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ABSTRACT AADL is widely used to depict the architecture and behavior of real-time safety-critical
systems such as avionics and aerospace. The development of these systems has strict requirements for
building fault-free systems. Formal verification is frequently applied to verify the critical properties of the
systems, such as safety and liveness; however, the formal verification is not supported by AADL. Model
transformation is commonly applied to provide formal semantics; hence, the AADL model can be verified
by a language that supports formal verification in addition to the ability to cover all AADL model behavior.
Event-B, with its proof obligation, is increasingly used tomodel and verify safety-critical systems. This paper
presents the transformation of the AADL model into Event-B, which captures most AADL components and
behavioral actions to be effective in the verification of current real-time systems models. Then, we define
theorems and invariants of safety and liveness properties to be proven by using the RODIN platform.
To demonstrate the efficacy of our method, we model the AADL of movement authority (MA) control of
the Chinese Train Control System, transform the AADL model to Event-B and verify its crucial properties.

INDEX TERMS Model transformation, AADL, behavior annex, Event-B, proof obligation, invariant,
theorem proving.

I. INTRODUCTION
The development of safety-critical systems such as real-time
systems has rapidly increased in various domains such as
health, transport and automotive. From this perspective,
building a fault-free system has become an essential need
through their development life cycle. One of the most com-
monly used approaches in the design phase is the formal
verification, which can ensure critical properties early in the
development phases.

The Architecture Analysis and Design Language (AADL)
[1] is a description language that represents the architecture
of the system as a hierarchy of decomposed interacting soft-
ware and hardware components. The AADL describes the
constructional aspect of models in addition to non-functional
requirements such as timing. Although the AADL provides
efficient support for modeling the safety-critical real-time
systems, it must be formalized to make the model convenient
for formal verification.

Event-B [2] is a formal language that describes concur-
rent safety-critical systems. The Event-B model structure

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

and behavior are basically described by first-order logic and
set theory, so they have rigorous mathematical descriptions.
Event-B provides a primary characteristic called refinement
which enables the gradual development of the system. There-
fore The AADL elements can gradually be transformed to
make possible the traceability of Event-B against AADL
and make the transformed model extensible. In addition,
Event-B has a key feature called proof obligation, which
provides mathematical proof of the properties according to a
set of rules. RODIN platform tool [3] introduces support for
Event-B modeling, automatic creation and proving the rules.

Several studies have already been adopted to transform
the AADL model to a formal language such as CSP [4]–[6],
Fiacre [7], [8], BIP [9], Maude [10], [11], LNT [12], [13]
and TASM [14], [15]. However, all of these works consider
only a small AADL subset. Therefore, they cannot cover most
AADL components and their behavioral actions, which are
increasingly included in real-time system models.

In this paper, we present a method to transform the AADL
model into Event-B. We use the UML class diagram to serve
as an intermediary between AADL and Event-B; in order
to make AADL more clear, appropriate for Event-B, and to
ease the traceability of the AADL element’s details. Since the
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AADL is used to model the real-time systems as a hierarchy,
those systems’ models contain different relationships among
the elements, which also has many details such as features
and properties. The Event-B which is based on the set theory,
is used to model the discrete systems as states transition.
Therefore, first, we present a description of AADL by the
UML class diagram, then this AADL class diagram is trans-
formed into Event-B. A large AADL subset is included to
cover multiple safety and liveness properties and make the
proposed method more effective in the verification of current
real-time systems models. We define a set of clear mapping
rules that involve all details of the transformation of AADL
to Event-B. The contributions of our paper are as follows:

1) We consider a large AADL subset, including threads
(periodic, aperiodic, timed, sporadic), remote subpro-
gram call and access connection.

2) We present the correctness of the transformation,
ensure preservation of the semantics and deter-
mine whether the transformation is deterministic or
terminating.

3) We verify both safety and liveness properties that have
been verified by the existing studies. Our method also
proposes the verification of AADL constraint preserva-
tion and shared data deadlock.

The remainder of this paper is organized as follows.
Section II-A briefly presents some basic concepts related to
the AADL. Section II-B introduces Event-B and explains
the features of Event-B. Section III-A defines the AADL
subsets. Section III-B presents our methodology and the
mapping rules. Section IV introduces the verification of the
transformation correctness. Section V presents the case study.
Section VI presents the related work, Section VII provides the
discussion, and Section VIII concludes.

II. BACKGROUND
A. AADL
The Architecture Analysis and Design Language introduces
a well-known description of the hardware and software com-
ponents and their interaction with each other to propose com-
plete systems. The AADL is separated into three categories:
software, hardware, and composite. Each category consists
of multiple components; these components with type and
implementation classifiers describe the architecture of the
system. The composite category involves the system, which
enables the integration of all components into one unit. The
hardware category consists of the processor, device, bus, and
memory.

The software category consists of the process, thread,
thread group, data, and subprogram. Each software com-
ponent declaration is divided into two classifiers: type and
implementation. The type includes features and properties.
The features determine how the component communicates
with other system components. The features include port,
provides subprogram access, requires subprogram access and
requires data access. The component implementation decla-
ration may include subcomponent, mode and behavior annex.

The behavior annex provides a sublanguage extension to
link the behavior specifications to the AADL components.
The behavior annex aims to depict the internal behavior of
component implementations such as subprogram calls and
synchronization protocols for client-server architectures as a
state transition system with guards and actions.

B. EVENT-B
Event-B [2], [16] is used to formally model safety-related
systems in terms of state transitions. Event-B consists of two
main constructs: context and machine. Context represents
the static part of the system model, whereas the machine
represents the behavioral part. The machine is related to the
context by the see relationship, so the machine can access
the context contents. Multiple machines can see one context,
and a machine can see multiple contexts. The context con-
tains the sets s, constants c, axioms A and theorems THM.
The set usually describes the system attributes that can be
defined as a group of elements. The constant defines the
elements of the set or the system variables that do not change
through system behavior. Sets and constants are constrained
by axioms. Theorems define the properties derivable from
axioms. The machine involves state variables V, invariants I
and set of events evi. The state variables are constrained by
the invariant. The event describes the state transition and has
the following two forms:

ev .
= any x where G then Act. (1)

ev .
= when G then Act. (2)

The event’s form (1) represents the form of an event when
parameters (x) is defined, whereas the form (2) represents
the form of an event when parameters (x) is not defined.
Generally, x is the event parameters, G is the guard and Act
is the action. The guard represents the essential condition of
the event to be enabled and perform the action Act.

Event-B presents two mechanisms to reduce the model-
ing complexity: machine refinement and context extension.
Refinement helps the designer start modeling within abstract
specifications and then gradually add the model details.
Moreover, the invariants that are proven at the abstract level
are maintained through refinement.

In addition to the refinement and extension, Event-B intro-
duces decomposition [17], [18] to address the modeling com-
plexity and provides the modeling of parallel and concurrent
systems [19], [20]. Decomposition is a mechanism that splits
the model into smaller sub-models. Two styles of decomposi-
tion are proposed: shared-variables and shared-events. In this
paper, the shared-variables style is considered where vari-
ables are divided into internal and external. The sub-model
shares the external variables, whereas the internal variables
are private for each one. Events are also internal and external,
where external events are used for sub-model communica-
tion. Both internal variables and events are refined as usual in
Event-B, whereas external variables are difficult to refine.
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TABLE 1. Basic Event-B mathematics notations in this paper.

