
Received March 2, 2020, accepted April 2, 2020, date of publication April 14, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987968

A New Affinity Propagation Clustering Algorithm
for V2V-Supported VANETs
XIANG BI 1,2,3, BAISHUN GUO1, LEI SHI 1,2, (Member, IEEE),
YANG LU 1,2, LIN FENG2, AND ZENGWEI LYU1
1School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
2Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education,
Hefei University of Technology, Hefei 230009, China
3Postdoctoral Research Center, Wuhu Token Sciences Co., Ltd., Wuhu 241009, China

Corresponding author: Lei Shi (shilei@hfut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant JZ2015GJQN0382, in part by the
Scientific research activities of postdoctoral researchers in Anhui under Grant 2017B144, and in part by the Anhui Province Key
Laboratory of Industry Safety and Emergency Technology under Grant ISET201804.

ABSTRACT Clustering is an efficient method for improving the communication performance of Vehicular
Ad hoc NETworks (VANETs) that adopt Vehicle to Vehicle (V2V) communications. However, how to
maximize the cluster stability while accounting for the high mobility of vehicles remains a challenging
problem. In this paper, we first reconstruct the similarity function of the Affinity Propagation (AP) clustering
algorithm by introducing communication-related parameters, so the vehicles with low relative mobility and
good communication performance can easily be selected as cluster heads. Then, by formally defining three
scaling functions, a weighted mechanism is designed to quantitatively assess the effect on the cluster stability
when a vehicle joins it. Base on them, from the perspective of global balance, a new AP clustering algorithm
for the whole clustering process is proposed. To ensure the validity of simulations, we use the vehicular
mobility data generated on the realistic map of Cologne, Germany, and perform a series of simulations for
eleven metrics commonly adopted in similar works. The results show that our proposed algorithm performs
better than other algorithms in terms of the cluster stability, and it also effectively improves throughput and
reduces packet loss rate of VANETs over the classical APROVE algorithm and the NMDP-APC algorithm.

INDEX TERMS VANETs, V2V, clustering, affinity propagation.

NOTATIONS
CR One-hop communication radius of a vehicle
Vi Vehicle i, i is the ID of the vehicle
azi Azimuth angle of Vi
Thaz Threshold value for the difference of two

azimuth angles
vi Velocity of Vi
(xi, yi) Position of Vi
Thv Threshold value for the difference of two

velocities
vmax Maximum velocity limit for the current road
OCRi Owned communication rate of Vi
RCRi Required communication rate of Vi
NNLi Normal neighbor list of Vi
NNLi,j The jth list item of NNLi
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ER One-hop effective range of a vehicle
di,j Distance between Vi and Vj
s (i, j) Similarity function between Vi and Vj
r (i, j) Responsibility sent from Vi to Vj
Ri Responsibility list sent from Vi to its one-

hop neighbor vehicles
a (i, j) Availability sent from Vj to Vi
Aj Availability list sent from Vj to its one-hop

neighbor vehicles
CHi Cluster head of Vi
ID (CHi) ID of Vi’s cluster head
CCHLi Candidate cluster head list of Vi
Ci Cluster i whose cluster head is Vi
CMNCi Number of cluster members of Ci
CMNmax Maximum number of cluster members of a

cluster
CMLi Cluster member list of Vi whose state is

Cluster Head (CH)
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vCi Average velocity of Ci(
xCi , yCi

)
Central position of Ci

VSFi,Ck Velocity scaling function between Vi and Ck
PSFi,Ck Position scaling function between Vi and Ck
CRSFi,Ck Communication rate scaling function

between Vi and Ck
CAFi,Ck Compound assessment function between Vi

and Ck
CHFFi Cluster head fitness function of a CH

vehicle Vi

I. INTRODUCTION
With the rapid increase of vehicle ownership, safe driving,
traffic congestion and environmental pollution are the three
main disturbing problems in the traffic field currently. The
Intelligent Transportation Systems (ITSs) provide an effec-
tive way to solve these problems by addressing the complex
relations among objects such as vehicles, roads, people, etc.
In this process, due to their capability of delivering accurate
status data for all participants in the real time, Vehicular Ad
hoc NETworks (VANETs) have played important roles in
ITSs, especially with the rise of self-driving vehicles and 5G
communications [1].

As is well known, clustering has been introduced into net-
works to overcome the scalability problem [2]–[6]. VANETs,
as inherently large-scale networks, are derived from Mobile
Ad hoc NETworks (MANETs) but have their own varying
and uncertain characteristics due to the high mobility of vehi-
cles [7]. Thus, the clustering algorithms originally proposed
for MANETs seem to be unable to cope with VANETs and
negatively affect the duration of links, the packet delivery
ratio, the routing overhead and so on [8]–[12]. Therefore, it is
necessary and urgent to study new clustering algorithms that
are aimed at VANETs.

Considering the high mobility and the road topology, the
vehicles in a cluster will inevitably disconnect fromVANETs.
Thus, the cluster stability has become the main metric
to evaluate the performance of clustering algorithms for
VANETs. Higher cluster stability requires a better clustering
algorithm [13]. To this end, we propose the Global
Affinity Propagation Clustering (GAPC) algorithm based
on mobility-related parameters and communication-related
parameters. An optimized maintenance method of clusters is
designed with respect to the global balance to achieve better
cluster stability. The contributions of this paper are as follows:

1) First, we reconstruct the similarity function which
is the foundation of the Affinity Propagation (AP)
clustering algorithm by introducing communication-
related parameters into the original form. Therefore, the
vehicles that have low relative mobility and good com-
munication performance can easily be selected as clus-
ter heads. These robust cluster heads are helpful to
improve the cluster stability in the cluster formation
phase.

2) Second, based on the formal definitions of three scal-
ing functions, a weighted mechanism is designed to

quantitatively assess the effect on the cluster stability
when a vehicle joins it. This contributes to selecting an
optimal cluster from multiple candidate clusters.

3) Finally, we define three states for vehicles in a hybrid
distributed system model of VANETs and design a
complete transition process related to them. On this
basis, we propose a GAPC algorithm that is responsi-
ble for four different phases in the clustering process.
The distinguishing feature of the GAPC algorithm is
that all vehicles in the cluster will be involved when
a vehicle selects a cluster to join. The algorithm can
achieve not only better cluster stability but also higher
throughput and lower packet loss rate of VANETs over
other clustering algorithms. The extensive simulations
can validate the effectiveness of our algorithm.

The rest of the paper is organized as follows: Section II
introduces the VANETs clustering algorithms and the AP
clustering algorithm. Section III describes the proposed
GAPC algorithm with respect to the cluster head selection,
the cluster formation and the cluster maintenance. Section IV
presents our simulation scenarios and analyzes the GAPC
algorithm from the views of multiple performance metrics.
Section V summarizes the paper and briefly describes future
work.

II. RELATED WORKS
As an important problem in the study of VANETs, cluster-
ing has attracted considerable interest of researchers in this
field. Some representative research works are provided in this
section. Furthermore, for the convenience of the following
discussion, the core of the original AP clustering algorithm
is also provided.

