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ABSTRACT In this paper, a new approach for an observer based controller for semi-active suspension
systems is presented. The observer part is a feedback linearizationKalman filter which is based on differential
geometry. The original nonlinear system is transferred to a linear system by certain coordinate transfer after
the verification of observability and solvability of the system observer design problem under certain sensor
placement configurations. Then, a linear Kalman filter algorithm can be applied to the linearized system. The
state information can be obtained through an inverse coordinate transfer of the estimation results of the linear
Kalman filter. The observer is verified by a simulation test under different road profiles, and a comparison
between the designed observer and extended Kalman filter shows that the feedback linearization Kalman
filter has better performance. A model reference sliding mode controller based on the estimation results of
the observer is also proposed. A rig test system for the semi-active suspension system is implemented, and,
both the designed observer and controller are verified through the rig test. Experimental results show that the
proposed new approach for semi-active suspension control can significantly improve vehicle ride comfort
with common and low-cost sensors.

INDEX TERMS Semi-active suspension, feedback linearization, Kalman filter, observer design.

I. INTRODUCTION
A suspension system for a vehicle can suspend the spring
mass while maintaining contact between the wheel and the
road surface. Performance of the suspension is often assessed
in terms of ‘‘ride comfort’’ and ‘‘ride handling’’. Active
suspension systems have been proven to be able to manage
these conflicting trade-offs better thanwith traditional passive
suspension. However, active suspension systems are com-
plex, expensive, and high-energy consuming, and thus, barely
implemented on mass-production vehicles. Semi-active sus-
pension overcomes the abovementioned disadvantages of
active suspension with only a small reduction in performance.
Another advantage of the semi-active suspension over active
suspension is that the semi-active suspension has a ‘‘fail-
safe’’ feature, which turns the semi-active suspension into
a passive suspension when the control system malfunctions.
As the semi-active suspension has been widely commercial-
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ized, the control strategy, as the key factor that influences
the performance of the semi-active suspension system, has
attracted increasing attention from researchers.

Control algorithms introduced by early researchers such
as optimal control [1]–[3] and skyhook control [4]–[6] are
mainly linear controllers. These control strategies cannot
reflect the nonlinear characteristic of the vehicle [7]; how-
ever, those control strategies are not robust enough under
parameter variations and perturbations. To solve these prob-
lems, new techniques, such as sliding mode control [8]–[18],
fuzzy logic [14], [19]–[21], and neural networks [22]–[24],
have been introduced to the design process of semi-active
suspension controllers. However, the stability of intelligence
controllers is hard to prove mathematically, which limits its
application for vehicle suspension systems. Sliding mode
control is a kind of variable structure control that changes
the structure of the system with a discontinuous signal. It has
proven effective and robust under system perturbation and
external disturbances for both linear and nonlinear systems.
Since actual suspension systems contain different kinds of
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uncertainties and require high control robustness, a slid-
ing mode controller is suitable for practical applications.
Xinbo proposed a particle swarm optimization based sliding
mode control for precise desired damping force control. The
proposed controller was verified through hardware in the
loop test [9]. Nguyen proposed a fuzzy disturbance observer
enhanced sliding mode observer for a semi-active suspension
equipped with a magneto-rheological damper. Comparative
work with other existing controllers shows that the proposed
method can provide better vibration control and consume
relatively low energy at the same time [25]. Ren combined
UKF and a sliding mode controller for an approach of
semi-active suspension control systems. A hybrid reference
model was presented for the sliding mode controller for a bet-
ter compromise between ride comfort and ride handling. Both
the observer and the controller were verified by simulation
tests [16].

Most control strategies rely on the assumption that all
the states, or at least the states they need, can be measured
accurately. However, this assumption is usually too demand-
ing and sometimes even technically unfeasible. In particu-
lar, the absolute vertical velocity of the spring mass cannot
be measured directly with sensors. The common technique
widely used in engineering applications to integrate accel-
eration signals for speed suffers considerably from DC off-
set. At present, the most appropriate solution for the above-
mentioned problem is to design a state observer to estimate
state information from easily accessible measurements. The
Kalman filter is a widely used observer algorithm, whose
effectiveness has been proven for the semi-active suspension
systems. However, also known as linear quadratic estima-
tion, the Kalman filter is a linear algorithm that can not
be directly applied to nonlinear systems. Therefore, non-
linear versions of the Kalman filter have been introduced
by researchers [26]–[29]. Reina implemented an extended
Kalman filter (EKF) for lateral dynamics of a half vehicle
model for tyre cornering stiffness identification [30]. Wei
combined the minimum model error with EKF to design
a state observer for 4WD vehicle states [31]. Simulation
results show that the designed observer has better accuracy
compared with traditional EKF. The principle of the EKF is to
linearize the nonlinear system by Taylor expansion and first-
order approximation. However, this linearizationmethodmay
lead to deterioration of estimation results when the system
is far from the equilibrium point [32]. Another nonlinear
version of the Kalman filter is the unscented Kalman fil-
ter (UKF). The UKF solves the problem of obtaining the
state mean and covariance matrix by means of unscented
transformation and sigma points propagation and is believed
to have better accuracy than the EKF in most nonlinear
model cases. Ren designed a UKF observer-based hybrid
sliding mode controller for suspension systems, and the
accuracy of the observer was verified through simulation
road tests [16]. López combined the UKF and adaptive
network-based fuzzy inference system (ANFIS) to estimate
vehicle sideslip angle, the designed estimator was verified

under different driving maneuvers [33]. Apart from the KF
and its nonlinear versions, other methods have also been
implemented in the field of vehicle state estimation. Olma
designed a sliding mode observer for the parallel kinematic
excitation unit [34]. The designed observer was implemented
in a real-time environment and was verified through hardware
in loop simulation tests. A robust observer was designed
by Alfonso in the H-infinity framework for the damping
force of a semi-active suspension system equipped with an
electro-rheological damper [35]. A Luenberger observer was
designed by Giua. The working principle of the designed
observer is to minimize the H2 norm of the transfer function
matrix among the error state estimations [36]. A simulation
was performed to verify the observer considering both the
solenoid valve damper and the magneto-rheological damper.
Neural-network-technique-based observers do not rely on
specific system models [37]–[40]. However, the accuracy
of neural network observers depends on large quantities of
training data, which sometimes is not easy to acquire.

The nonlinear character of the system has always been a
difficult point of observer design. The general method for
solving a nonlinear system observer design problem is to
linearize the nonlinear system and apply a linear algorithm
to the linearized system. Traditional linearization techniques
such as the EKF are based on series expansion and first-order
approximation. The neglected high-order parts of the original
nonlinear system cause nonnegligible errors when the system
state is far from the equilibrium point.