Proof obligation (PO) [21] represents the backbone of
Event-B to demonstrate the correctness of the model regard-
ing some behavioral semantics. POs verify various model
properties in terms of the invariant or theorems. Multiple
kinds of POs are automatically generated by RODIN Plat-
form. In the following, we only present the related POs kinds
within our scope of research.

1) Invariant Preservation PO (INV): in the abstract
machine, for each invariant and event, POs are defined
to prove that each invariant is preserved by each event.

2) Refinement PO
If machine M refines machine N, machine M is called
the concrete machine, and machine N is the abstract
machine; the following POs are defined,
a) Invariant Preservation PO (INV): verify that

each concrete event preserves both concrete and
abstract invariants.

b) Simulation PO (SIM): each action in the abstract
event is simulated by the corresponding concrete
actions, which ensures that what the concrete
events execute does not contradict what the cor-
responding abstract event executes.

3) Context and Machine Theorem PO (THM): the PO of
each theorem is automatically created to ensure that a
stated context and machine theorems are provable from
the axioms.

The choice of Event-B is explained by several reasons
as follows: (i) the ability to describe all architectural and
behavioral semantics of AADL bymeans of availablemech-
anisms such as refinement and decompositions. (ii) By using
the Event-B invariants, the AADL constraints are trans-
formed, and the preservations of these properties are verified
by each reachable state. The invariants also provide the ability
to include more critical properties to verify. (iii) Enable the
gradual development of the system by refinement. Since
the refinement enables the designer to gradually transform
AADL elements to present the traceability of the AADL

against Event-B, the designer can also gradually transform
new properties and components that have been added to
the AADL model without re-transforming the entire model.
In addition, Event-B mathematically provides verification of
the consistency among refinements levels, i.e., the proven
properties in the abstract level are preserved through refine-
ment. (iv) RODIN platform has many integrated useful
tools for modeling, such as ProB [22], which allows anima-
tion and model checking, so that the transformed Event-B
model can easily be validated. (iv) Event-B has no ambigu-
ous grammatical structure; therefore, the one-to-one trans-
formation and verification of the transformation correctness
are easily applied.

III. OUR METHOD
Our working methodology is divided into three phases: In the
first phase, a subset of AADL is selected, and the strategy
of behavioral semantics is determined using the UML class
diagram. In the second phase, a set of mapping rules is
presented to transform the AADL class diagram model to
Event-B. In the third phase, strong invariants and theorems
are defined to describe the properties to be verified. The
corresponding proof obligations are automatically generated
and proven by the RODIN platform.

A. AADL SUBSET
In this paper, we only consider the following AADL software
components: process, thread, subprogram and data compo-
nents. These components can sufficiently describe the basics
of the system behavior. To more clearly describe the AADL
element relationships, we define the elements using the UML
class Diagram, which is the best model to define different
elements, their details and the relationship among them. The
AADL UML class diagram is illustrated in Figure 1, where
class refers to the AADL elements, method refers to the ele-
ment actions, attributes refer to the features, properties and
element details, and class relationships refer to the AADL
element relationships. The classes in the AADL system are
as follows:

1) Port class
Port is a logical data and control connection point
among AADL threads and processes. The Port class
in Figure 1 represents the AADL port, which is inher-
ited by IN_port and OUT_port classes. There are
three types of input/output ports: data, event and event
data ports, which are represented by IN_DT/ OUT_DT,
IN_DEV/ OUT_DEV, and IN_EV/ OUT_EV classes
respectively.
The IN_DT, OUT_DT, OUT_EV, and OUT_DEV
classes have two similar attributes: ( port_variable,
port_state), where,

• port_variable refers to the port variable. The
port_variable has different data types: DATA in the
IN_DT andOUT_DT, EVENT in theOUT_EV and
EVENT_DATA in the OUT_DEV.

72816 VOLUME 8, 2020



A. S. A. Hadad et al.: Formal Verification of AADL Models by Event-B

FIGURE 1. UML class diagram of AADL subset.

• Port_state is a Boolean variable that indicates
whether the state of the port variable is fresh.

The IN_EV and IN_DEV classes have six attributes
(port_queue, port_head, port_tail, port_variable,
port_state, port_Qsize), where,

• port_queue refers to the port queue.
• port_head and port_tail are integer variables to
apply the FIFO queue protocol.

• port_variable is a variable to receive the new
incoming value if the queue is empty and the
dequeued value if the queue is not empty.

• port_state is a Boolean variable that indicates the
state of port_variable whether it is a new value or
not.

2) PO_connection class
The port connection describes the linkage between the
ultimate source and the destination component’s port.
The PO_connection class in Figure 1 represents the
AADL port connections. The PO_connection has

the attributes (CON_Sport, CON_Dport, CON_mode,
CON_type, CON_buffer), where

• CON_Sport is the source port.
• CON_Dport is the destination port.
• CON_mode ∈ modes is the in mode clause.
• CON_type ∈ connection_type is the connection
type (IMMEDIATE, DELAYED, NONE), IMME-
DIATE and DELAYED are for the data port con-
nections. The NONE is for the event and event data
port connections.

• CON_buffer is the connection buffer.

The PO_connection class has two methods: send_
output and new_arrive. The send_output method rep-
resents the send_output service call. The new_arrive
method represents the arrival of the EVENT, DATA or
EVENT DATA to the destination port.

3) Mode_transition class
Mode describes the runtime operational state. Different
modes may be declared in the threads and processes.
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Mode transition specifies the mode switching between
two different modes.
Mode_transition class in Figure 1 represents the AADL
process mode transition. The Mode_transition class
has attributes (MT_Smode, MT_Dmode, MT_DIS-port,
MT_reponse), where,

• MT_Smode is the ultimate source mode.
• MT_Dmode is the destination mode.
• MT_DISport ∈ IN_port is the process port that
triggers the mode switching.

• MT_reponse ∈MT_TRNStype refers to theMode_
Transition_Reponse property, which determines
whether the transition is EMERGENCY or
PLANNED.

TheMode_transition class contains the transitmethod,
which represents the mode transition actions.

4) Subprogram class
The subprogram is the executable unit called by the
threads or other subprograms. It consists of input
parameters and output parameters.
The Subprogram class in Figure 1 represents the AADL
subprogram component. The Subprogram class has
the attributes (SUB_INpar, SUB_OUTpar, SUB_call,
SUB_state, SUB_EXtime, SUB_time, SUB_CALLflag,
current_call), where

• SUB_INpar is the set of subprogram input
parameters.

• SUB_OUTpar is the set of subprogram output
parameters.

• SUB_state ∈ State is a variable that indicates the
current state of the subprogram.

• SUB_EXtime is a constant that represents the max-
imum execution time of the subprogram.

• SUB_time is a time variable that calculates the
subprogram execution time.

• SUB_CALLflag is a Boolean variable, which has
the value of TRUE if the subprogram has been
called; otherwise, it holds the value of FALSE.

• current_call ∈ SUB_call refers to the current exe-
cuted call by the subprogram.

The Subprogram class contains the compute method,
which represents the subprogram execution actions.