A. VANETs CLUSTERING ALGORITHMS
To address the data interaction between fast moving vehicles
on the motorway, Santos et al. [14] first applied the clustering
idea of MANETs on vehicles and opened up the study of
clustering algorithms of VANETs. However, the proposed
CBLR clustering algorithm was insufficient in the cluster
stability and the cluster scale because it selected cluster heads
only by the number of cluster members. Gunter et al. [15]
introduced the mobility-related parameters into the clustering
and proposed a mechanism to select cluster heads based on
the weighting of the average difference of the velocity and
the distance related to their neighbor vehicles. It effectively
avoided large-scale clusters. Aiming at the effect of urban
intersections on the cluster stability, Hadded et al. [16] pro-
posed the AWCP clustering algorithm by considering the
vehicles with the same highway ID and the same direction
as their neighbors in the cluster formation and maintenance,
and then used a multi-objective genetic algorithm to optimize
the parameters of the algorithm.

Since the above clustering algorithms only took into
account indicator values at a single time point, the cluster
stability was susceptible to the randomness and transience of
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the vehicle motion. Considering that the aggregate mobility
could improve the cluster stability, Souza et al. [17] proposed
the Aggregate Local Mobility (ALM) clustering algorithm.
The algorithm replaced the received signal strength with the
relative distance between vehicles and adopted the ALM
including two continuous relative distances to determine state
transitions of cluster heads. It improved the MOBIC cluster-
ing algorithm proposed by Basu et al. [18] which adopted
the relative mobility metric for MANETs. Aiming at the
destructive effect of the fast moving vehicles on the clus-
ter stability, Avcil and Soyturk [19] proposed the ReSCUE
clustering algorithm. The algorithm kicked those fast moving
vehicles out according to the standard deviation of the vehicle
velocities in 1t time and selected cluster heads according to
the defined coherence indicator value.

The ultimate purpose of clustering is to achieve efficient
communication between vehicles in VANETs. Although the
effective clustering structure for vehicles in the region can
be realized with the help of the mobility-related parameters
that represent the characteristics of the mobility and distri-
bution of vehicles, the desirable communication efficiency
is unavailable. The key reason is that the communication-
related parameters of vehicles are not involved in the
clustering. To solve the problem, the idea of adding the
communication-related parameters of vehicles as a com-
mon indicator in the cluster head selection has been intro-
duced into the VANETs clustering. For a heterogeneous
5G-VANET, Duan et al. [20] grouped vehicles in the region
according to the arrival angle, the received signal strength
and the transmission range, and then used the Signal-to-
Noise Ratio (SNR) and the velocity as constraints to optimize
the cluster head selection. Thus an adaptive clustering algo-
rithm supporting the selection of dual cluster heads was pro-
posed. Under the assumption that clusters had been formed,
Chai et al. [21] defined a utility function based on the vehi-
cle densities, the average difference values of the vehicle
velocities and the available communication resources. Then
the vehicles with the maximum utility value were selected
as cluster heads. Furthermore, considering each other from
two perspectives of the vehicle itself and the cluster to be
joined, a cluster switching mechanism was presented. It sat-
isfied the delay-sensitive and the throughput-sensitive QoS
requirements simultaneously. Bali et al. [22] identified an
initial leadership according to the ranking of the number of
neighbor vehicles and defined the average number of infor-
mation successfully received over a period of time as the
vehicle connectivity. Finally, the cluster heads were selected
from those leaderships by comparing the connectivity with a
given threshold.

The abovementioned clustering algorithms essentially
adopted a unidirectional and exclusive mechanism. In other
words, a vehicle or a base station was used as a selector
to calculate the relative indicator values with other neigh-
bor vehicles. On this basis, the clustering and the cluster
head selection could be realized in a centralized or dis-
tributed way. In order to further improve the cluster stability

and shorten the formation time of clusters to suit for high
mobility nature of VANETs better, Shea et al. [23] and
Hassanabadi et al. [24] first introduced the AP clustering
algorithm [25], used for the data clustering without speci-
fying the number of clusters in advance, into the VANETs
clustering research and proposed the APROVE clustering
algorithm. Bymeans of the responsibility and the availability,
the algorithm calculated the relative indicator values from
the perspective of the selector and the selectee, and took into
account the relative indicator values with other neighbor vehi-
cles simultaneously. Then the clustering and the cluster head
selection were realized in a competitive and distributed way.
The simulation results showed that the algorithm had good
performance on the major evaluation indicators of the cluster
stability such as the cluster head duration, the cluster member
duration and the cluster head change rate, etc. However, it
ignored the cluster scale, which might lead to large-scale
clusters and network congestion in some scenarios, and it
only used the position parameters of vehicles to construct the
similarity function, which could not fully reflect the motion
characteristics of vehicles in VANETs. For the urban envi-
ronments, Liu et al. [26] proposed the DC-TDCA algorithm
to improve the cluster stability by adding the lane and the
destination factors to the similarity function of the APROVE
algorithm. The DC-TDCA algorithm segmented the given
road according to the one-hop communication range of vehi-
cles and regarded them as the initial clusters. And the scale
of clusters was controlled by the preset maximum number of
cluster members. Although the destinations of vehicles were
involved, the DC-TDCA algorithm ignored the instantaneous
motion characteristics of vehicles. Moreover, it used different
units of parameters in the similarity function. That might
affect the accurate evaluation of the similarity between two
vehicles, and reduce the cluster stability. Koshimizu et al. [27]
proposed the NMDP-APC algorithm by reconstructing the
similarity functions of the APROVE algorithm and the
DC-TDCA algorithm from two aspects. Firstly, the future
position factor was replaced by the velocity factor. Secondly,
all parameters were normalized. Although the simulation
results showed that the better clustering structure could be
achieved, the algorithm ignored the unstability of the cluster-
ing structure caused by the irregular moving vehicles existing
in realistic traffic environment. In addition, the algorithm did
not take into account the communication-related parameters
in the similarity function, which could not ensure satisfactory
communication performance for VANETs.

B. AFFINITY PROPAGATION CLUSTERING ALGORITHM
The AP algorithm is a clustering algorithm based on mes-
sage passing between nodes. It has the following advantages:
1) There is no need to specify the number of clusters in
advance. 2) The selected cluster heads are the actual nodes
in the data set. 3) A mutual evaluation mechanism is used to
improve the cluster stability.

The input of the AP clustering algorithm is a similarity
matrix related to all nodes. The matrix element s (i, j), which
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can be calculated by the specified method, denotes the simi-
larity between node i and node j. Essentially it indicates the
suitable degree of node j to be the cluster head of node i.
In particular, for any node j, the self-similarity s (j, j) indicates
the preference degree of node j that will be selected as a
cluster head, rather than the similarity to itself. The larger
s (j, j) is, the more likely node j is to be selected as a cluster
head. The algorithm initially treats all nodes as potential
cluster heads, and sets their preferences to a same value.