The aim of this paper is to provide a new approach for an
observer-based controller for a semi-active suspension sys-
tem with nonlinear damping force character. Though widely
used and proven effective in the field of controller design,
the feedback linearization technique has rarely been used as
a linearization technique for state observers especially for
multi-output systems such as the semi-active suspension sys-
tem presented in the paper. In this paper, a feedback lineariza-
tion based Kalman observer is proposed. Its main principle
is to find a specific coordinate transfer which can turn the
original nonlinear system into a linear system. Then, a lin-
ear Kalman filter algorithm can be applied to the linearized
system. The state information of the original system can be
obtained through reverse coordinate transfer. Furthermore,
to verify the designed observer’s ability to provide accurate
enough state estimations for the controller, a model reference
sliding mode controller is designed. The effectiveness of both
the observer and the observer-based controller is verified
through rig tests.

This paper is organized as follows. A nonlinear quarter
car dynamic model equipped with a solenoid valve-based
adjustable damper is presented in section 2. Feedback lin-
earization and the observer design process of the quarter car
system presented in the previous section are explained in
detail in section 3. Section 4 shows the simulation results
of the designed observer and its comparison with the EKF.
Accuracy analysis of the observer under a disturbance is
also performed in section 4. In section 5, a model reference
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FIGURE 1. Nonlinear quarter car model.

sliding mode controller based on the state information of
the previously designed observer is implemented. A rig test
system is implemented, and an experiment is performed to
verify the observer based controller in the last section.

II. SYSTEM MODELING
The linear model can only reflect the vehicle’s dynamic
characteristics when the system is around the equilibrium
position. Out of this range, the deviation caused by the linear
model cannot be ignored. Therefore, it is essential to build a
nonlinear model for the research of nonlinear suspension sys-
tems. In our case, the variable force element of a semi-active
suspension is an adjustable damper equipped with a solenoid
valve.

A quarter car model is a two DOF (degrees of freedom)
model, which can reflect the vertical motion of the vehicle.
It is often used for suspension observer/controller design
purposes.

As the figure above shows, the nonlinear quarter car model
has two degrees: the vertical displacement of sprung and
unsprung mass. In the figure, mb is the sprung mass, zb is
the sprung mass vertical displacement, mw is the unsprung
mass, zw is the unsprung mass vertical displacement, and zg
is the road profile. The stiffness coefficient is ks for semi-
active suspension systems, and the damping coefficient cs is
not a constant value. kt is the stiffness coefficient of the tyre
and the damping force of the tyre is assumed to be negligible.

State equations for the model are:

mbz̈b = −Fs(zb − zw)− Fd (żb − żw),

mwz̈w = Fs(zb − zw)+ Fd (żb − żw)− kt · (zw − zg). (1)

where Fs is the spring force function and Fd is the damping
force function.

The research object of this paper is a solenoid valve-based
adjustable damper. The main feature of the solenoid damper
is the electro valve which can regulate the damping coef-
ficient according to the control current. The voltage of the
control current is proportional to the duty ratio of the PWM
signal. According to the working principle of the solenoid
valve-based adjustable damper, its damping force is the func-
tion of control current and suspension deflection velocity. The
precise damping force characteristic of the adjustable damper
used in this paper was obtained through a rig test.

Asymptotic displacement is given to the damper by the
excitation joint of the test rig under a given control current.

FIGURE 2. Damping force characteristic rig test.

FIGURE 3. Damping force characteristic of the damper under different
control currents.

The displacement and damping force signal is then recorded
by the host pc. The test procedure is repeated under different
control currents of the damper. Then, the damping force
characteristic of the adjustable damper under different control
currents can be drawn.

Figure 3 shows the changing pattern of the damping force
under different control currents. Generally, the damping force
under the same suspension speed increases when the larger
control current is given the damper. However, medium damp-
ing force is outputted by the damper when its control current
is set to zero. The reason for this phenomenon is that the
solenoid valve-based semi-active suspension has a so-called
‘‘fail-safe’’ mode, which can make the damper behave as a
passive suspension damper even if the control system fails.
When the control current is set to 0.25A, the damper has
the smallest damping force. When controlling the adjustable
damper, only the control current section from 0.25A to 1.75A
is used.

III. FEEDBACK LINEARIZATION KALMAN
OBSERVER DESIGN
The feedback linearization technique in observer design is
based on differential geometry theory. In addition, its main
principle is to establish a proper coordinate transformation to
the nonlinear system so that precise feedback linearization
of the original system can be achieved. For the following
nonlinear system {

ẋ = f (x),
y = h(x).

(2)
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TABLE 1. Feasible sensor placement configurations for quarter vehicle
systems.

where x is the system state space vector, y is the system output
vector, f is the system state space function, h is the system
output function b is the function of y.
When certain proper coordinate transfer x = X(ξ ) is

adopted by the nonlinear system, the original nonlinear sys-
tem can be transformed into the following form:{

ξ̇ = Aξ + b(y),
y = h(X (ξ )) = Cξ.

(3)

Here, ξ is the state vector of the transformed linear system.
Before the system feedback linearization process, it is

important to define the system state space and verify the
system observability and solvability of the observer design
problem.

The main motivation of the state observer design in our
paper is to obtain state information that cannot be measured
or is too difficult to be directly measured by sensors such
as spring-mass vertical speed from signals, which can be
directlymeasured from commonly used and low-cost sensors.

For our quarter car nonlinear system, there are at least 10
possible sensor configurations, which are listed below.

In the above table, both acceleration sensors and relative
displacement sensors are common and low cost.

The state vector is defined as x = [żb, żw,
zb − zw, zw − zg]T . The process noise andmeasurement noise
is considered, so the nonlinear system can be expressed as:{

ẋ = f (x)+ G · w
ym = hy(x)+ v

(4)

where w = żg is the process noise; v is the measurement
noise.

f (x) =


−
Fd (x1 − x2)

mb
−
Fs(x3)
mb

Fd (x1 − x2)
mw

+
Fs(x3)
mw

−
kt
mw

x4

x1 − x2
x2

. (5)

G = [0, 0, 0,−1]T . (6)

The form of ym and hy(x) depends on the selection of sensor
displacement configuration. In addition, before attempting
to obtain the proper coordinate to accomplish the linearize
process, it is important to verify the system observability and
solvability under different sensor placement configurations.