5) PAR_CON class
The parameter connection describes the data flow
between the subprogram parameters and the caller
component.
The PAR_CON class in Figure 1 represents the
subprogram parameter connections. The PAR_CON
class has attributes (CON_S, CON_D, CON_PARtype),
where,

• CON_S is the connection source.
• CON_D is the connection destination.
• CON_PARtype ∈ PARTYPE is the type of connec-
tion (input or output).

ThePAR_CON class contains thePAR_connectmethod
and represents the parameter connection actions.

6) SUB_call class
The thread or subprogram that must call the subpro-
gram has a subprogram call sequence. The SUB_call
class in Figure 1 represents the subprogram call; it
has two attributes: Call_flag and Call_mode. Call_flag
is a Boolean variable that indicates whether the call
has been activated or not. Call_mode represents the in
mode clause. The SUB_call class has two association
relationships with Subprogram and PAR_CON classes.
The association relationship with the Subprogram class
is represented by the Call_subprogram attribute to
describe the called subprogram. The Call_PARcons
association relationship connects the SUB_Call with
PAR_CON to refer to the set of parameter connection
of this call.
The call method in SUB_call class represents the sub-
program call actions.

7) SUB_REQ, SUB_PRV and AC_connection classes
In the case of a remote subprogram call, a thread can
call a subprogram that is a subcomponent of another
thread. The called thread (server) has the provides sub-
program access feature, and the caller thread (client)
has the requires subprogram access feature. These
two features are connected via access connection.
The SUB_REQ, SUB_PRV and AC_connection classes
in Figure 1 represent the requires subprogram access
feature, provides subprogram access feature and access
connection, respectively. The SUB_REQ class has only
the SQ_flag boolean attribute. This attribute holds
the value of TRUE if a new call has been sent; other-
wise, it remains FALSE. The SUB_REQ class is con-
nected to the SUB_call class by an association rela-
tionship. This relationship is represented by SQ_call
to indicate the sent subprogram call by the caller
thread. The SUB_PRV class has only an SV_flag
Boolean attribute. This attribute holds the value of
TRUE if a new call has been received; otherwise,
it remains FALSE. SUB_PRV is connected to SUB_call
via the SV_call association relationship. This rela-
tionship represents the received subprogram call. The
AC_connection has the AC_buffer attribute referring
to the access connection buffer. The AC_connection
has two association relationships with SUB_REQ and
SUB_PRV, which are represented by AC_provide and
AC_require, respectively. The access_connect method
in theAC_connection represents the connection actions.

8) DataName and Data_access classes
Data subcomponents represent static data (class) in
the AADL source text. By the requires data access
feature declaration, the Data will be shared and
accessed by different components. DataName class
in Figure 1 represents the AADL data subcompo-
nents. The DataName class contains the following
attributes:
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• DataName_subcomponents is the data subcompo-
nent of the data component. Each data subcompo-
nent is represented by a DataName class attribute.

• DataName_lock is a Boolean variable that
indicates whether the data has been locked
or not.

• DataName_accessingQueue is a queue that con-
tains the list of the waiting components that require
to access data during data locking.

• DataName_accessingThread is a variable that
indicates the current thread that locks the data.

• dataThread_head and dataThread_tail are vari-
ables to apply FIFO dequeue protocol on
DataName_accessingQueue.

The Data component may have a requires sub-
program access feature. This feature is represented
by the Data_SUB association relationship with the
Subprogram class.
The Data_access class represents the requires data
access feature. The Data_access has a Boolean tex-
tit AC_flag attribute that is assigned to TRUE if the
component has required to access the data; otherwise,
it remains as FALSE.
The association relationship AC_data connects the
Data_access class to the DataName class to represent
the accessed data.

9) BHA_annex and BHA_transition classes
Thread implementation may contain the behavior
annex to provide the thread behavior’s refinement. The
BHA_transition class in Figure 1 represents the AADL
behavior annex state transitions. The BHA_transition
contains two attributes: (TRNS_Sstate, TRNS_Dstate),
where

• TRNS_Sstate is the ultimate source state.
• TRNS_Dstate is the destination state.

The BHA_annex class represents the AADL behav-
ior annex. It has two attributes (BHA_states, BHA_
QLstate), where,

• BHA_states is the set of behavior annex states
• BHA_QLstate is the state qualification to the
thread states

The BHA_annex class is connected to the BHA_
transition via the BHA_TRNSset association relation-
ship to represent the set of state transitions.
The state_transit method in the BHA_transition class
indicates the state transition actions

10) Thread class
The thread represents a schedulable unit that can
simultaneously execute with other threads. The thread
component type may contain properties and fea-
tures such as port and the provides subprogram
access, the requires subprogram access and the
requires data access features. Thread implementation
may have subprogram call and behavior annex.

A thread goes through five states (INITIAL,
AWAITING_DISPATCH, AWITING_MODE, SUS-
PEND, FINIAL) and changes its state through
different actions. The Thread class in Figure 1
represents the AADL thread. The Thread has multi-
ple attributes (THR_active, THR_dispatch, THR_state,
THR_BHAstate, THR_EXtime, THR_deadline, THR_-
period, THR_c, THR_t, THR_completeINI, THR_
comp-leteACT, THR_completeDEC), where,

• THR_active is a Boolean variable that indicates
whether the thread is active in the current mode or
not.

• THR_dispatch is a Boolean variable that indicates
whether the thread has been dispatched or not.

• THR_state ∈ Thread_state is a variable that refers
to the current thread state.

• THR_BHAstate is a variable that refers to the cur-
rent thread behavior annex state.

• THR_EXtime is a constant that refers to the value
of maximum thread computation_execution_time
property.

• THR_deadline is a constant that refers to the thread
deadline property.

• THR_period is a constant that refers to the thread
period property.

• THR_c and THR_t. THR_t is the time variable that
is used in the timed, sporadic and periodic threads
to calculate the time before thread dispatching.
THR_c is a time variable to calculate the time
during thread dispatching.

• THR_INmode indicates the modes where the
thread is active.

• THR_completeINI is a Boolean variable that indi-
cates whether the thread has completed initializa-
tion or not.

• THR_completeACT is a Boolean variable that indi-
cates whether the thread has completed activation
or not.

• THR_completeDEC is a Boolean variable that indi-
cates whether the thread has completed deactiva-
tion or not.

The Thread class has nine different association
relationships (THR_INports, THR_OUTports, THR_
DISports, THR_SUB, THR_DATAaccess, THR_SU-
Bcalls, PRV_SUBaccess, REQ_SUBaccess, THR_
BHA), where

• THR_INports connects the Thread to the IN_port
class to represent the set of thread’s in ports.

• THR_OUTports connects the Thread to the
OUT_port class to represent the set of thread’s out
ports.

• THR_DISports connects the Thread to the
DIS_port class to represent the set of thread’s
dispatch ports.
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• THR_SUB connects the Thread to the Subpro-
gram class to represent the set of subprogram
subcomponent.

• THR_DATAaccess connects the Thread to the
Data_access class to represent the set of the
requires data access features.

• REQ_SUBaccess connects the Thread to the
REQ_SUB class to represent the set of the requires
subprogram access features.

• PRV_SUBaccess connects the Thread to the
PRV_SUB class to represent the set of the provides
subprogram access features.

• THR_BHA connects the Thread to the BHA_annex
class to represent the behavior annex.