During the clustering process, two kinds of messages,
the availability message and the responsibility message, are
exchanged between nodes to select appropriate cluster heads.
The responsibility r (i, j), which is sent from node i to node j,
indicates the suitable degree of node j to be the cluster head
of node i from the view of node i. It is defined as follows:

r (i, j) = s (i, j)−max
j′6=j

{
a
(
i, j′
)
+ s

(
i, j′
)}

(1)

The availability a (i, j), which is reversely sent from node j
back to node i, indicates the suitable degree of node j to be the
cluster head of node i from the view of node j. The availability
a (i, j) and the self-availability a (j, j) are defined as follows:

a(i, j)
i6=j
= min

0, r(j, j)+∑
i′ 6=i,j

max
{
0, r(i′, j)

} (2)

a(j, j) =
∑
i′ 6=j

max
{
0, r(i′, j)

}
(3)

The AP clustering algorithm runs iteratively under
the influence of two kinds of messages. At the beginning
of the clustering process, for each node, the self-availability
and the availabilities related to other nodes are set to zero,
and the self-similarity is set to the median or minimum value
of the similarities between nodes. So in the first iteration,
each node can calculate the self-responsibility and the respon-
sibilities related to other nodes by Formula (1). For node i
and node j, the responsibility r (i, j) is equal to the difference
between the similarity s (i, j) and the maximum similarity of
node i to other nodes except for node j. This means that node j
is less likely to be the cluster head of node i if there are other
more suitable nodes.

All responsibilities including the self-responsibilities are
exchanged between nodes by messages. In subsequent iter-
ations, each node can calculate the self-responsibility and
the responsibilities related to other nodes by Formula (1),
the self-availability by Formula (3), and the availabilities
related to other nodes by Formula (2). For node i and node j,
the availability a (i, j) depends on the total sum of the self-
responsibility r (j, j) and the sum of positive responsibilities
between node j and other nodes except for node i. If the
total sum is positive, a (i, j) is set to zero, otherwise it is
equal to the total sum. This means that the more other nodes
select node j as their cluster head, the more likely node j is
to be the cluster head of node i. All responsibilities and all
availabilities including the self-responsibilities and the self-
availabilities are exchanged between nodes by messages.

In addition, in order to avoid numerical oscillation, the
AP clustering algorithm adopts a damped message update
mechanism. The update formula is as follows:

messagenew = λmessageold + (1− λ)messagenew (4)

where λ ∈ (0, 1) is a damping factor. messageold denotes the
message of the previous moment andmessagenew denotes the
message of the current moment.

Based on the two kinds of messages, the AP clustering
algorithm selects cluster heads in two ways. During the pro-
cess of cluster head selection, for any node i, if r (i, i) +
a (i, i) > 0, it will be selected as a cluster head. During the
process of cluster formation, the formula for selecting the
cluster head of node i is as follows:

CHi = argmax
j
{a(i, j)+ r(i, j)} (5)

where CHi denotes the cluster head of node i. j denotes a
cluster head node.

Once the selected cluster heads no longer change, the AP
clustering algorithm will converge.

III. PROPOSED GLOBAL AFFINITY PROPAGATION
CLUSTERING ALGORITHM
Although the AP algorithms for VANETs have signifi-
cant advantages over the classical algorithms, there are two
aspects to be improved. The first one is that communication-
related parameters are not involved in the clustering process.
This may affect the communication performance of clusters
with good stability in VANETs. The second one is that the
effect on the cluster stability is ignored when a vehicle selects
a cluster to join. This may incur extra costs for the cluster
maintenance. To this end, the GAPC algorithm, a new AP
clustering algorithm from a global perspective, is proposed
in this section. It introduces some communication-related
parameters into the original similarity function and pays
attention to all vehicles in the cluster, instead of focusing on
the CH vehicle when a vehicle selects a cluster to join.

A. SYSTEM MODEL
As the foundation for the clustering research, a hybrid dis-
tributed system model of VANETs, which adopts LTE-V
communication protocol, is shown in Fig. 1. The three states
of vehicles in the model are UnDefinition (UD), Cluster
Head (CH) and Cluster Member (CM). They can transfer
each other by the GAPC algorithm in each vehicle. The
state of UD represented by the color red in Fig. 1 is an
initial state for each vehicle and a specific state for some
vehicles in the clustering process. An UD vehicle does not
belong to any cluster. The state of CH represented by the
color yellow in Fig. 1 is a specific state for some vehicles
in the clustering process. A CH vehicle belongs to only one
cluster, and a cluster has only one CH vehicle. A CH vehicle
can communicate with both each vehicle in the same cluster
and other neighbor CH vehicles using the LTE-V-Direct link.
In addition, it can communicate with a base station using the
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FIGURE 1. The hybrid distributed system model of VANETs.

LTE-V-Cell link. The state of CM represented by the color
blue in Fig. 1 is a specific state for most vehicles in the
clustering process. A CM vehicle belongs to only one cluster,
and it can communicate with both other CM vehicles and the
CH vehicle in the same cluster using the LTE-V-Direct link.

Considering the realistic traffic environment, there is a
class of abnormal vehicles which are significantly different
from other vehicles on the road in terms of motion char-
acteristics. Although few in number, they have destructive
effect on the cluster stability of VANETs and bring redundant
overhead for the cluster maintenance. Therefore, it is nec-
essary to identify such vehicles. By analyzing the behavior
of vehicles, there are two factors which should be taken into
account. The first one is the direction of travel. The vehicles
in different directions are abnormal neighbors. The second
one is the relative velocity. The two vehicles with absolute
velocity difference greater than a certain threshold are also
abnormal neighbors. The formal definition of an abnormal
neighbor can be described as follows:
Definition:LetV = {V1,V2, . . . ,Vn} is a set of vehicles on

the road. az and v denote the azimuth angle and the velocity
of a vehicle, respectively. For ∀Vi ∈ V , if ∃Vj ∈ V , which is
within the one-hop distance of Vi, and

∣∣azi − azj∣∣ ≥ Thaz or∣∣vi − vj∣∣ ≥ Thv is satisfied, then Vj is an abnormal neighbor
of Vi. All vehicles which are within the one-hop distance and
not abnormal neighbors of Vi constitute the normal neighbor
list of Vi (denoted as NNLi).
Where Thaz is a threshold value for the difference of two

azimuth angles, and usually takes a value of 90 in order to
identify vehicles which are turning and on the opposite lanes.
Thv is a threshold value for the difference of two velocities,
and is decided by the speed limit of the road.

In our VANETs system, each vehicle is assumed to be
equipped with a Global Position System (GPS) that provides
the motion information for it, including the velocity, the loca-
tion, and the moving direction. In order to be closer to reality,
it is assumed that different vehicles have different commu-
nication capabilities. Besides that, each vehicle is assumed
to be equipped with a transmitting antenna and a receiving
antenna respectively and operates in the Single Input Single

Output (SISO) mode. Furthermore, there are two kinds of
messages in the system, beacon messages and data messages.
In any case, a vehicle can exchange beacon messages with
vehicles within its one-hop distance by broadcasting. As for
data messages, on the one hand, a CM vehicle can exchange
them with both other CM vehicles and the CH vehicle in the
same cluster by V2V communications. On the other hand,
a CH vehicle can exchange them with other CH vehicles
within its one-hop distance by V2V communications. When
there are no CH vehicles within its one-hop distance, a CH
vehicle can exchange them with a base station by Vehicle to
Infrastructure (V2I) communications alternatively.