For a better explanation of the observability and solvability
verification of the system, the following deduction is under
sensor placement configuration ±, which is also our final
selection for observer design. Under sensor placement con-
figuration ±, the corresponding form of ym and hy(x) is:

y = [y1, y2]T = [ żb − żw, zb − zw ]T . (7)

hy(x) = [h1(x), h2(x)] = [x1 − x2, x3]. (8)

A. SYSTEM OBSERVALITY VERIFICATION
Here, we have the dimension of the system n=4 and the
dimension of the output function m=2. A K dimension real
sequence L = {l0, · · · , lk−1} is defined which meets:

m = l0 ≥ · · · ≥ lk−1 > 0,
k−1∑
i=0

li = n. (9)

According to differential geometry theory [41], the system is
observable iff (if and only if) observer matrix Q is nonsingu-
lar; the form of Q is

Q =


dh(1)

Lf (dh(2))
...

Lk−1f (dh(k))

, h(i) =
[
h1, h2, · · · , hli−1

]T
. (10)

Elements of matrix Q are the partial derivative and Lie deriva-
tive of elements of the output function.

When the elements of matrix Q are calculated, we can
obtain

dh1 =
[
1, −1, 0, 0

]
. (11)

where dα is the condensed notation of ∂α/∂x.

Lf (dh1) =
[
−
dFd
me

,
dFd
me

, −
dFs
me
,
kt
mw

]
. (12)

L2f (dh1) =
[
A1, −A1 +

kt
mw
, A2, −

kt
mw

dFd
me

]
. (13)

L3f (dh1) =
[
A3+

kt
mw

dFd
mw

,−A3−
kt
mw

(
dFd
mw
+
dFd
me

)
,A4,A5

]
.

(14)

dh2(x) =
[
0, 0, 1, 0

]
. (15)

L if (dh2) = L i+1f (dh1), i = 1, 2, 3. (16)

Limited by the length of the paper, expressions of Ai and me
are listed in the appendix of this paper.

Substitute (11) to (16) into (9), and it can be verified that
when the real sequence defined in (9)

L =
{
l0, l1, l2

}
=
{
2, 1, 1

}
. (17)

matrix Q is full rank, and the system is observable.

B. SYSTEM COORDINATE TRANSFER SOLVING
Define,

hI ,0 =
[
h1
h2

]
, hII ,0 = ∅, hI ,1 = h1,
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hII ,1 = h2, hI ,2 = h1, hII ,2 = h2. (18)

Qj =

 dh
...

L j−1f (dh)

,

QI ,j =

 dhI ,0
...

L j−1f (dhI ,j−1)

, j = 1, · · · , k,

QI ,1 = dhI ,0, QI ,2 =
[

dhI ,0
Lf (dhI ,1)

]
,

QI ,3 =

 dhI ,0
Lf (dhI ,1)
L2f (dhI ,2)

. (19)

According to the conclusion of paper [41], the linearization
problem of the system is solvable iff when
1)

L jf (dhII ,j)∈spanQI ,j+spanR{L
j
f (dhI ,j)}, j=1, · · · , k−1

(20)

2) (A,C) which is also called the system observation matrix
pair is in condensed Brunovský form:
A =


0, E1,
. . .

. . .

. . . Ek−1
0

, C =
[
C1, 0, · · · 0

]
,

Ei = [e1, · · · , eli ] ∈ R
li−1×li .

(21)

where C1 is a square and nonsingular matrix, and ei is the ith
column of the li−1-dimensional unit matrix.
Substitute (11) to (19) into (20) and it can be easily verified

that (20) is met.
And when

A =


0, 0, 1, 0
0, 0, 0, 0
0, 0, 0, 1
0, 0, 0, 0

, C =
[
1, 0, 0, 0
0, 1, 0, 0

]
.

(22)

For coordinate transfer x = X(ξ) and derivative of the
coordinate transfer ∂X/∂ξ = G where G has the form of

G = [ g1, · · · , gk ]. (23)

Again, from the proposition proven in [41], elements of
matrix G should have the following form

Qkgk = Ẽk , Qigi = Ẽi,

giEi = −adf gi+1, i = k − 1, · · · , 1. (24)

where,

Ẽi =
[
0, · · · , Ēi−1

]T
, Ēi = Ēi−1Ei, Ē0 = I . (25)

From the definition of the generalized inverse matrix, (25)
equals

gk = Q−k Ẽk , gi = −adf gi+1E
T
i + Q

−

i Ẽi(I − EiE
T
i )

+(I − Q−i Qi)Zi(I − EiE
T
i ) (26)

where, (·)− is an arbitrary inverse of (·) which satisfies
(·)(·)−1(·) = (·), and Zi is an arbitrary matrix of proper
dimension.

Then, the derivative of the coordinate can be obtained

∂X
∂ξ
= G =

[
g1, g2, g3

]
=


0, 0, 0,

mw
kt

−1, 0, 0,
mw
kt

0, 1, 0, 0

0, 0,
mw
kt
, 0

. (27)

Integrate (27) and, we can obtain coordinate transfer

x = X (ξ ) =
[
mw
kt
ξ4, −ξ1 +

mw
kt
ξ4, ξ2,

mw
kt
ξ3

]T
. (28)

And corresponding inverse coordinate transfer

ξ = T (x) =
[
x1 − x2, x3,

kt
mw

x4,
kt
mw

x1

]T
. (29)

C. SENSOR CONFIGURATION SELECTION
The verification and solving processes of sensor configura-
tion ± are repeated, and we can obtain the solution of the
feedback linearization problem under each sensor placement
configuration and the existing condition of the solutions.

1) Under sensor placement configuration ¬, the solution
existing condition for the solution is that the system has linear
spring force and linear damping force. The solution is:

h = −
Fd (x1 − x2)

mb
−
Fs(x3)
mb

, y = y1 = z̈b. (30)

X (ξ ) =
1

kt
mw

dFd
mb
+

dFs
mb

dFs
dFd

×



(
−
mw
kt

dFs
dFd
−
dFd
dFs

)
ξ4

kt
mw
ξ1 +

dFs
dFd

ξ2 − ξ3 −
mw
kt

dFs
dFd

ξ4

−
dFs
dFd

ξ1 + ξ2 −
dFd
dFs

ξ3 +
dFd
dFs

dFd
dFs

ξ4

dFs
dFd

ξ1 − ξ2 −
mw
kt

dFs
dFd

ξ3 +
mw
kt
ξ4


. (31)

A =


0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1
0, 0, 0, 0

, C =
[
1, 0, 0, 0

]
.