The Thread class contains the Initialize, Activate,
Deactivate, Compute, Finalize, Get_resourece, and
Release_resource methods, which indicate the Initial-
ization, Activation, Deactivation, Computation, Final-
ization, Get_resource and Release_resource actions,
respectively.

11) Process class
Process represents an enforced virtual address space
at runtime. Process must contain at least one thread as
a subcomponent. The AADL process has three main
actions: process loading, process stopping and process
aborting. The Process class in Figure 1 represents
the AADL process. The Process class has multiple
attributes (PR_modes, PR_currentMODE, PR_loaded,
PR_stopped, PR_SOM, PR_completeTRNS, PR_
waiting-Thread), where

• PR_modes ∈ modes is the set of process contained
modes.

• PR_currentMODE is a variable that refers to the
current mode.

• PR_loaded is a Boolean variable that indicates
whether the process completes loading or not.

• PR_stopped is a Boolean variable that indicates
whether the process completes stopping or not.

• PR_SOM is a Boolean variable that indicates
whether the mode transition request has been
received or not.

• PR_completeTRNS is a Boolean variable that indi-
cates whether the mode transition has been com-
pleted or not.

• PR_waitingThread is a Boolean variable that indi-
cates whether the process is waiting for the old
mode threads to complete execution during mode
switching or not.

Process class has five different association rela-
tionships (PR_threads, PR_CONs, PR_modeTRNS,
PR_INports, PR_OUTports), where

• PR_threads connects the Process to the Thread
class to represent the set of thread subcomponent.

FIGURE 2. The general sketch map of the transformed Event-B model.

• PR_CONs connects the Process to the PO_
connection to describe the connection in the pro-
cess component.

• PR_modeTRNS connects the Process to the
Mode_transition class to represent the set of mode
transition that the process may have.

• PR_INports connects the Process to the IN_port
class to represent the set of process in ports.

• PR_OUTports connects the Process to the
OUT_port class to represent the set of process out
ports.

• PR_SUB connects the Process to the Subprogram
class to represent the set of subprogram subcom-
ponent.

The Process class contains the Load and Stop meth-
ods, which indicate the process loading and stopping
actions, respectively.

B. TRANSFORMATION OF THE AADL MODEL TO EVENT-B
In section III-A, we have represented the AADL components
using the UML class diagram. This representation plays the
role of an intermediary for the transformation into Event-B.
We organize the AADL classes into two groups: concrete and
abstract. The concrete group contains only the BHA_annex
and BHA_transition classes, whereas the abstract group con-
tains the remaining AADL classes. Figure 2 shows the gen-
eral sketch map of our transformed Event-B model, where
the abstract group (CONTEXT1, MACHINE1) contains the
corresponding Event-B semantics of the abstract classes. The
concrete group (Behavior annex CONTEXT, Behavior annex
MACHINE) contains the corresponding Event-B semantics
of the concrete classes. The two groups are connected via
the refines and extends relationships. The concrete Behav-
ior annex MACHINE is decomposed into several submodels
according to the number of threads that the process may
contain.

The Process MACHINE contains all variables and actions
related to the Process class. Each THREAD MACHINE
contains Thread attributes and methods. The commu-
nication among decomposed MACHINEs is established
through shared variables. We start by the transformation of
the abstract AADL group to the Event-B abstract group.
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TABLE 2. Basics of mapping rules.

FIGURE 3. Corresponding Event-B of AADL Thread constant attributes.

Table 2 lists the basic mapping rules of the transformation
approach. Then, the same approach is applied for the AADL
concrete transformation.

a: TRANSFORMATION OF ABSTRACT CLASSES
1) Transformation of AADL classes

Rule 1 maps each AADL class to a context con-
stant with the same name of the class. The con-
stant is constrained by the axiom of className ∈
P(CLASSNAME), whereCLASSNAME is a set to define
the className constant data type. For example, Thread
∈ P(THREAD).

2) Transformation of AADL class inheritance
relationships.
Rule 2 maps the inheritance relationship to the con-
text axiom of partition (className, sub_class1,
sub_class2. . . sub_classN), where sub_classi is the
class that inherits the className class.

3) Transformation of the AADL class constant
attributes.
Rule 3 maps the class constant attributes to the con-
text constant with the same name of attributes. This
constant is constrained by the axiom of attribute-
Name ∈ className→ attributeDATATYPE. If the
attribute is an array, the axiom type becomes attribute-
Name ∈ className→ P(attributeDATATYPE), where
attributeDATATYPE represents the data type of the
class attribute. For example, Figure 3 shows the trans-
formation of the Thread class constant attributes.

4) Transformation of AADL class association
relationships

FIGURE 4. Corresponding Event-B of AADL Thread association attributes.

Rule 5 maps the class association attributes to
the context constant with the same name of the
attributes. This constant is constrained by the axiom
type of associationAttributeName ∈ sourceClass-
Name → DestinationClassName. If the association
relationship is one-to-many, the axiom type becomes
associationAttributeName∈ sourceClassName → P
(DestinationClassName). For example, Figure 4 shows
the transformation of the Thread class association
attributes.

5) Definition of AADL classes’ object.
After the whole AADL classes, class constants, and
attributes have been mapped, the class objects are
defined. The class objects are mapped to the constant
and corresponding axiom constraints. For example,
Figure 5 shows the AADL examples and correspond-
ing Event-B axioms, where thread1, thread2, subpro-
gram1, inport1, inport2, outport2, access1, access2,
REQ1, and PRV1 have been defined as context
constants.

6) Transformation of AADL class variables attributes.
Rule 4 maps the class variable attributes to machine
variables. The variable has the name of classobject-
Name_attributeName to make each class object have
its own variables. The variable are constrained by
the invariant of classObjectName_attributeName ∈
className → attributeDATATYPE. If the attribute
is an array, the axiom type becomes classObject-
Name_attributeName ∈ className → P (attribute-
DATATYPE). For example, Figure 6 shows the
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FIGURE 5. The Event-B semantic of AADL classes objects.

FIGURE 6. Corresponding Event-B of AADL classes’ variables.

corresponding Event-B semantics of the Thread class
variables attributes.

7) Process class methods
The Process Load and Stop methods are mapped to
Event-B machine events. In this paper, we assume that
the process is stopped and started loading when an
event has been received. The Process Load method is

mapped to two machine events: processName_loading
and processName_completeLoading. The process-
Name_loading receives the LOAD_EVENT and sub-
sequently initializes all process ports. The pro-
cessName_completeLoading updates the value of
PR_loaded to TRUE. The Stopmethod is mapped to the
processName_stop machine event. This event receives
STOP_EVENT and marks the process as idle by updat-
ing the PR_loaded to FALSE.