FIGURE 2. The division of a communication cycle for a vehicle.

Motivated by the received beacon messages and the states
of vehicles, the clustering process corresponding to the
GAPC algorithm is performed periodically in each vehicle.
As shown in Fig. 2, a communication cycle including the
clustering process for a vehicle is divided into three parts:
Tcol , Tclu and Tdata. In Tcol , under the control of the selected
communication protocol, a vehicle reports its own clustering
parameters by broadcasting a beacon message, and achieves
other clustering parameters through the receiving beacon
messages from its neighbor vehicles. In Tclu, according to the
current state, a vehicle selects one of the three phases (the
cluster head selection, the cluster formation and the cluster
maintenance) to execute, so as to achieve clustering results.
With the execution of these phases, the complete transition
process related to the three states (UD, CH and CM) is shown
in Fig. 3. It should be noted that Tcol and Tclu are also regarded
as a clustering cycle in this paper. In Tdata, a vehicle can
communicate with the target vehicle directly or indirectly
through a data message when necessary. Furthermore, con-
sidering clustering efficiency and data communication effi-
ciency synthetically, the duration of Tcol should be a little
longer than that of Tclu and much shorter than that of Tdata.
In this way, a vehicle can receive beacon messages from its
neighbor vehicles as completely and accurately as possible
while ensuring data communication efficiency.

Next, the above phases of the clustering process corre-
sponding to the GAPC algorithm will be presented in detail.

B. COMMUNICATION AND ANALYSIS OF
BEACON MESSAGES
Various information characterizing neighbor vehicles is
the foundation of the clustering process, as well as the
GAPC algorithm. It comes from the broadcast and received
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FIGURE 3. The state transition process of Vi .

beacon messages. Therefore, the communication of beacon
messages is an original and essential phase for the clustering
process in each clustering cycle. It is necessary to describe
this phase firstly.

TABLE 1. The contents of the beacon message and NNLi,j .

To satisfy the need of the subsequent phases, sufficient
parameters of a vehicle should be included in its beacon
message. The contents of the beacon message are showed in
Table 1. From which we can see that there are eleven vehicle

parameters in the beacon message such as identity number,
azimuth angle, position, velocity, etc.

As shown in the dashed box at the top of Fig. 3, for a
vehicle Vi, a timer used for beacon message collection is
started when a clustering cycle begins. Until the timer runs
out, Vi retrieves the similarity related to each vehicle in
the normal neighbor list of Vi. Then, Vi calculates the new
responsibility and availability according to Formula (1)–(4),
and composes the beacon message with the latest parame-
ters. After that, Vi broadcasts its own beacon message and
receives other beacon messages from its neighbor vehicles
under the control of the adopted communication protocol.
Once Vi receives a beacon message from Vj, it will judge
whether Vj is an abnormal neighbor according to the above
definition. If not, it will calculate the new similarity related
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to Vj according to the reconstructed similarity function (pre-
sented in Section III-C), and extract the responsibility and
availability from the received beacon message. Furthermore,
if Vj has been in the normal neighbor list of Vi, Vi will update
the record related to Vj in its normal neighbor list. If not,
Vi will add a record including some relevant parameters into
its normal neighbor list. The contents of a record related to
Vj in the normal neighbor list of Vi (denoted as NNL i,j) are
shown in Table 1. The communication and analysis of beacon
messages for Vi are described in Algorithm 1.

Algorithm 1 Communication and Analysis of Beacon
Messages
1: while Tcol > 0 do
2: for each normal neighbor Vj ∈ NNLi do
3: Retrieve similarity s (i, j) from NNLi,j;
4: Calculate responsibility r (i, j) by Formula (1);
5: Add responsibility r (i, j) to responsibility list Ri;
6: Calculate availability a (j, i) by Formula (2);
7: Add availability a (j, i) to availability list Ai;
8: end for
9: Calculate self-responsibility r (i, i) by Formula (1);
10: Add self-responsibility r (i, i) to responsibility list Ri;

11: Calculate self-availability a (i, i) by Formula (3);
12: Add self-availability a (i, i) to availability list Ai;
13: Broadcast a beacon to one-hop neighbor vehicles;
14: Receive beacons from one-hop neighbor vehicles;
15: for a beacon from each neighbor Vj do
16: if

∣∣azi − azj∣∣ < Thaz and
∣∣vi − vj∣∣ < Thv then

17: Calculate similarity s (i, j) by Formula (6);
18: Extract responsibility r (j, i), availability a (i, j)

from the beacon;
19: if Vj ∈ NNLi then
20: Update NNLi,j;
21: else
22: Add NNLi,j to NNLi;
23: end if
24: end if
25: end for
26: end while

C. CLUSTER HEAD SELECTION
After the first communication and analysis phase, each vehi-
cle in any of the three states (UD, CH and CM) has acquired
various parameters from its neighbor vehicles and established
the normal neighbor list. The next phase is to determine the
CH vehicles for VANETs, namely cluster head selection. It is
shown on the right side of the dashed box at the top of Fig. 3.
If the normal neighbor list is null, the vehicle remains in
or changes to the UD state according to its current state.
If not, the vehicle calculates the responsibility and availability
related to each vehicle in the normal neighbor list. Once
the sum of the self-responsibility and the self-availability is

greater than zero, the vehicle remains in or changes to the CH
state according to its current state.

In view of the fact that the CH vehicles in the above system
model not only communicate with their CM vehicles, but also
with other CH vehicles or base stations for the exchange of
data messages, the CH vehicles should have the excellent
communication capability. For this reason, the GAPC algo-
rithm reconstructs the similarity function of the original AP
algorithm by introducing communication-related parameters.
This makes that the vehicles with low relative mobility and
good communication performance are easier to be selected as
cluster heads. For vehicles Vi and Vj, the similarity function
is defined as follows:

s (i, j) = −min

{∥∥(xi, yi)− (xj, yj)∥∥
ER

, 1

}

−

∣∣vi − vj∣∣
vmax

−min
{
OCRi
OCRj

, 1
}

(6)

where vi and vj denote the velocity of Vi and Vj. vmax denotes
the max velocity limit for the current road. (xi, yi) and

(
xj, yj

)
denote the positions of Vi and Vj. ER denotes the one-hop
effective range of Vi. OCRi and OCRj denote the owned
communication rate of Vi and Vj.

The parameter ER is decided by the communication range
and the current electromagnetic environment of vehicles, and
can be calculated as follows:

ER = (1− θ)CR (7)

where θ ∈ [0, 1] is a coefficient representing the quality
of the electromagnetic environment. The more serious the
electromagnetic interference is, the larger the value of θ is,
and vice versa. It can be obtained with a dedicated hardware.
CR denotes the one-hop communication radius of vehicles.
The parameter OCR indicates the data transmission capa-

bilities of vehicles and can be represented by the maximum
amount of data transmitted per second under given channel
conditions. In this paper, it is regarded as a known parameter
and equivalent to the transmission rates of the hardware
communication modules equipped on vehicles. It should be
noted that, in order to be closer to reality, each vehicle has its
own OCR value.

