning throughmachine learning. Our approachwas
better than the othermethods, including in segmentation time,
ranging from 240 seconds in the worst case to 2 seconds in the
best case of average lung segmentation time. Our approach
was better than the CRAD model in the DICE metric that
scored 94%, while our best model had 97%, thus surpassing
most renowned works in the state of the art.

In Table 10 and 12 the results obtained by the work of
Rebouças et al. [43] are compared to our best approach
(Detectron2) for segmentation of hemorrhagic stroke.

TABLE 12. Comparison of segmentation time for hemorrhagic stroke
images.

Table 10 shows that Detectron2 was a better performer,
according to the Table with works published in the study of
Rebouças et al. [43]. Detectron2 reached 94% DICE against
the best OPS Manhattan case with 84%, a difference of 10%.
The difference is even greater compared to the worst caseWS
with 17%. In other words, the Detectron2 model proved to
be more effective in segmentation hemorrhagic stroke. It is
also worth mentioning that our approach is a fully automatic
method, with deep learning, without human interference for
the segmentation process, unlike the other methods presented
in the Table.
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TABLE 13. Highlight Table: Comparison of works used as a motivation for the proposed method.

FIGURE 10. Bar chart illustrating the dice coefficient of each method.

The Detectron2 network managed to have better results
than all the works referred to in [43] including the average
time of image segmentation. Although our approach uses
deep learning where the process requires a higher compu-
tational cost, compared to the classic methods (without the
use of deep learning), our approach through deep learning
managed to be faster than the best case study in [43] for seg-
mentation hemorrhagic stroke. Detectron2 took 0.09 seconds
against 1.76 for the LSCPM method. There was a differ-
ence of 4.71 seconds compared to the worst case called the
Ws method as illustrated in Figure 10 from the chart (table)
comparing the models presented in the Rebouças et al.
study [43].

The proposed method proved to be superior as well as
fully automatic for the classification and segmentation of
lung and hemorrhagic stroke CT images. The comparisons in
the First Stage of Results showed that the method obtained
excellent results using different models, and had the best

and most effective approach for pulmonary segmentation.
The comparison in the Second Stage of Results and Dis-
cussion showed that the Detectron2 network was able to
detect and segment the stroke region without the need for
fine-tuning. This shows the exceptional ability of the deep
leaning network to get closer to the gold standard per-
formed by a specialist; thus, making it possible to be used
as a kind of pre-diagnosis for hemorrhagic stroke with an
automatic segmentation in less than 1 second. The third
step provided an updated comparison of renowned methods
reported in the literature, as well as the validation of our
approach. Table 13 presents a summary comparing the advan-
tages and disadvantages of the proposed work and the works
used for comparison.

VI. CONCLUSION
This work aimed to develop an innovative medical pre-
diagnostic method based onHealth IoT through deep learning
and fine-tuning. The method proposes that learning through
fine-tuning is able to generalize the learning to different types
of CT images. The method was divided into two stages; clas-
sification and segmentation of Lung and Hemorrhagic Stroke
on CT images. In the First Stage of our method, a model
(classifier) was developed to classify the existence of strokes
in a CT image. With the option also to classify the existence
of lungs in the CTs.

In this process, if the network identifies the object of
interest in the CT, it follows the Segmentation Process, which
is the second stage of the method. This (second) stage is
composed of four models to segment the pulmonary region
and the hemorrhagic stroke injury. The models presented in
this study, used deep learning combined with fine-tuning, and
all the models obtained excellent results.
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The results were very satisfactory in both stages of the
process. The best models obtained 97% Accuracy for image
classification in pulmonary and non-pulmonary images and
100% in non-injured or hemorrhagic stroke images. The seg-
mentation of classified images containing regions of interest
also obtained with our best model Detectron-fµ excellent
results, for pulmonary segmentation with 99% Accuracy
and with an average time of 1.7 seconds, surpassing the
works reported in the literature; thus showing the efficiency
and robustness of our method. Our method was also very
successful in the classification and segmentation of hem-
orrhagic stroke, reaching 94% DICE and 99% Accuracy,
with an average segmentation time of less than 1 second,
surpassing the works reported in the literature presented
in Section V-B.3.

To validate our approach, we performed a comparison of
our best models, against lung segmentation techniques and
hemorrhagic stroke that used the same databases found in the
literature. Our method was superior to all methods evaluated
for pulmonary segmentation, surpassing the best models;
HU [32] with 97% DICE with a segmentation time of 11.24.
The second best model (CRAD), which had reached 94%
with a processing time of 2 seconds, was also surpassed. Our
model for stroke segmentation was also superior to the best
method (LSCPM) of [43] with 84%DICE, that is, a difference
of 10% in relation to our best case. Furthermore, the average
time of the LSCPM model took 1.76 seconds, while our
Detectron2 model took only 0.09 seconds. Thus, we proved
the effectiveness of the method proposed by this study for
classification and segmentation of pulmonary images and
hemorrhagic stroke on CT.

For future studies, we propose to test different image
bases (datasets) to validate our method as a powerful tool
in helping medical diagnosis for the classification and seg-
mentation of different types of pathologies through Health
IoT, such as melanomas, and mammograms, among others.
Also we propose as a future work to make the system HTSCS
- Medical Images: Health-of-Things System for the Classi-
fication and Segmentation of Medical Images available for
testing by other researchers and/or health professionals.
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