8) Thread class methods
The five Thread class methods (initialize, acti-
vate, deactivate, compute, and finalize) are mapped
to the machine events. The initialize method is
mapped to two machine events: threadName_
initialization1 and threadName_initialization2. The
threadName_initializ-ation1 is enabled when the
thread is a part of the initial mode and subsequently
changes the thread state to AWAITING_DISPATCH.
The threadName_initialization2 changes the thread
state to AWAITING_MODE if the thread does not
belong to the initial mode. The activate and deactivate
methods are mapped to the threadName_activation
and threadName_deactivation events, respectively.
In AADL, these two actions occur after the mode tran-
sition request has been received, which is represented
by the TRUE value of PR_SOM variable in the trans-
formed Event-B model. The threadName_activation
event checks whether the thread is part of the current
mode; then, the thread state is changed to AWAIT-
ING_DISPATCH. The threadName_deactivation is
enabled when the thread is not part of the current mode;
then, the thread state is changed to AWAITING_MODE.
Thread dispatch and timing
In the AADLmodels, timing constraints play an impor-
tant role. However, Event-B only models the functional
requirements, so no timing variables are declared.
In our proposed method, we assume that each tim-
ing variable is an integer variable, which is incre-
mented by one when the system’s clock increases by
one, to represent the thread delay. The thread com-
pute method is listed in Algorithm 1. This algorithm
is described in Event-B by three machine events:
threadName_start_dispatch, threadName_execute, and
threadName_complete_execution. Figure 7 illustrates
the Event-B representation of the thread timeline.
The threadName_start_dispatch event’s guard is spec-
ified according to the dispatch_protocol property,
as described below.
• Periodic thread: threadName_t = THR_period
• Aperiodic thread: checks whether a new value has
been arrived to the thread THR_DISports ports or
not.

• Timed thread: threadName_t = THR_period ∨
checks the arrival of a new event to any
THR_DISports port.
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FIGURE 7. Thread computation timeline.

Algorithm 1 Thread Compute Description
loop
if thread dispatch condition is TRUE then
update threadName_state to EXECUTION
update thread_dispatch to TRUE

end if
if threadName_state is EXECUTION then
while threadName_c is less than THR_EXtime do
increment threadName_c by one

end while
if threadName_c equal the THR_EXtime then

send the value to out port
if CON_type is IMMEDIATE then
assign output port to CON_buffer

end if
update threadName_state to AWAIT-
ING_DISPATCH
update threadName_dispatch to FALSE
reset threadName_c to zero

end if
end if
if the PO_type is DELAYED then

assign output port to CON_buffer
end if
if thread is aperiodic, Timed or sporadic then

if the dispatch port queue is not empty then
dequeue an element and assign it to port-
Name_variable
update the portName_state to TRUE

end if
end if

end loop

• Sporadic: threadName_t ≤ THR_period ∧ checks
the arrival of a new event to any THR_DISports
port.

Then, the threadName_start_dispatch event updates
threadName_state to EXECUTION and thread-
Name_dispatch to TRUE. The threadName_execute
event increments the threadName_c by one until it
reaches the value of thread_EXtime. Consequently,
threadName_complete_execution occurs. In the aperi-
odic thread, the threadName_dequeue event checks the

FIGURE 8. Periodic thread.

queues of dispatch ports. If any queue is not empty,
the thread continues executing.
For each periodic, timed and sporadic thread,
the threadName_clock event is created to calculate the
time. The threadName_clock event is enabled as long as
the thread is active and waiting for dispatch. This event
increments threadName_t by one until it reaches the
value of THR_period; consequently, the event is dis-
abled, and the thread becomes ready to be dispatched.
Figure 8 shows an example of the periodic thread
transformation.
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Thread locking data access actions
The Get_resource and Release_resource methods’
description is listed in Algorithm 2. The algo-
rithm is represented in Event-B by four machine
events: threadName_getResource, threadName_relea-
seResource, recourseName_busy, and dataNameAc-
cessQueue_dequeue.

Algorithm 2 Get_rsource and Release_resource Methods
Description

loop
if threadName_dispatch is TRUE then
if threadName_c equal one then

if dataName_lock is FALSE then
lock the data by updating the value of
dataName_lock to TRUE

else if dataName_lock is TRUE then
add thread to waiting queue
update threadName_state to SUSPEND

end if
if dataName_lock is FALSE and threadName_state
is SUSPEND then
lock the data by updating the value of
dataName_lock to TRUE
update threadName_state to EXECUTION

end if
end if

end if
if threadName_c equal THR_EXtime-1 then

ulock the data by updating the value of
dataName_lock to FALSE

end if
end loop

The threadName_getResource event is enabled after
the thread has been dispatched. This event checks the
state of the data resource. If the data resource has
not been locked, then the dataName_lock is updated
to TRUE. The recourseName_busy event changes the
thread state to SUSPEND if the data resource is
locked by another thread and subsequently adds the
thread to the dataName_accessQueue. The thread-
Name_releaseResource event is enabled after the
thread has completed its dispatch. This event updates
dataName_lock to FALSE. Once the data resource
is unlocked, the dataNameAccessQueue_dequeue
event is enabled to allow other threads to lock
the data according to the order of elements in
dataName_accessQueue. Figure 9 shows the thread
data access example and the corresponding Event-B
events.

9) Mode_transition class methods
The mode_transit method description is listed in
Algorithm 3. The algorithm is represented in Event-B
by fourmachine events: TRNSname_mode_transition1,

FIGURE 9. Thread data access.

TRNSname_mode_transition2, TRNSname_mode_
tran-sition3, and TRNSname_mode_transition4. The
TRNSname_mode_transition1 event is enabled when
the value ofMT_response is EMERGENCY.
This event checks the mode switch trigger port
whether a new value has arrived or not. Then,
the value of the PR_SOM variable is updated to
TRUE. If the MT_response value is PLANNED,
the TRNSname_mode_transition2 event is enabled
when old mode threads are still executing. The pro-
cess waits for the threads in the old mode to com-
plete execution. The TRNSname_mode_transition3
event occurs after the old mode threads have com-
pleted their execution. Then, the value of the
PR_SOM variable is updated to TRUE. The TRN-
Sname_mode_transition4 event checks whether the
value of threadName_completeACT and thread-
Name_completeDEC are TRUE. Then, the current
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Algorithm 3Mode_transition transitMethod Description
loop
if MT_reposnes is EMMREGENCY then
update PR_SOM to TRUE

end if
if MT_reposnes is PLANNED then

if current mode threads are still executing then
wait threads to complete execution

end if
if threads complete the execution then
update PR_SOM to TRUE

end if
end if
if PR_SOM is TRUE then

activate new mode threads
deactivate old mode threads

end if
if threads complete activation and deactivation then

update Process_currentMODE to the new mode
end if

end loop

mode is changed to the new mode. Figure 10 illustrates
the transformation of the mode transition.

10) Subprogram, SUB_call, PAR_CON, and
AC_connection classes’ methods
The AC_connect method is described in Algorithm 4.
The algorithm is represented in Event-B by three
Event-B machine events: requiresFeatureName_call,
providesfeatureName_call, and accessName_connec-
tion. The requiresFeatureName_call event activates the
subprogram call by updating the value of SQ_flag
to TRUE. Then, the accessName_connection event
receives the call, assigns it to AC_buffer, and marks
the value as fresh by updating the value of the buffer
SQ_flag to TRUE. Once the access buffer has a new
value, the providesfeatureName_call event is enabled.
Then, the server thread starts dispatching and subse-
quently calls the subprogram to be executed.
Figure 11 shows the transformation of the remote
subprogram call.
The SUB_call call method, which represents the
local subprogram call, is mapped to two machine
events: subprogramName_sendCall and subprogram-
Name_call. subprogramName_sendCall is enabled
once the thread has been dispatched. Then, it sends
the call to the subprogram by updating the value
of call_flag to TRUE. subprogramName_call checks
whether the value of call_flag is TRUE. Then,
it updates SUB_callFlag to TRUE to start the subpro-
gram execution. T he subprogram compute method is
mapped to three Event-B machine events: subpro-
gramName_start, subprogramName_execute and sub-
programName_complete. The subprogramName_start