In the original AP algorithm, the similarity function has
two levels of characteristics. The superficial one is to describe
the similarity between two vehicles. The implicit one is to
describe the suitability that one is selected as the cluster head
of the other between two vehicles. Clearly, the additional
communication factor in our similarity function should not
destroy these characteristics. To elaborate that, three cases
with respect to the communication factor OCR are given as
follows:

Case 1: Vi and Vj have the same OCR value.
Case 2: Vi and Vj have the different OCR values and

OCRi > OCRj.
Case 3: Vi and Vj have the different OCR values and

OCRi < OCRj.
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For ease of analysis, suppose that OCRi = OCRj = 1 in
case 1, OCRi = 2 and OCRj = 1 in case 2, and OCRi = 1
and OCRj = 2 in case 3. It is apparent that the new similarity
function with the additional communication factor satisfies
the superficial characteristic. Because the velocity factor v
and the position factor (x, y) have the same effect in all three
cases, these two factors can be ignored and only the effect of
the communication factor OCR is concerned. According to
Formula (6), the similarity of case 1, case 2 and case 3 are
−1, −2 and −1/2 respectively. Due to −1/2 > −1 > −2,
it means that the two vehicles in case 3 are more similar
than in others. Meanwhile, for the highest OCR value, Vj
is more suitable as the cluster head of Vi in case 3 than
in others. Therefore, the new similarity function with the
additional communication factor also satisfies the implicit
characteristic. This completes the verification.

As for the responsibility, the availability and the strategy
for the cluster head selection, the GAPC algorithm stays the
same with the original AP algorithm. As described in Section
II, they are not repeated here.

Algorithm 2 Cluster Head Selection and Cluster Formation
1: while Tcol == 0 do
2: if r (i, i)+ a (i, i) > 0 then
3: CHi← Vi;
4: else
5: for each Vj ∈ NNLi do

6: if OCRj >

(
RCRi +

∑
Vk∈CMLj

RCRk

)
and

CH j == Vj then
7: Add Vj to CCHLi;
8: Calculate CAFi,Cj
9: end if

10: end for
11: if CCHLi 6= ∅ then
12: if length (CCHLi) == 1 then
13: CHi← CCHLi [0];
14: else
15: CHi← argmin

Vj∈CCHLi

{
CAFi,Cj

}
;

16: end if
17: end if
18: end if
19: end while

In a word, through the analysis of the cluster head selection
phase of the GAPC algorithm, it can be seen that a vehicle
with the low relative mobility and the high OCR is easy to
be selected as a cluster head. Moreover, the cluster formed
around it has good stability and communication performance.
The details of the cluster head selection phase of the GAPC
algorithm, for any vehicle Vi, are described in Algorithm 2.

D. CLUSTER FORMATION
After the cluster head selection phase of the GAPC algorithm
in a clustering cycle, one or more CH vehicles appear in

VANETs. In the next clustering cycle, an UD vehicle selects
a CH vehicle as its own cluster head and becomes a cluster
member of the cluster which is managed by the CH vehicle.
Once an UD vehicle joins a cluster, it changes to the CM state.
This phase is namely the cluster formation. It corresponds to
the state transition from UD to CM in Fig. 3.

Specifically, for an UD vehicle, it extracts all CH vehicles
matching some conditions from its normal neighbor list to
establish a candidate cluster head list. Then, it selects an
optimal CH vehicle from the candidate cluster head list as
its cluster head with some mechanism. From Formula (5),
we know that the mechanism of the original AP algorithm
is to select a CH vehicle with the maximum sum of relative
responsibility and relative availability. Although it selects
an optimal CH vehicle from the view of mutual assessment
between two vehicles, it ignores the effect on the stability of
the cluster and the communication load capacity of the CH
vehicle when an UD vehicle joins a cluster. This contributes
little to the better cluster stability. To this end, a newweighted
mechanism is adopted in the GAPC algorithm from the view
of global assessment for all vehicles in a cluster. The core of
the weighted mechanism is a compound assessment function.
This function is defined to quantitatively assess the effect on
not only the stability of the cluster but also the communication
load capacity of the cluster head when a vehicle joins a
cluster.

Next, three scaling functions that constitute the compound
assessment function are defined as follows:

The velocity scaling function is used to quantitatively
assess the effect on the cluster stability in terms of velocity
when a vehicle joins a cluster. For the kth cluster Ck , when a
vehicle Vi joins it, the new cluster is denoted as C ′k , namely
C ′
k
− Ck = {Vi}. The velocity scaling function of Vi related

to Ck can be defined as follows:

VSFi,Ck =
1

CMNC ′
k

 ∑
Vj∈C ′k

(
vj − vC ′k

)2 (8)

where CMNC ′k
denotes the number of cluster members of C ′

k
.

vC ′k denotes the average velocity of C
′
k and can be calculated

as follows:

vC ′k =
1

CMNC ′
k

∑
Vj∈C ′k

vj (9)

Through the analysis of Formula (8), it can be seen that, for
a vehicle, the smaller the value of the velocity scaling function
is, the smaller the effect on the cluster stability is.

The position scaling function is used to quantitatively
assess the effect on the cluster stability in terms of position
when a vehicle joins a cluster. The position scaling function
of Vi related to Ck can be defined as follows:

PSFi,Ck =
1

CMNC ′
k

 ∑
Vj∈C ′k

∥∥∥(xj, yj)− (xC ′k , yC ′k)∥∥∥2
 (10)

71412 VOLUME 8, 2020



X. Bi et al.: New AP Clustering Algorithm for V2V-Supported VANETs

where
(
xC ′k , yC ′k

)
denotes the central position of C ′k and can

be calculated as follows:

(
xC ′k , yC ′k

)
=

 1
CMNC ′

k

∑
Vj∈C ′k

xj,
1

CMNC ′
k

∑
Vj∈C ′k

yj

 (11)

Through the analysis of Formula (10), it can be seen that,
for a vehicle, the smaller the value of the position scaling
function is, the smaller the effect on the cluster stability is.

The communication rate scaling function is used to
quantitatively assess the effect on the communication load
capacity of the cluster when a vehicle joins a cluster. The
communication rate scaling function of Vi related to Ck can
be calculated as follows:

CRSFi,Ck =

RCRi +
∑

Vj∈Ck
RCRj

OCRk
(12)

s.t. OCRk > RCRi +
∑
Vj∈Ck

RCRj (13)

where RCRi and RCRj denote the required communication
rate of Vi and Vj. The parameter RCR indicates the require-
ments of vehicles for data transmission via their CH vehicles
and can be represented by the transmission rate that guaran-
tees the completion of data transmission before the deadline.
For a vehicle, the value of RCR is equivalent to the quotient
of the amount of data transmitted via its CH vehicle and the
valid time of data. It should be noted that, for the success of
data transmission, the maximum value of RCR should be less
than or equal to the minimum value of OCR.

Through the analysis of Formula (12) and Constraint (13),
it can be seen that, for a vehicle, the value of the communica-
tion rate scaling function is between 0 and 1, and the smaller
the value is, the smaller the effect on the communication load
capacity of a cluster is.