(32)

b(y) =
[
−
dFd
me

y1,−
(
dFs
me
+

kt
mw

)
y1,

−
kt
mw

dFd
mb

y1,−
kt
mw

dFs
mb

y1

]T
. (33)

VOLUME 8, 2020 71725



Z. Liu et al.: Feedback Linearization Kalman Observer Based Sliding Mode Control

2)Under sensor displacement configuration­, the solution
existing condition is linear spring and damping force. The
solution is:

h = żb, y = y1 = żb. (34)

x = X (ξ )

=


(
kt
mw

dFd
mb
+

dFs
dFd

dFs
mb

)
ξ1

−

(
kt
mw

dFd
mw
+

dFs
dFd

dFs+kt
mw

)
ξ1 +

kt
mw
ξ2 +

dFs
dFd
ξ3 − ξ4

−
kt
mw
ξ1 −

dFs
dFd
ξ2 + ξ3 −

dFd
dFs
ξ4

kt
mw
ξ1 +

dFs
dFd
ξ2 − ξ3 −

mw
kt

dFs
dFd
ξ4


kt
mw

dFd
mb
+

dFs
mb

dFs
dFd

.

(35)

The observation matrix pair (A,C) has the same form as (32).

b(y) =
[
−
dFd
me

y1,−
(
dFs
me
+

kt
mw

)
y1,

−
kt
mw

dFd
mb

y1,−
kt
mw

dFs
mb

y1

]T
. (36)

3) Under sensor placement configuration ®, the solution
existing condition is a linear damping force. The solution is:

h = zb − zw, y = zb − zw. (37)

X (ξ ) =
[
−
dFd
mb

ξ1 +
mw
kt
ξ4,

dFd
mw

ξ1 − ξ2

+
mw
kt
ξ4, ξ1,−ξ1 +

mw
kt
ξ3

]T
(38)

The observation matrix pair (A,C) has the same form as (32)

b(y) =
[
−
dFd
me

y1,−
kt
mw

y1 −
Fs(y1)
me

,

−
kt
mw

dFd
mb

y1,−
kt
mw

Fs(y1)
mb

]T
. (39)

4) Under sensor placement configuration ¯, the solution
existing condition is a linear damping force. The solution is

h = h1 = żb − żw, y = y1 = żb − żw. (40)

x = X (ξ )

=

[
mw
kt
ξ3,−ξ1 +

mw
kt
ξ3,−

mw
kt

mb
dFs

ξ4,
mw
kt
ξ2

−

(
mw
kt

)2mb
me
ξ4

]T
. (41)

The observation matrix pair (A,C) has the same form as (32).

b(y) =
[
−
Fd (y1)
me

,−

(
dFs
me
+

kt
mw

)
y1,

−
kt
mw

Fd (y1)
mb

,−
kt
mw

dFs
mb

y1

]T
. (42)

5) Under sensor placement configuration °, the solution
existing condition is a linear damping and spring force. The
solution

h =
[
−
Fd (x1−x2)

mb
−

Fs(x3)
mb

, żb
]T
, y =

[
z̈b, żb

]T
. (43)

x = X (ξ )

=


(
kt
mw

dFd
mb
+

dFs
dFd

dFs
mb

)
ξ2

−
kt
mw
ξ1 +

dFs
dFd
ξ3 − ξ4

−
dFs
dFd
ξ1 −

(
kt
mw

dFd
dFs

dFd
mb
+

dFs
mb

)
ξ2 + ξ3 −

dFd
dFs
ξ4

dFs
dFd
ξ1 − ξ3 −

mw
kt

dFs
dFd
ξ4


kt
mw

dFd
mb
+

dFs
dFd

dFs
mb

.

(44)

A =


0, 0, 1, 0
0, 0, 0, 0
0, 0, 0, 1
0, 0, 0, 0

, C =
[
1, 0, 0, 0
0, 1, 0, 0

]
. (45)

b(y) = [−
dFd
me

y1 −
dFs
mb

y2, y1,

−
dFs + kt
mw

y1,−
dFd
mb

kt
mw

y1 −
dFs
mb

kt
mw

y2]T . (46)

6) Under sensor placement configuration ±, there is no
specific limit on the spring and damping force for the exis-
tence of the solution. The solution is

h =
[
żb − żw, zb − zw

]T
, y =

[
żb − żw, zb − zw

]T
. (47)

x = X (ξ )

=

[
mw
kt
ξ4, −ξ1 +

mw
kt
ξ4, ξ2,

mw
kt
ξ3

]T
. (48)

The observation matrix pair (A,C) has the same form as (45)

b(y) = [−
Fs(y2)
me
−
Fd (y1)
me

, y1,

−
kt
mw

y1,−
kt
mw

Fs(y2)
mb
−

kt
mw

Fd (y1)
mb

]T . (49)

7) Under sensor placement configuration ², the solution
existing condition is a linear damping force. The solution is

h =
[
−
Fd (x1 − x2)

mb
−
Fs(x3)
mb

, zw − zg

]T
. (50)

y =
[
z̈b, zb − zw

]T
. (51)

The observation matrix pair (A,C) has the same form as (45)

b(y) =



−
dFd
me

y1 +
dFs(y2)
dFd

mby1 + Fs(y2)
mb

−
mby1 + Fs(y2)

dFd
−
kt
mw

mby1 + Fs(y2)
mb

−
kt
mw

dFd
mb

y1


. (52)

8) Under sensor placement configuration ³, the solution
existing condition is a linear damping force. The solution is

h =
[
zb − zw, żb

]T
, y =

[
zb − zw, żb

]T
. (53)

x = X (ξ ) =
[
−
dFd
mb

ξ1 + ξ2,
dFd
mw

ξ1

− ξ3, ξ1,−ξ1 +
mw
kt
ξ4

]T
. (54)
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A =


0, 0, 1, 0
0, 0, 0, 0
0, 0, 0, 1
0, 0, 0, 0

, C =

 1, 0, 0, 0

−
dFd
mb

, 1, 0, 0

. (55)
b(y) = [−

dFd
mw

y1+y2,−
Fs(y1)
mb

,−
Fs(y1)
mw
−
kt
mw

y1,
kt
mw

y2]T .