FIGURE 10. Process mode transition.

is enabled once SUB_callFlag is updated to TRUE.
Th subprogramName_execute and subprogramName_
complete represent the subprogram computation delay.

b: TRANSFORMATION OF CONCRETE AADL CLASSES
The two classes in the concrete AADL classes ( BHA_annex
and BHA_transition) are mapped as the mapping approach
of abstract AADL classes. The classes are mapped to the
Behavior_annex context constants. The AADL class constant
and association attributes are mapped to the Behavior_annex
context constants. The AADL class variables are mapped to
the Behavior_annex machine variables.
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Algorithm 4 AC_connection AC_connect and Suprogram
callMethods Description
loop
if client thread is dispatched then

if clientThread_c equal one then
send call to the requires subprogram access by
updating the value of SQ_flag to TRUE
update the clientThread_state to SUSPEND

end if
end if
if SQ_flag is TRUE then

update corresponding buffer SQ_flag to TRUE
end if
if buffer SQ_flag is TRUE then
update corresponding SV_flag to TRUE

end if
if SV_flag is TRUE then

if serverThread_state is AWAITING_DISPATCH
then
update serverThread_state to EXECUTION
call the subprogram by updating SUB_flag to
TRUE

end if
end if
if SUB_flag is TRUE then

update SUB_state to EXECUTION
end if
while SUB_time is less than SUB_EXtime do

increment SUB_time by one
end while
if SUB_time equal SUB_EXtime then

upadate SUB_Callflag to FALSE
reset SUB_time to zero

end if
if subprogram complete execution then
update the clientThread_state to EXECUTION
update the ServerThread_state to AWAIT-
ING_DISPATCH

end if
end loop

The state_transit method is mapped to three machine
events: transitionName_Dispatch, transitionName_execute
and transitionName_complete, where,

• The transitionName_Dispatch event refines thread-
Name_start_dispatch and has the same guard as the
transition’s guard

• The transitionName_execute event refines the thread-
Name_execute and represents the delay of transition
execution.

• The transitionName_completeDispatch event refines the
threadName_complete_dispatch, has the same action as
the state transition action, and subsequently changes
threadName_BHAstate to the destination state.

FIGURE 11. Remote subprogram call.

For example, Figure 12 shows the transformation of the
AADL thread’s behavior annex example.

c: BEHAVIOR_ANNEX MACHINE DECOMPOSITION
To allow the concurrent execution of the AADL threads,
the Behavior_annex machine is decomposed. The function-
ality of the Behavior_annex MACHINE is separated so that
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FIGURE 12. Thread behavior annex.

the process and each thread constitute a sub-model. The
partitioning of the example in Figure 13 is shown in Table 3.
The Process1 MACHINE shares all external variables with
the THR1 and THR2 machines and communicates with the
tow thread machines via the external events. The THR1 also
shares the access connection buffer relative variables with the
THR2MACHINE.

IV. VERIFICATION OF THE TRANSFORMATION
CORRECTNESS
To verify the correctness of the model transformation, it is
essential to verify the preservation of the AADL seman-
tics and verify that the mapping rules are deterministic and
terminating.

We have used the UML class diagram as the interme-
diary between the AADL and the Event-B model. There-
fore, first, we start to verify the correctness of the class
diagram description. Then, we verify the correctness of the

FIGURE 13. AADL example.

TABLE 3. Separation of events and variables.

AADL class diagram transformation into Event-B. To verify
the semantics preservation of our transformation approach,
we propose a graph homomorphism [23], [24], which verifies

VOLUME 8, 2020 72827



A. S. A. Hadad et al.: Formal Verification of AADL Models by Event-B

the structural relationships between two elements of two
different models. Therefore, it presents the semantic preser-
vation of the mapping from the source to the target model and
preserves the consistency of the transformation approach.
Definition 1: The two graphs G and H with
N(G): set of nodes of the graph G,
N(H): set of nodes of the graph H,
E(G): set of edges of the graph G,
E(H): set of edges of the graph H,
The function mapping f is from graph G to graph H, where

f: G→ H such that:

∀x, y ∈ N (G) ∧ f (x), f (y) ∈ N (H ) ∧ xy

∈ E(G)⇒ f (x)f (y) ∈ E(H )

then f is called graph homomorphic.
The mapping rules are deterministic when they always get

a unique result with the same input.
Definition 2: The function mapping f is from graph G to

graph H, where f: G→ H such that:

∀x, y ∈ N (G) ∧ f (x) = f (y)⇒ x = y

then f is called deterministic
To verify the semantics preservation and determinism,

we propose a graph homomorphism of the description of
model’s elements between the AADL and UML class dia-
gram and then the mapping between the AADL class diagram
and Event-B. Two graphs function mappings are defined, a
and b, where a is a mapping function between two model
graphs, AADL(AD) and UML class diagram(CL), and b
is a mapping function between two models, AADL class
diagram(CL) and Event-B(EB), so we must prove that a and
b are graph homomorphic and deterministic.

In general, our approach was proposed based on the per-
spective of grammatical structure and semantics of the source
and target model. Because both sides of the transformation
model have exactly no ambiguous grammatical structure,
we have applied a one-to-one mapping between the source
and the target model.

According to the AADL grammatical structure described
by the context-free grammar, we have combed out the trans-
formation elements of the AADL model and the constituent
relationships among the elements. Then, we have applied a
one-to-one description of the AADL model elements, behav-
ior of the elements, and relationship among the elements to
the UML class diagram. Each description corresponds to a
determined and unique description result. Therefore, in the
mapping function a, we have ensured that:

∀x, y ∈ N (AD) ∧ f (x), f (y) ∈ N (CL) ∧ xy ∈ E(AD)

⇒ f (x)f (y) ∈ E(CL)

Hence, a is graph homomorphic.
We also have ensured that:

∀x, y ∈ N (AD) ∧ f (x) = f (y)⇒ x = y

Hence, a is deterministic.

The one-to-one mapping started from the top leaf in the
AADL structured composition, and the termination condition
of the transformation is the atomic element in the AADL
model, which is the lowest leaf node in the AADL structured
composition. The number of nodes decreases in each trans-
formation step. Hence the transformation is terminating [25].

Similarly, it has been proven that the function mapping b
is graph homomorphic, deterministic and terminating.

V. CASE STUDY
A. DESCRIPTION OF THE CTCS-3 MA SYSTEM
To show the efficacy of our approach in the verification of
the AADL model, this section proposes the formal verifica-
tion experimental results for the Movement Authority (MA)
control of the Chinese Train Control System. The authors
in [26] present the analysis and description of how the train
controls and monitors its velocity. The MA system consists
of three basic components: i) the train periodically sends
its current state (every 200 milliseconds) to the controller
and receives the computed acceleration from the controller.
ii) The Radio Block Center (RBC) provides and extends the
MAs to the trains according to the information received
from the trackside and on-board controller. iii) The On-board
controller controls the train velocity by modifying its accel-
eration. The MA package consists of a set of segments,
length and endpoint (EoA). Each segment contains velocity
limitations v1 and v2 (v1 6 v2) and segment endpoint (e).
The train requests for new movement’s authority as it arrives
at a specific distance (SR) from EoA. In this case study,
we assume the length of the MA is 8 kilometers, the length
of the SR is 1.5 kilometers, and all segments have identical
length and speed limits. The train starts with a speed of 0 m/s.