The compound assessment function, based on the linear
weighted sum of the above three scaling functions, is used to
quantitatively assess the overall effect on the cluster when a
vehicle joins a cluster. It is defined as follows:

CAFi,Ck = w1VSFi,Ck + w2PSFi,Ck + w3CRSFi,Ck (14)

where w1, w2 and w3 are the weighted factors satisfying
w1,w2,w3 ∈ [0, 1] and w1 + w2 + w3 = 1. Considering
that in general traffic scenarios, the vehicle velocity embodies
abundant information (e.g., weather, traffic and roads) and
has major effect on the performance of a cluster [19], [20],
the value of w1 corresponding to this function should be
much greater than those of w2 and w3. As for w2 and w3,
their values depend on the communication performance of
the vehicles. If the signal coverage area is narrow, the value
of w2 should be greater than that of w3. In this way, the
boundary vehicles that may affect the cluster stability can be
excluded by the increased influence of the position scaling
function. If the communication rate is low, the value of w3
should be greater than that ofw2. In this way, the vehicles with

heavy communication load that may affect the communica-
tion performance of clusters can be excluded by the increased
influence of the communication rate scaling function. In other
cases, w2 and w3 can take equal values.
In particular, for sparse traffic scenarios, the major con-

tributor to the cluster stability is the vehicle velocity, while
the vehicle communication load has little effect on the cluster
stability, so the numerical relationship of the three weighting
factors is w1 > w2 > w3. For dense traffic scenarios,
the major contributor to the cluster stability is the vehicle
position, while the vehicle velocity has little effect on the
cluster stability, so the numerical relationship of the three
weighting factors is w2 > w3 > w1.
Synthetically, through the analysis of Formula (14), it can

be seen that, for a vehicle, the smaller the value of the
compound assessment function is, the smaller the effect on
the cluster is.

FIGURE 4. The scenario of multiple coexisting cluster heads.

As shown in Fig. 4, for an UD vehicle Vi, there are multiple
cluster heads satisfying Constraint (13) within its one-hop
distance. As mentioned above, to achieve the better cluster
stability from the view of global assessment for all vehicles
in a cluster, the GAPC algorithm selects the cluster head for
Vi as follows:

CHi = argmin
Vk∈CCHLi

{
CAFi,Ck

}
(15)

The details of the cluster formation phase of the GAPC
algorithm, for an UD vehicle Vi, are also described
in Algorithm 2.

E. CLUSTER MAINTENANCE
Normally, after three previous phases of the GAPC algo-
rithm, a stable clustering structure has appeared in VANETs.
However, due to the complexity of wireless networks and the
dynamics of vehicles, there inevitably exist some exceptions.
To deal with them, the GAPC algorithm provides the cluster
maintenance phase. This phase includes three types of pro-
cesses according to different exceptions.

1) DETECTING A BETTER CLUSTER
For a CM vehicle, when there are multiple CH vehicles
within its one-hop distance and Constraint (13) is satisfied,
the cluster maintenance phase of the GAPC algorithm selects
the optimal one among them according to Formula (15) just
like the cluster formation phase. If the optimal CH vehicle is
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not its current cluster head, the CM vehicle updates its cluster
head to switch to a new cluster and remains the state CM. This
process corresponds to the state transition from CM to CM
in Fig. 3.

2) COMPETITION OF CLUSTER HEADS
For a CH vehicle, when there are one or more other CH
vehicles within its one-hop distance and at least one is better
than it, to reduce the number of clusters and improve the
efficiency of VANETs, it should give way to any of the better
clusters and change to the UD state.

To accurately assess which of the two CH vehicles is
better, the GAPC algorithm introduces the cluster head fitness
function. For a CH vehicle Vi, this function is defined as
follows:

CHFFi =

OCRi −
∑
Vj∈Ci

RCRj

OCRi
+

CMNCi
CMNmax

(16)

where OCRi denotes the owned communication rate of Vi. Ci
denotes the cluster whose cluster head is Vi. Vj denotes any
CM vehicle in Ci. RCRj denotes the required communication
rate of Vj. CMNCi denotes the number of cluster members
of Ci. CMNmax denotes the maximum number of cluster
members of a cluster in VANETs. It is a preset constant and
is decided by the performance of communication hardware
equipped with vehicles.

In Formula (16), the former part indicates the balanced
communication capability of Vi considering the communica-
tion requirements of its CM vehicles. If a cluster head with
small value is retained, the probability of communication
congestion will be high when new vehicles join its cluster.
Compared with the former part, the latter part indicates the
scale capability of Vi. If a cluster head with the large value is
changed, its CM vehicles will lose their cluster head and have
to join other suitable clusters or change states to UD and so
on. This seriously affects the cluster stability. Based on the
analysis, it shows that the cluster head with a larger cluster
head fitness function value should be retained.

In addition, for a CH vehicle, due to the aforementioned
switching process or unforeseeable behavior of its CM vehi-
cles, there is a possibility that its cluster member list is empty.
Once this happens, the CH vehicle should change to the
UD state similarly. In this way, the new UD vehicle can
find the cluster that meets the constraints and join it in the
next clustering cycle. This process corresponds to the state
transition from CH to UD at the bottom of Fig. 3.

3) LOSS OF CLUSTER HEADS
For a CM vehicle, when its cluster head has changed the state
for some reasons, it will detect a conflict between the real
state (CM or UD) from the beacon message and the saved
state (CH) in the normal neighbor list with respect to the
cluster head in the next clustering cycle. Besides that, when a
CH vehicle has a breakdown in the communication hardware
or leaves the road for some reasons, its CM vehicles will not

receive a beacon message from it and detect an exception that
the cluster head is not in the normal neighbor list. Whether
in the first case or the second case, it means that those
CM vehicles lose their cluster heads. If there are no other
CH vehicles that satisfy Constraint (13) within the one-hop
distance, those CM vehicles will change to the UD state.
Then they can join a new cluster through the cluster formation
phase of the GAPC algorithm in the next clustering cycle.
This process corresponds to the state transition from CM to
UD in the middle of Fig. 3.

IV. SIMULATION RESULTS
In this section, the all-round performance of the proposed
GAPC algorithm is evaluated from multiple perspectives.
Firstly, an overall description of the VANETs scenarios,
including the selected urban area, the vehicular mobility data
generated on it, and the settings of main simulation param-
eters, is given. Secondly, a series of performance metrics
concerning the stability and the communication of clusters
are elaborated one by one. Finally, the simulations of the
GAPC algorithm, the APROVE algorithm and the NMDP-
APC algorithm are performed in the MATLAB environment
respectively, and a detailed comparative analysis of different
traffic density scenarios is provided according to the simula-
tion results.

FIGURE 5. The simulation urban area selected from the city of Cologne.