(56)

9)Under sensor placement configuration ´, the solution
existing condition is a linear damping and spring force. The
solution is

h =
[
−
Fd (x1 − x2)

mb
−
Fs(x3)
mb

, żb − żw

]T
. (57)

y =
[
żb, żb − żw

]T
. (58)

x = X (ξ ) = [ξ2 −
dFd
mb

mw
kt
ξ4,

mb
dFd

ξ1 −
dFd
mb

mw
kt
ξ4,

−
dFd
dFs

ξ2,−
dFd
mb

mw
kt
ξ3]T . (59)

The observation matrix pair (A,C) has the same form as (55).

b(y)= [−
dFd
me

y1−
dFs
mb

y2,−
dFs
dFd

y2,−
kt
mw

y2,−
kt
mw

y1]T . (60)

10) Under sensor placement configuration µ, the solution
existing condition is a linear spring force. The solution is

h =
[
żb, żb − żw

]T
, y =

[
żb, żb − żw

]T
. (61)

x = X (ξ ) = [ξ1, ξ1 − ξ2,−
mb
dFs

ξ3,

−
mb + mw
dFs

ξ3 +
mw
kt
ξ4]T . (62)

The observation matrix pair (A,C) has the same form as (45).

b(y) = [−
Fd (y2)
mb

,−
Fd (y2)
me

,

−
dFs
mb

y2,−
dFs
me

y2 +
kt
mw

y1]T . (63)

The feedback linearization problem solution existing con-
ditions under different sensor placement configurations are
summarized in the table below.

As shown in Table 2, configuration ± has the strongest
universality; its observability and solvability are not affected
by the form of the damping force and spring force. Therefore,
sensor placement configuration ± is chosen in our observer
design process.

D. KALMAN FILTER OBSERVER DESIGN
Apply (28) to the suspension system state space, to obtain

b(y) = ξ̇ − Aξ

=


ξ̇1 − ξ3
ξ̇2

ξ̇3 − ξ4
ξ̇4

 =


−
Fd (y1)
me

−
Fs(y2)
me

ẋ3

−
kt
mw

y1

−
kt
mw

Fs(y2)+ Fd (y1)
mb


. (64)

TABLE 2. System observability and solvability under different sensor
placement configurations.

Considering noise, the transformed linear system state space
is {

ξ̇ = Aξ + b(y)+ Bwξ
y = Cξ + vξ

. (65)

where wξ is process noise and vξ is the measurement noise.
The measurement noise which is determined by the mea-

surement system is not affected by the coordinate transfer,
so now we have

vξ = v. (66)

In order to get the noise coefficient B we can first of all
assume vξ = 0, then we have

b(y) = b(Cξ ), (67)

ξ̇ = Aξ + b(Cy)+ B1wξ . (68)

Substitute the coordinate transfer into (68) and compare the
coefficients with (4) to obtain

B1 =
[
−
kt
mw

0 0 0
]T
. (69)

Consider process noise,

y = Cξ + vξ . (70)

ξ̇ = Aξ + b(Cξ )+ B1zg

≈ Aξ + b(y)+ B1zg −
∂b
∂y
vξ . (71)

where ∂b
∂y =

[
−
dFd (y1)
me

1 − kt
mw
−

kt
mw

dFd (y1)
mb

−
dFs(y2)
me

0 0 −
kt
mw

dFs(y2)
mb

]T
.

define wξ =
[
vξ , żg

]T ; we can obtain the noise matrix
coefficient

B =



−
dFd (y1)
me

−
dFs(y2)
me

−
kt
mw

1 0 0

−
kt
mw

0 0

−
kt
mw

dFd (y1)
mb

−
kt
mw

dFs(y2)
mb

0


. (72)
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FIGURE 4. Flowchart of feedback linearization Kalman filter algorithm.

Now the original nonlinear system is linearized, and the linear
Kalman filter can be applied to the linearized system.

Then, the linear Kalman algorithm can be applied to the
linearized system, and state information ξ of the linearized
system can be estimated. The state information of the original
system can be obtained through an inverse coordinate transfer
of ξ .

The discretized form of the linearized system under sample
time ts is{

ξ (k) = 8ξ ξ (k − 1)+ β[y(k)]+ 0ξwξ (k − 1),
y(k) = Cξ (k)+ vξ (k).

(73)

where 8ξ , 0ξ and C are constant value matrixed; β(·) is the
mapping of the output function.

E. ADAPTIVE PARAMETER CORRECTION FOR THE FILTER
The mismatch of the preset value of the covariance
matrix of the process noise and the actual process
noise may lead to a significant deviation of the obser-
vation results or even a divergence of the observing
algorithm.

One advantage of the feedback linearization technique
is that it is easy to apply mature linear observer design
techniques to the linearized form of the system. In this
section, we apply a widely used adaptive Kalman fil-
ter algorithm to the linearized form of the nonlinear sys-
tem to improve the performance of the system under a
disturbance.

For a given discretized linear system, who has the state
space of: x(k) = 8(k − 1)x(k − 1)+2(k − 1)u(k − 1)

+0(k − 1)w(k − 1),
y(k) = H (k)x(k)+ v(k).

(74)

where 8(k), 2(k), 0(k) and H (k) are system matrices;Q(k)
and R(k) are the covariance matrices of the process noise
w(k) and the measurement noise v(k) respectively. The above
discretized linear system can also be the systemwho has been
linearized by the feedback linearization process shown in our
paper.

The flowcharts of a standard linear Kalman filter and adap-
tive Kalman filter are shown in Figure 5 and Figure 6.

We can see the difference between the standard Kalman
filter and the adaptive Kalman filter is the process noise
adaptive adjustment module.

FIGURE 5. Flowchart of the standard Kalman filter algorithm.

FIGURE 6. Flowchart of adaptive Kalman filter algorithm.

The specific algorithm for standard Kalman filter is

x̂(k|k−1)=8(k − 1)x̂(k − 1|k − 1)

+2(k − 1)u(k − 1). (75)

P(k|k−1)=8(k − 1)P(k − 1|k − 1)8T (k − 1)

+0(k − 1)Q(k − 1)0T (k − 1). (76)

K (k)=P(k|k − 1)HT (k)

[H (k)P(k|k − 1)HT (k)+ R(k)]−1. (77)

x̂(k|k)= x̂(k|k − 1)+K (k)[y(k)−H (k)x̂(k|k−1)]. (78)

P(k|k)= [I − K (k)H (k)]P(k|k − 1). (79)

where, the hat operator3 stands for an estimate of a variable.
(k|k − 1) and (k|k) denote the prior and posterior estimates
of variables severally. P is the error covariance and K is the
Kalman gain.

We can see there is a process noise adaptive module shown
in Figure 6 where the gain matrixM (k−1) is:

M (k − 1) = [W + 0T (k − 1)HT (k)

H (k)0(k − 1)]−10T (k − 1)HT (k). (80)

where d(k) is the model error andW is the weight coefficient
matrix.

And the main difference between adaptive Kalman and
standard Kalman is at the calculation of prior error covari-
ance.