B. AADL MODEL OF THE CTCS-3 MA SYSTEM
We build the hybrid CTCS-3 AADL model based on the
description introduced in [26]. Figure 14 illustrates the
AADL model of CTCS-3 MA, which comprises the accel-
eration_control process with three modes: STOP, READY
and MOVING. The acceleration_control process contains
five threads, (Get_trainINFO, Train_start, Get_MA, Calcu-
late_distance and Check_acceleration) and three data sub-
components (MA, Segment, and Train_INFO). The STOP is
the initial mode; once the process has received the event
on the train_ON port, the Train_start thread is activated,
the current mode is changed to READY, and Train_start
applies for a new MA. Once the train has received the
new MA, Get_trainINFO, Get_MA, Calculate_distance and
Check_acceleration are activated, Train_start is deacti-
vated, and the current mode is changed to MOVING. The
Get_MA receives the new MA and sends an event to
Check_acceleration, which computes and sends a new accel-
eration. The Calculate_distance thread applies for a new
MA as train position 6 EoA-SR. If the Get_MA thread does
not receive a new MA, all process threads are immediately
deactivated, and the current mode is changed to STOP.
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FIGURE 14. AADL CTCS-3 MA system.

C. FORMAL VERIFICATION
We transform the AADL CTCS-3 MA model to Event-B
according to the above defined mapping rules. In this section,
we define the properties that are verified as theorems or
invariants. The RODIN platform automatically generates and
proves the corresponding proof obligation rules for each the-
orem and invariant. Some of the generated rules require an
external prover such as Atelier B prover

1) Safety properties are described as ‘‘something bad
never happens’’

• System safety constraints are defined as invariants
to ensure that the system safety constraints are
preserved by each event. The CTCS-3 MA system
has two safety constraints: (i) the train is con-
stantly moving forward, otherwise it has already
stopped. This constraint is defined as the following
invariant:

moving_forward: current_velocity (Train_INFO1) > 0

where current_velocity indicates the current train
velocity. For this invariant, the PO rule event/
moving_forward /INV is automatically generated
for each event. (ii) The train must send a request
for a new movement authority as it reaches a
specific distance (SR) from the (EoA) of MA. This
constraint is defined as the following invariant:

MA_extention: current_position (Train_INFO1) >
MA_EoA(MA1)-SR

where current_position indicates the current train
position that has been saved in the Train_INFO1
shared data resource. For this invariant, the PO
rule event/ MA_extention /INV is automatically
generated for each event.

• Timing correctness represents the state that the
thread execution time never exceeds the thread
maximum execution time. This constraint is
defined as the following invariant:

timing_correctness: threadName_c(threadName) 6
THR_Extime (threadName)

For example, in the thread Get_MA, the timing
correctness invariant is:

MA_timing_correctness: Get_MA_c(Get_MA) 6
THR_Extime (Get_MA)

For this invariant, the PO rule event/MA_timing_
c-orrectness /INV is automatically generated for
each event.

• Reachability refers to the ability of transition from
one state to another with one or more events.
The AADL model requires the verification of
mode, and the behavior annex state reachability
(i) mode reachability refers to the ability of transi-
tion from a mode to another while receiving a new
event/event data on one of event/event data ports.
This condition is defined as the following theorem:

Mode_reachability: ∀ a.a ∈ modes ∧ a ∈ ran(PR_modes)
⇒ a ∈ ran (MT_Smode)

The Mode_reachability theorem implies that each
mode that belongs to process modes has an out-
going transition to another mode. The generated
PO rule for this theorem is Mode_reachability/
THM.
(ii) Behavior states reachability refers to the abil-
ity of transition from a behavior state to another
with one or more guards. We define this condition
as the following theorem:

State_reachability: ∀ a.a ∈ state ∧ a ∈ ran(BHA_states)⇒
a ∈ ran (TRNS_Sstate)

The State_reachability theorem implies that each
state belonging to a thread behavior annex state
has an outgoing transition to another state.
The generated PO rule for this theorem is
State_reachability/ THM.
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• Deterministic refers to the conditions where there
are no two or more outgoing transitions, which
lead to different states with the same events. For
example, the following theorem is defined to verify
whether the process modes are deterministic:

Mode_ deterministic: ∀ x, y. x∈Mode_transition
∧ y ∈Mode_transition ∧ x 6= y
∧MT_Smode(x) =MT_Smode(y)
MT_Dmode(x) 6=MT_Dmode(y)
⇒

MT_DISport(x) 6=MT_DISport(y)

The generated PO rule for this theorem is Mode_
deterministic / THM.

• Deadlock-free: in concurrent computing, dead-
lock refers to two conditions (i) First, each
member in a group is waiting for some other
members to take action; therefore, they cannot
interact with the environment. In theAADLmodel,
if the port connection between two threads is
deleted, the destination thread cannot be dis-
patched. Hence, the destination thread will wait to
receive a new event or event data. This condition is
defined as the following theorem:

Deadlock_free1: ∀ a.a ∈ P (DIS_ports) ∧ a ∈
ran (THR_DISports)⇒
a ∈ran (CON_Dport)

The Deadlock_free1 theorem implies that each
thread dispatch port must be connected to any other
corresponding thread port. The generated PO rule
for this theorem is Deadlock_free1/THM.
(ii) The second condition refers to the state
that two members in a group are sharing the
same two resources and waiting for each other
to release the resources. In AADL, this condition
refers to the state where two threads are sharing
two different data components and waiting for
each other to release them. Figure 15 shows the
CTCS-3 MA system model deadlock state, where
the Check_acceleration and Calculate_distance
threads are locking the two data components MA
and Train_INFO and waiting for each other caus-
ing a deadlock.
This condition is defined for the two threads as
follows:

Deadlock_free2: ((MA_lock (MA1) = TRUE
∧MA_accessingThread (MA1) = Check_acceleration)
∧ (Train_INFO_lock (Train_INFO1)= TRUE
∧ Train_INFO_accessingThread (Train_INFO1)
= Calculate_distance))

⇒

Check_acceleration /∈ Train_INFO_accessQueue
(Train_INFO1)
∧ Calculate_distance/∈MA_accessQueue (MA1)

This theorem implies that if theCalculate_distance
and Check_acceleration threads have a requires

FIGURE 15. Two-thread deadlock condition.

data access feature to tow different data com-
ponents, MA and Trian_INFO, the Check_
acceleration is locking MA and wants to access
Train_INFO. Simultaneously, Calculate_distance
is locking the Train_INFO and wants to access
the MA. The Check_acceleration must not be
in the Train_INFO waiting queue. The Calcu-
late_distance must not be in the MA waiting
queue. The generated PO rule for this theorem is
Deadlock2/ THM.