A. VANETS SCENARIOS
To ensure the validity of simulations, we use the vehicular
mobility dataset TAPASCologne [28] to build the simulation
scenarios we need. This dataset covers a region of 400 square
kilometers in Cologne, Germany, for a period of 24 hours in a
typical working day, and comprises more than 700,000 indi-
vidual car trips. As shown in Fig. 5, for the ease of simu-
lations, we select an urban area of 1 square kilometer from
the whole region as the simulation area. Meanwhile, to keep
in line with the existing research [19], [29], we build seven
simulation scenarios corresponding to 40, 80, 120, 140, 160,
180 and 200 vehicles based on the vehicular mobility data of
the selected area. It should be noted that the maximum speed
limit of the road is a constant in these scenarios. Table 2 shows
the settings of main simulation parameters, such as the size
of the simulation area, the transmission range of vehicles,
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TABLE 2. The settings of main simulation parameters.

the threshold values for identifying abnormal vehicles, and
the values of weighting factors of the compound assessment
function, etc.

B. PERFORMANCE METRICS
To evaluate the performance of the proposed clustering
algorithm comprehensively and objectively, eleven perfor-
mance metrics, commonly adopted in the VANETs clustering
research, are given from the view of the stability and commu-
nication, and elaborated as follows:

1) PERFORMANCE METRICS OF STABILITY
The cluster stability consists of the stability of cluster heads
and the stability of cluster members, and it can be evaluated
from two aspects: the duration of clusters and the scale of
clusters. Based on this, seven performancemetrics of stability
are adopted here.
• The average duration of cluster heads is a perfor-
mance metric of stability in terms of duration to rep-
resent the average survival time of all CH vehicles in
VANETs until they change to other states. It can be
calculated by the quotient of the sum of the survival
time of all CH vehicles divided by the number of the
CH vehicles.

• The average duration of cluster members is a per-
formance metric of stability in terms of duration to
represent the average survival time of all CM vehicles
in VANETs until they change to other states. It can be
calculated by the quotient of the sum of the survival time
of all CM vehicles divided by the number of the CM
vehicles.

• The change rate of cluster heads is a metric of stability
in terms of duration to represent the number of state
changes for all CH vehicles per unit time during the
clustering process. It can be calculated by the quotient
of the total number of state changes for all CH vehicles
divided by the total time of the clustering process.

• The number of cluster heads is a performance metric
of stability in terms of scale to represent the total number

of all CH vehicles. Since there is only one CH vehicle in
a cluster, it is equal to the number of clusters.

• The number of cluster members is a performance
metric of stability in terms of scale to represent the total
number of all CM vehicles.

• The number of isolated vehicles is a performance met-
ric of stability in terms of scale to represent the total
number of all UD vehicles.

• The clustering efficiency is a performance metric of
stability in terms of scale to represent the degree of
the effective state vehicles during the clustering process.
It can be calculated by the percentage ratio of the num-
ber of all CH and CM vehicles to the total number of
vehicles in VANETs.

2) PERFORMANCE METRICS OF COMMUNICATION
Since throughput, packet loss, and packet delay are the three
main communication problems of VANETs, four perfor-
mance metrics of communication are adopted here.

• The average throughput of cluster heads is a perfor-
mancemetric of communication to represent the average
throughput of all CH vehicles within the specified time.
It can be calculated by the quotient of the sum of the
intra-cluster and inter-cluster throughput of all CH vehi-
cles winthin the simulation time divided by the number
of CH vehicles.

• The average throughput of clusters is a perfor-
mancemetric of communication to represent the average
throughput of all clusters within the specified time. It can
be calculated by the quotient of the sum of the intra-
cluster throughput of all CM vehicles in clusters within
the simulation time divided by the number of clusters.

• The average packet loss rate of clusters is a perfor-
mancemetric of communication to represent the average
packet loss rate of all clusters within the specified time.
It can be calculated by the quotient of the sum of the
packet loss rates of all vehicles in clusters divided by
the total number of those vehicles. Where, the packet
loss rate of a vehicle can be calculated by the quotient
of the number of failed data packets divided by the total
number of data packets within the simulation time.

• The average packet delay of clusters is a performance
metric of communication to represent the average packet
delay of all clusters within the specified time. It can
be calculated by the quotient of the sum of the packet
delays of all vehicles in clusters divided by the total
number of those vehicles. Where, the packet delay of a
vehicle can be calculated by the quotient of the sum of
the time intervals between the sending and receiving of
data packets divided by the total number of data packets
within the simulation time.

C. PERFORMANCE ANALYSIS
To validate the performance of the proposed algorithm,
a series of simulations of the GAPC algorithm together
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FIGURE 6. The comparisons of the three algorithms regarding the stability performance on duration.

FIGURE 7. The comparisons of the three algorithms regarding the stability performance on scale.

with the APROVE algorithm and the NMDP-APC algo-
rithm, which are two classical clustering algorithms for
VANETs based on the AP algorithm, have been performed
for the above seven scenarios in the MATLAB environ-
ment. Moreover, to eliminate the effect of simulation errors
on performance analysis, each simulation has been per-
formed 100 times. Based on the results of those simulations,
a detailed comparative analysis of the two categories of per-
formance metrics is as follows:

1) STABILITY PERFORMANCE ANALYSIS
Fig. 6 compares the duration stability of the three algo-
rithms in seven scenarios. Specifically, the GAPC algorithm
is respectively 15% and 20% longer than the APROVE algo-
rithm and the NMDP-APC algorithm in terms of the average
duration of cluster heads. As for the average duration of clus-
ter members, the GAPC algorithm is close to the other two
algorithms. The change rate of cluster heads is obtained from
theGAPC algorithmwith 83% and 82% respectively less than
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FIGURE 8. The comparisons of the three algorithms regarding the communication performance.

the APROVE algorithm and the NMDP-APC algorithm, and
almost keeps unchanged with the change of traffic density.

Fig. 7 compares the scale stability of the three algorithms in
seven scenarios. Specifically, the GAPC algorithm is close to
the APROVE algorithm and 40% less than the NMDP-APC
algorithm in terms of the number of cluster heads. As for the
number of cluster members, the GAPC algorithm is respec-
tively 33% and 20% larger than the APROVE algorithm and
the NMDP-APC algorithm. The number of isolated vehicles
of the GAPC algorithm is close to the NMDP-APC algorithm
and 21% less than the APROVE algorithm. Moreover, in
terms of the clustering efficiency, the GAPC algorithm is
close to the NMDP-APC algorithm and 20% greater than the
APROVE algorithm.

In summary, as for the cluster stability, it can be concluded
that the GAPC algorithm is better than the APROVE algo-
rithm and the NMDP-APC algorithm in terms of performance
values and the numerical stability of them in seven scenarios.
The reasons are shown as follows:

• The GAPC algorithm eliminates the interference of
abnormal neighbors on the cluster stability. In contrast,
the APROVE algorithm and the NMDP-APC algorithm
do not take that into account.

• The GAPC algorithm takes into account the one-hop
effective range of a vehicle, and it can effectively select
the vehicles with the low mobility related to other vehi-
cles as cluster heads.

• In the cluster formation phase, the GAPC algorithm
reduces the effect of vehicles on the cluster stability by
selecting a cluster with the smallest compound assess-
ment function value. In contrast, the APROVE algorithm
and the NMDP-APC algorithm only pay attention to
the effect of vehicles on the cluster head, not on the
cluster.