P(k|k−1)=8(k−1)P(k−1|k−1)8T (k−1)

+[N (k−1)+ NT (k−1)]+ 0(k−1)

×{E[〈d(k−1)〉]+Q(k−1)}0T (k−1). (81)

E[〈d(k−1)〉]=M (k−1)[〈H (k)0(k−1)d(k−1)〉

+R(k)]MT (k−1). (82)

N (k−1) = 8(k−1)P(k−1|k−1)8T

(k−1)HT (k)MT (k−1)0T (k−1). (83)
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FIGURE 7. Sprung mass vertical speed simulation test estimation result
grade-B random road profile.

where 〈a〉 ≡ aaT ,E[〈d(k − 1)〉] is the covariance matrix of
d(k−1); N (k−1) is the cross-covariance matrix of 8(k −
1)[x(k − 1) − x̂(k − 1|k − 1)] and 0(k−1)d(k−1). The
adaptive adjustment term E[〈d(k − 1)〉] and N (k−1) can
compensate for the influence caused by the inaccuracy of the
process noise covariance matrix. When the preset parameters
of the observer are accurate, the adaptive Kalman filter should
have the same outcome of standard Kalman.

IV. OBSERVER SIMULATION VERIFICATION
To verify the designed observer, simulation tests are per-
formed in a MATLAB/Simulink environment under differ-
ent road profiles. Estimation results output by the designed
feedback linearization Kalman filter observer (FL-KF) and
the extended Kalman filter (EKF), which have been widely
applied in industrial, are compared.

A. OBSERVING RESULTS UNDER
STANDARD ROAD PROFILE
For the estimation results listed below, a standard grade-B
random road profile is adopted as the external road excitation,
and the speed of the vehicle is maintained at 10 m/s.

To obtain a quantitative analysis of the estimation results,
the accuracy index is defined.

accuracy =

1−
√

N∑
k=1

(
x(k)− x̂(k)

)2
√

N∑
k=1

(x(k))2

× 100% (84)

where x is the system state information, x̂ is corresponding
estimated value, and N is the number of discrete samples.
A larger accuracy index value indicates the estimated system
state is closer to the original system state, which indicates
better accuracy; while the value of the accuracy index is no
more than one.

The time-domain estimation results shown in Figures 7 to
Figure 11 and the accuracy indexes listed in Table 3 indicate
that the estimation results of all five system states output by
our designed FL-KF observer algorithm aremore precise than
the estimation results output by the EKF algorithm under a
grade-B road profile. However, the accuracy of the FL-KF

FIGURE 8. Un-sprung mass speed simulation test estimation result
grade-B random road profile.

FIGURE 9. Suspension deflection simulation test estimation result
grade-B random road profile.

FIGURE 10. Suspension deflection speed simulation test estimation
result grade-B random road profile.

and the EKF are different when estimating different system
state information. Accuracy for both observers is relatively
higher when estimating suspension deflection and suspen-
sion deflection speed. In addition, the difference between the
accuracy of those two observers are smaller and even unno-
ticeable for the estimation results of suspension deflection
and suspension deflection speed compared to the estimation
results of other system states, which is because those two
system states are also the measurement input of our designed
observer whose value can be obtained by installed sensors.

To verify the designed observer under different road levels,
simulation tests under ISO standard grade-A and grade-C
level roads are also performed. Accuracy indexes under all
three road levels are listed below.

Table 4 indicates that the designed observer remains accu-
rate and is more accurate than the EKF under the three
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FIGURE 11. Sprung mass vertical acceleration simulation test estimation
result grade-B random road profile.

TABLE 3. Accuracy indexes comparison under a grade-B road.

TABLE 4. Accuracy index comparison under different road levels.

different road levels. The accuracies of the FL-KF and the
EKF under the grade-A road profile and grade-C road profile
share the same trend as the accuracy when under the grade-B
road profile; both observers have better performance when
estimating suspension deflection and suspension deflection
speed. The reason for this phenomenon was explained above.
The difference between the estimation results of the FL-KF
and the EKF becomes more obvious when the road excitation
increases, which is because the error caused by the Taylor
expansion and first-order approximation, which is used by
the EKF as system linearization technique, increases when
the system state is driven farther away from the equilibrium
position by severe road excitation.

B. OBSERVING RESULTS UNDER A DISTURBANCE
To verify our designed adaptive estimator. Simulation exper-
iment has been done under a grade-B road profile, the preset
covariance value of the process noise is 0.01 times the actual
value. The results of the simulation tests are listed below.
FL-AKF stands for estimation results of feedback lineariza-
tion Kalman filter with adaptive parameter correction.

FIGURE 12. Sprung mass vertical speed simulation test estimation result
under disturbance.

FIGURE 13. Un-sprung mass speed simulation test estimation result
under disturbance.

FIGURE 14. Suspension deflection simulation test estimation result
under disturbance.

From above Figure 12 to Figure 16 and Table 5, we can
figure out that the adaptive parameter correction module
significantly improved the accuracy of the feedback lineariza-
tion Kalman filter under the disturbance of the process noise.
FL-AKF can effectively eliminate inaccuracy caused by the
inaccurate process noise covariance.

V. MODE REFERENCE SLIDING MODE
CONTROLLER DESIGN
The basic principle of the model reference control is to force
a given system to behave as the desired system by introducing
a proper controlling input. One advantage of model reference
control is that the desired system, also known as the reference
model, can be any model, even practically unfeasible model.
In the case of a model reference sliding mode controller,
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FIGURE 15. Suspension deflection speed simulation test estimation
under disturbance.

FIGURE 16. Sprung mass vertical acceleration simulation test estimation
under disturbance.

TABLE 5. Accuracy indexes comparison under disturbance.

the difference between the reference response provided by
the reference model and the response of the actual system is
compensated by the sliding mode controller.

Proposed by Karnopp, skyhook control is a classic con-
troller for semi-active suspension systems. In skyhook control
theory, the spring mass is suspended by an imaginary damper
between the spring mass and the sky. Therefore, the vertical
acceleration of the spring mass can be minimized. However,
setting a damper between the spring mass and the sky is
obviously unpractical. In addition, skyhook control is often
used as a reference mode in the suspension controller design
process.

The control logic of skyhook control can be expressed as:

Fsky =

{
Csky(żb − żw) żb(żb − żw) > 0,
0 żb(żb − żw) < 0.

(85)

FIGURE 17. Sky-hook reference model.

The dynamic equation of the spring mass under skyhook
control is

mbz̈b = Fs(zb − zw)+ Fd (żb − żw)− Csky · żb (86)

where Csky is the skyhook damping coefficient.
The aim of the proposed sliding mode controller is to make

the spring mass track the motion of the reference model.
According to the motion equations of the spring mass of the
actual system and the reference model.

The tracking error of the controller is defined as:

e = żbd − żb (87)

where żbd is the spring-mass vertical velocity of the reference
model.