2) COMMUNICATION PERFORMANCE ANALYSIS
Fig. 8 compares the communication performance of the three
algorithms in seven scenarios. Specifically, the GAPC algo-
rithm is respectively 57% and 64% higher than the APROVE
algorithm and the NMDP-APC algorithm in terms of the
average throughput of cluster heads. As for the average
throughput of clusters, the GAPC algorithm is respectively
26% and 102% higher than the APROVE algorithm and the
NMDP-APC algorithm. The average packet loss rate of clus-
ters of the GAPC algorithm is respectively 82% and 74% less
than the APROVE algorithm and the NMDP-APC algorithm.
Moreover, in terms of the average packet delay of clusters, the
GAPC algorithm is 39% greater than the APROVE algorithm
and 14% less than the NMDP-APC algorithm.

In summary, as for the communication performance of
clusters, it can be concluded that the GAPC algorithm is
also better than the APROVE algorithm and the NMDP-APC
algorithm in terms of performance values (except for the
average packet delay of clusters) and the numerical stability
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FIGURE 9. The comprehensive performance comparisons of the three algorithms in the selected scenario.

of all performance values in seven scenarios. The reasons are
shown as follows:
• The excellent duration stability of the GAPC algorithm
makes it have better communication performance than
the APROVE algorithm and the NMDP-APC algorithm.

• The relatively good scale stability of the GAPC
algorithm also makes it have better communication
performance than the APROVE algorithm and the
NMDP-APC algorithm.

• TheGAPC algorithm takes into account theOCR param-
eters of cluster heads, and it selects the vehicles with
maximum OCR values as cluster heads through the sim-
ilarity function. In contrast, the APROVE algorithm and
the NMDP-APC algorithm ignore the communication-
related parameters.

• Fig. 7 (a) shows that the number of clusters of the GAPC
algorithm is close to that of the APROVE algorithm,
whereas Fig. 7 (c) shows that the number of isolated
vehicles of the APROVE algorithm is greater than that of
the GAPC algorithm. Thismeans that the vehicle density
of clusters of the APROVE algorithm is lower than that
of the GAPC algorithm. This is the reason why the
GAPC algorithm is not as good as the APROVE algo-
rithm in the average packet delay of clusters in Fig. 8(d).

3) COMPREHENSIVE PERFORMANCE ANALYSIS IN THE
SCENARIO OF 200 VEHICLES
Considering the effect of extreme traffic density on VANETs
communication, the scenario of 200 vehicles is extracted
to compare the three algorithms more comprehensively and
deeply. Related to the eleven performance metrics men-
tioned above, four major analysis indicators such as mean,
minimum, maximum and median are adopted. Fig. 9 and
Table 3 show the comprehensive performance comparisons of
the three algorithms with respect to the scenario of 200 vehi-
cles in two different forms.

Through the analysis of the performance comparisons, the
following conclusions can be drawn:
• The duration of cluster heads using the GAPC algorithm
is greater than those using the APROVE algorithm and
the NMDP-APC algorithm.

• The duration of cluster members using the GAPC algo-
rithm is close to that using the APROVE algorithm and
is greater than that using the NMDP-APC algorithm.

• The change rate of cluster heads using the GAPC algo-
rithm is much less than those using the APROVE algo-
rithm and the NMDP-APC algorithm.

• The number of cluster heads using the GAPC algo-
rithm is greater than that using the APROVE algorithm
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TABLE 3. The comprehensive performance comparisons of the three
algorithms in the selected scenario.

and is much less than that using the NMDP-APC
algorithm.

• The number of cluster members using the GAPC algo-
rithm is greater than those using the APROVE algorithm
and the NMDP-APC algorithm.

• The number of isolated vehicles using the GAPC algo-
rithm is greater than that using the NMDP-APC algo-
rithm and is less than that using the APROVE algorithm.

• The clustering efficiency using the GAPC algorithm is
greater than that using the APROVE algorithm and is
less than that using the NMDP-APC algorithm.

• The throughput of cluster heads and the throughput of
clusters using the GAPC algorithm are greater than those
using the APROVE algorithm and the NMDP-APC
algorithm.

• The packet loss rate of clusters using the GAPC algo-
rithm is less than those using the APROVE algorithm
and the NMDP-APC algorithm.

• The packet delay of clusters using the GAPC algorithm
is greater than that using the APROVE algorithm and is
less than that using the NMDP-APC algorithm.

In general, the GAPC algorithm has better comprehensive
performance than the other two algorithms under high traffic
density.

4) PERFORMANCE ANALYSIS OF THE PROPOSED GAPC
ALGORITHM UNDER DIFFERENT WEIGHT COMBINATIONS
In the cluster formation phase, a weighted mechanism is
adopted in the GAPC algorithm to select an optimal cluster
head. To evaluate the effect of different weight combinations
on the performance of the algorithm, we perform additional
simulations with several weight combinations in seven traffic
scenarios. Through the analysis of Formulas (14) and (15),
it indicates that the compound assessment function with
weighted factors plays a role in cluster head selection of
UD vehicles and CM vehicles. This means that the weight
combination only has direct effect on the duration of cluster
members. Therefore, only the performance metric (the aver-
age duration of cluster members) needs to be considered in
the simulations. The detailed simulation results are shown
in Fig. 10.

FIGURE 10. The performance comparisons of the GAPC algorithm under
different weight combinations.

From Fig. 10, it can be concluded that, in terms of different
traffic densities, theweight combinations have different effect
on the performance of the GAPC algorithm. But overall, as
long as the three weighted factors (w1, w2 and w3) follow the
numerical relationships presented in Section III-D and main-
tain the same numerical proportionality, the performance of
the GAPC algorithm remains almost constant under different
weight combinations. In addition, the results also verify the
correctness of the analysis for the numerical relationship of
the three weighted factors in extreme traffic scenarios.

V. CONCLUSION
In this paper, aiming at the effect of the high mobility of
vehicles on V2V-supported VANETs, we propose the GAPC
algorithm so as to achieve a clustering structure for VANETs
which has the better stability and communication perfor-
mance in contrast to the traditional clustering algorithms.
On the one hand, via beacon messages, the GAPC algorithm
identifies abnormal vehicles within the one-hop distance and
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establishes the normal neighbor list for each vehicle. On the
other hand, the GAPC algorithm introduces communication-
related parameters into the similarity function of the original
AP clustering algorithm. Based on that, the GAPC algorithm
uses a weighted mechanism to quantitatively assess the effect
on the cluster stability when a vehicle joins it, and improves
the cluster formation of the original AP algorithm by select-
ing the cluster with the lowest compound assessment value.
The simulation results under the seven scenarios show that
the GAPC algorithm is superior to the APROVE algorithm
and the NMDP-APC algorithm concerning not only the sta-
bility and communication performance of clusters but also the
algorithm robustness.

In the future work, to further improve the precision of the
GAPC algorithm, the weights in the compound assessment
function can be determined by using the popular machine-
learning algorithms and changed according to the application
requirements. In addition, for the superior cluster stability,
a joint determination mechanism can be adopted to substitute
the self-determination mechanism of the GAPC algorithm
which is responsible for selecting a cluster head.
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