The sliding mode surface is defined as

S = λ
∫
edt + e (88)

Differentiate the above equation to obtain

Ṡ = λe+ ė (89)

Define γ = λe+ z̈sd − fs;fs = Fs/ms;G = 1/ms and consider
system perturbation to obtain

Ṡ = λe+(z̈sd − z̈s)

= λe+ z̈sd − fs −1fs − Gu−1Gu

= γ −1fs − Gu−1Gu (90)

where1fs is the system perturbation;1G is the vehicle mass
perturbation.

Then, the equivalent control law is

ueq = G−1γ (91)

With no loss of generality, the sliding mode control law has
the form of

u = ueq + G−1us (92)

where us is the switch control representing the feedback
control constraining the perturbation of the system.
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To verify the stability of the sliding mode controller, define
the Lyapunov function

V =
1
2
S2 (93)

The necessary and sufficient condition for stability of the
sliding mode controller is that the Lyapunov function subject
to the following function

dV
dt
= SṠ < 0 (94)

Substitute (92) into (94) to obtain

dV
dt
= S

[
−1fs − us −1GG−1γ −1GG−1us

]
(95)

Define the system uncertainty boundary as 1fs ≤ ρf ,
1GG−1 ≤ ρ. Design the switch control law as

us =
ε

1− ρ
sign(S) (96)

Substitute (92) into (95) to obtain

dV
dt
≤ ‖S‖

[
ρf −

ε

1− ρ
S
‖S‖
+ ρ‖γ ‖ + ρ

ε

1− ρ
S
‖S‖

]
(97)

dV
dt
≤ ‖S‖

[
ρf − ε

S
‖S‖
+ ρ‖γ ‖

]
≤ ‖S‖

[
ρf + ρ‖γ ‖ − ε

]
(98)

where,
∥∥ · ∥∥ is the Euclidean norm.

When ε = ρf + ρ‖γ ‖, we have

dV
dt
≤ 0 (99)

The stability of the designed sliding mode controller is then
proven.

To reduce chattering, the saturation function is introduced
to the switch control law

us =
ε

1− ρ
Sat(S) (100)

where Sat(S) =


1 S

δ
> 1

S
δ

∣∣ S
δ

∣∣ < 1
−1 S

δ
< −1

δ is a small positive con-

stant.
The designed sliding mode controller works with the

observer in a cooperative way. Which is shown in the fig-
ure below.

As shown in the figure above, the suspension deflection
and suspension deflection rate signals are measured by the
sensors implemented on the vehicle as the input for the
FL-AKF observer. The vertical speed of the vehicle body
as the output of the observer is then sent to the controller.
The suspension deflection rate is also sent to the controller
directly.With those two variables, the sliding mode controller
is able to calculate the corresponding control current for the
semi-active suspension.

FIGURE 18. Flowchart of observer based sliding mode controller.

VI. TEST RIG EXPERIMENT
A. EXPERIMENTAL SETUP
The performance of the designed observer was investigated
through simulation tests in the previous section and the
designed observer seems to be effective. Effectiveness of the
designed feedback linearization Kalman filter based sliding
mode controller is verified in this section through a real
test bench environment. The ability of the observer to pro-
vide accurate enough state information for the semi-active
suspension system controller is then verified through the
rig test.

The bench test setup is shown in Figure 19. The test rig is
designed to analyse the vertical motion behaviour of a quarter
car system. Mass blocks are used to represent the spring mass
of the car. Spiral springs are used to represent the spring force
of the suspension spring and the spring force of the tyre.
The road profile is simulated by an excitation head, which
is powered by a hydraulic oil source. The excitation part,
whose type is sy70, is based on a test stand from Dongling
Tech. Two LVDT sensors that have been installed on the test
stand can take the displacement signal of the spring mass and
relative displacement signal of the spring mass and unsprung
mass. Observe and control algorithms are implemented in a
dSPACE AutoBox controller in the form of a rapid control
prototype (RCP).

As shown in Figure 20, the displacement signals sent
from the LVDT sensors are inputted to the observing and
controlling algorithms through a data acquisition card inte-
grated with the AutoBox controller. Experiment data are also
collected in the same way and stored in the host PC. The
vertical displacement signal of the spring mass, which is esti-
mated by the feedback linearization Kalman filter algorithm,
is sent to themodel reference slidingmode controller together
with the suspension deflection speed signal measured and
differentiated from the LVDT sensor. The controller sends
a PWM signal, whose duty cycle corresponds to the desired
damping force, to the driving module, which consists of a DC
power supply and aMOSFET driver. A certain control current
is then outputted by the driving module to the adjustable
damper. The electro valve of the damper reacts to the current
correspondingly, and thus changes the damping force of the
damper.
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FIGURE 19. Semi-active suspension rig test system.

From the flowchart of our observer-based model reference
sliding mode controller, we find that in the working process
of our designed controller, it is important to calculate a cor-
responding control current according to the desired damp-
ing force and suspension speed. Thus, a three-dimensional
lookup table is made according to the damping force charac-
ter we obtained in section II.

From Figure 21 we determine that when the direction
of the suspension speed and desired damping force are not
considered, for a certain desired damping force, the cor-
responding control current decreases when the suspension
speed increases.

B. ESTIMATION RESULTS ANALYSIS
To verify the designed observing and control algorithm, rig
test is performed under typical road profiles which are ISO
standard grade-C random road and sine road excitation (with
an amplitude of 25 mm and frequency of 1 Hz). The speed of
the vehicle is maintained at 10 m/s for both road profiles.

From the flowchart shown in Figure 19, we determine that
the estimated state information needed by the controlling
algorithm in our case is mainly the vertical speed of the
spring mass. Other state information is either irrelevant to the
controlling algorithm or can be measured directly by sensors.
Therefore, to verify the ability of the designed observer to
provide accurate enough state information for the controller

in the test rig environment, only the estimation result of the
vertical speed of the spring mass is listed here.

From Figure 22 and Figure 23, it can be seen that though
estimation seems to be slightly underestimated the designed
observer can follow the vertical speed of the springmass well.
Compared to the estimation results in the simulation test,
the estimation seems to be delayed, that time delay is caused
by the computational process of the estimation algorithm.
Quantitative analysis of the estimation results is also per-
formed. For estimation results under the grade-C random road
profile, the accuracy of the estimation result defined in (84) is
85.84%, slightly less than the accuracy under the simulation
environment under the same road profile and vehicle speed.
The maximum error of the estimation results under the sine
road profile occurred at 4.39 s in the time domain, the error
is 0.01385 m/s with the reference value 0.06349 m/s and
estimation value 0.04964 m/s. Although the error seems to
be unneglectable at the peak value of the sine wave, the
estimation follows the reference value quite well at other
parts.

C. CONTROLLING RESULTS ANALYSIS
The performance of the designed controller is verified in
terms of sprung/unsprung mass acceleration and suspension
deflection in both the time and frequency domain.
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FIGURE 20. Flowchart of the semi-active suspension rig test system.

FIGURE 21. Three dimension table to calculate corresponding control
current according to the desired damping force and suspension speed of
compress stroke (left) and recover stroke (right).

1) RANDOM ROAD PROFILE
The results below are under the ISO standard grade-C road
profile; vehicle speed was maintained at 10 m/s.

Where in Figure 24 to Figure 26, passive indicates that the
adjustable damper is set to medium damping force mode and
no control algorithm is applied. Semi-active indicates that
the FL-KF based sliding mode controller is applied to the
suspension system. PSD in the frequency domain presents
power spectral density. From Figure 24, we can determine
the overall acceleration value of spring mass decreases when
the designed controller is applied, which indicates that the
ride comfort of the vehicle improved. The improvement is
more significant in the low-frequency range of the frequency

FIGURE 22. Sprung mass vertical speed rig test estimation result grade-C
road profile.

domain. In terms of suspension deflection, the application
of the designed controller also lowers the overall suspension
deflection value; again, the improvement is more significant
in the low-frequency range. However, Figure 26 shows the
peak-peak value of the unsprungmass dynamic load increases
when the controller is applied, especially in the frequency
range of 8-12 Hz. The same trend can be found in the RMS
(root mean square) character of the above results. With the
help of our designed observer-based controller, the RMS
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FIGURE 23. Sprung mass vertical speed rig test estimation result sine
road profile.

FIGURE 24. Time-domain (left) and frequency-domain (right) of sprung
mass acceleration in the rig test under a grade-C profile.

FIGURE 25. Time-domain (left) and frequency-domain (right) of
suspension deflection in the rig test under a grade-C profile.

FIGURE 26. Time-domain (left) and frequency-domain (right) of unsprung
mass dynamic load in the rig test under a grade-C profile.

of spring-mass acceleration drops from 1.2074 to 0.9408,
and the RMS of suspension deflection drops from 0.0238 to
0.0157. However, the RMS of the unsprung mass dynamic
load increases from 0.5411 to 0.5794. The character of the
experimental result of the designed controller is identical to
the reference skyhook model; ride comfort of the vehicle

FIGURE 27. Time-domain (left) and frequency-domain (right) of spring
mass acceleration in the rig test under a grade-C profile and a
disturbance.

FIGURE 28. Time-domain (left) and frequency-domain (right) of
suspension deflection in the rig test under a grade-C profile and a
disturbance.

can be significantly improved with the cost of increasing the
dynamic load of the unsprung mass.

2) RANDOM ROAD PROFILE UNDER A DISTURBANCE
To verify the proposed controller under the condition of
parameter variations. The sliding mode controller combined
with the FL-KF and the FL-AKF respectively are tested under
an ISO standard grade-C road profile, the vehicle speed is
maintained at 10 m/s. The preset process noise covariance
value is set to 0.01 times the actual value. The inaccurate
process noise covariance value is regarded as the disturbance
of the system parameter in our test.

Where in Figure 27 to Figure 29, passive indicates that the
adjustable damper is set to medium damping force mode and
no control algorithm is applied. Semi-active indicates that
the FL-KF based sliding mode controller has been applied
to the suspension system and adaptive indicates that the
FL-AKF based sliding mode controller has been applied to
the suspension system. From the above figures, it is obvious
that under the condition of parameter variation, the FL-AKF
based controller shows better performance compared to the
FL-KF based controller. That is because the FL-AKF estima-
tor has been proved to have better accuracy under parameter
variation when estimating system state information. And the
inaccurate state information outputted by FL-KF will cause
deterioration in the performance of the sliding mode con-
troller. Our designed FL-AKF based controller significantly
improves the ride comfort of the vehicle even under the
condition of parameter variation.

3) SINE ROAD PROFILE
Under sine road excitation with an amplitude of 25 Hz and a
frequency of 1 Hz.
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FIGURE 29. Time-domain (left) and frequency-domain (right) of unsprung
mass dynamic load in the rig test under a grade-C profile and a
disturbance.

TABLE 6. RMS value comparison.

FIGURE 30. Acceleration of spring mass under sine road excitation.

FIGURE 31. Suspension deflection under sine road excitation.

From Figure 30, we can determine that with the help of
our observer based sliding mode controller, the maximum
peak-peak value of spring mass acceleration drops from
2.841 to 2.696, and the maximum peak-peak value of the
suspension deflection decreases from 0.02632 to 0.02013.
The maximum peak-peak value of the unsprung mass
dynamic load increases from 120.3 to 134.8, which means

FIGURE 32. Unsprung mass dynamic load under sine road excitation.

the controller successfully improves the vehicle ride comfort
under sine road excitation and significantly reduces the possi-
bility of bump stopper impact with the cost of a slight increase
in the unsprung mass dynamic load. The performance of the
designed controller under sine road excitation is identical to
its performance under random road profiles.

VII. CONCLUSION AND FUTURE WORK
In this paper, an observer based on feedback linearization
was designed. A quarter car nonlinear suspension system
model was built based on the damping force characteristic of
the adjustable damper acquired from the experiment. Possi-
ble sensor placement configurations for the quarter vehicle
observer design problem were listed, and system observ-
ability and solvability under those sensor placement con-
figurations were analyzed based on a geometry differential.
A certain coordinate transfer for the nonlinear system was
found to transform the original nonlinear system into a lin-
ear system. A Kalman filter algorithm was then applied to
the transformed linear system. The state information of the
original system was then obtained through inverse coordinate
transfer. The designed observer was verified under different
typical road profiles in a simulation test and proved to be
effective and superior to a recent technique. A model ref-
erence sliding mode controller based on the observer was
proposed. A suspension rig test system was implemented;
both the observer and observer-based controller was verified
in a rig test environment. To improve the performance of
the designed observer and observer based controller under
disturbances. An adaptive parameter correction technique is
introduced to the observer. It is proven that the adaptive
parameter correction technique can improve the accuracy of
the feedback linearization Kalman filter observer under a
given disturbance in a simulation test, and thus, improve the
performance of observer based sliding mode controller under
a given disturbance in a rig test. The designed observer-based
semi-active suspension controller effectively improves ride
comfort with commonly used and low-cost sensors and shows
significant robustness to parameter variations.
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APPENDIX
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