2) Liveness properties refer to the state of ‘‘something
good eventually happens’’. The liveness properties
are always expressed with linear-time temporal logic
(LTL) formulas, which is a modal temporal logic with
modalities refers to time. We propose a set of proof
rules to verify the progress properties [27]: some-
thing must eventually occur if some conditions hold
(� (P1⇒� P2)); we verify the properties of (�(thread
dispatch condition⇒� thread dispatch)) and (�(mode
switching ⇒ �; all new mode’s threads are active,
and those do not belong to new mode are not active)).
All liveness properties are described as invariants. For
example, the following invariant is defined for Calcu-
late_distance thread:

CalculateD_liveness1: CalculateD_t (Calculate_distance)
= THR_period (Calculate_distance)
⇒

CalculateD_dispatch
(Calculate_distance) = TRUE

The generated PO rule for this invariant is event/
CalculateD_liveness1/INV.

3) The trace refinement properties refer to the state
where the concrete model satisfies the abstract one.
In Event-B, the RODIN platform automatically gen-
erates the proof obligation rules for concrete events
in the Behavior_annex MACHINE. Two PO rules are
generated (i) simulation (SIM) to ensure that when
a concrete event is executed and performs actions,
what it executes does not contradict what the corre-
sponding abstract event executes. (ii) The invariant
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preservation (INV) verifies that each abstract invariant
is preserved by both concrete and abstract events. For
example, theCheck_acceleration thread has a behavior
annex. For the corresponding behavior annex events of
each state transition, two types of PO are generated
(SIM and INV) to ensure that the Behavior_annex
MACHINE events satisfy the refined MACHINE1
events and invariants.

VI. RELATED WORK
Several studies on the formal verification of AADL using
model transformation have been presented.

D’Souza et al. [30] use the Event-B refinements and
decompositions to capture the semantics of the AADL model
defined through successive refinements. Using the transfor-
mation of AADL components to Event-B presents the ability
to formally prove architectural requirements related to the
correctness of AADL models. Their work only focuses on
the AADL architectural semantics, and the transformation of
AADL behavioral semantics is not included. Therefore, many
properties related to behavioral semantics were not verified.
Generally, we have addressed different issues and presented
different paths, including the general mapping rules of AADL
components and mapping behavior of the AADL compo-
nents to Event-B, whereas they only present the transforma-
tion of the AADL subset in the case study that they used.
For the refinement correctness verification, the above paper
addresses the correctness of the continuous refinement of the
AADL model, whereas we have addressed the issues of the
semantic reliability of the AADL model at each refinement
level.

Chkouri et al. [9] transform AADL to BIP (Behavior Inter-
action Priority), which is a framework to model real-time
components. This transformation provides the simulation of
AADL models and formal verification techniques such as
model-checking (Aldebaran and observers tools).

Berthomieu et al. [7] propose a formal verification for
AADL with its behavioral annex using a high-level view
tool. Relying on Fiacre, the Tina model is generated from the
AADL model, and the verification activities are presented.
Bodeveix et al. [8] express the semantics of the AADL and
FIACRE subsets in a common framework, which is called the
timed transition systems (TTS).

Mkaouar et al [12] introduce the transformation of an
interesting subset of the AADLmodel to an LNT [13]. which
is supported by the CADP toolbox.

Ölveczky et al. [10], [11] present a formal object-based
semantics for the AADL subset. The generated semantics
is executed in Real-Time Maude. They propose an AADL
LTL model checking with the OSATE integrated tool called
AADL2Maude.

Yang et al. [14] transform AADL to Timed Abstract State
Machines (TASM) with machine semantic-preservation and
verify the semantic preservation of the transformation rules
by a theorem prover (Coq). Hu et al. [15] propose a translation

of AADL to TSAM and verify some properties (deadlock and
reachability) using UPPAAL.

Bao et al. [31] present the Uncertainty annex, which is
a proposed extension language to AADL. They transform
the uncertain-aware Hybrid AADL to NPTA and present a
verification based on the UPPAAL-SMC. Johnsen et al. [28]
use semantic anchoring to present the transformation rule of
semantics of the AADL subset to timed automata constructs,
which is an input language to the UPPAAL model-checker.

Yang et al. [4] construct formal semantics of AADL using
machine-reachable CSP, analyze and verify the deadlock and
livelock using the tool FDR. Ahmad et al. [5] propose the
formal semantics of the synchronous subset of AADL by
using HCSP and verify the correctness of the AADL model
by an in-house developed theorem prover, the Hybrid Hoare
Logic (HHL) prover. Zhang et al. [6] introduce a set of
transformation rules for AADL to the stateful timed CSP and
verify the critical behavior properties of the AADL model
by PAT.

Yu et al. [32] translate the AADL model into SIGNAL
models in order to avoid AADL semantics ambiguities.
This translation provides formal analysis and represents
a bridge between AADL and SYNDEX. The SYNDEX
model is used to do distribution, scheduling and architec-
ture exploration. Gautier et al. [29] present a formal model
of automata based on clock relations, this model is called
polychronous automata. Then they refine the AADL trans-
formation into polychronous models which are introduced
in [32] by presenting the AADL Behavior annex as poly-
chronous automata. The polychronous automata model pro-
vides the verification and analysis of properties such as
deadlock-freeness and schedulability.

Table 4 shows the differences between our work and pre-
vious works, where the comparison is determined according
to the following principles:

First, the AADL subset is included in the work. The
previous works only focused on a small AADL subset. With
the development of real-time systems, they become larger and
more complex. Therefore, when it has been modeled using
AADL, the AADL components included in the model are
larger. Our work focuses on extending the AADL subset.
We have compared the included subset by comparing the
AADL components, connections, Shared variables, Behavior
annex, and subprogram call. For the AADL connection, our
work includes five types of connections, three port types
(data, event, and event data), parameter, and access connec-
tions. The ‘‘+’’ sign in Table 4 refers to each connection
type. The Behavior annex is not included in some works, and
others include only a small Behavior annex subset. Our work
includes the entire Behavior annex subset (state, variables,
state transitions), which is denoted by ‘‘+’’ in Table 4. Our
work includes two types of subprogram call: local and remote
calls. Each subprogram call is denoted by ‘‘+’’ in Table 4,
whereas the previous works do not include the remote sub-
program call. The shared variables that no previous work
considered are included in our work.
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TABLE 4. Comparison of related work.

Second: the verified properties. As shown in Table 4,
we have presented the verification of the additional proper-
ties, which were not verified by previous work such as the
shared data deadlock. These properties must be verified.

Third: the transformation correctness. Most related
works do not consider the transformation correctness, which
is presented in our work.

VII. DISCUSSION
The main purpose of this paper is to present a formal ver-
ification of the critical properties of the AADL models by
Event-B.

Our results show that the transformed model is extendable;
as we have used the UML class diagram as a role intermedi-
ary, more AADL subsets can be added as new classes and
connect with the related classes using class relationships.

Moreover, the Event-B with its refinements and exten-
sion relationships makes the transformation of the new
AADL classes easy without retransforming the entire model.
Event-B also provides verification that the properties in the
abstract level are preserved through refinement.

The Event-B proof obligation is effective to verify the
AADL critical properties, so any properties can be expressed
by using invariants and theorems. The critical properties have
been automatically verified using RODIN auto-prover, and
some properties require external prover such as Atelier B
prover. Using the RODIN Prob tool, the behavior of the
critical properties has been observed and experimented.

Compared to previous works, our work has satisfied all
requirements of the current real-time systems. We have
attempted to make our approach more effective to verify
most of the current systems, whose design has become more
complex and contains a larger AADL subset. Unlike previous
methods, by using the Event-B refinement, the AADL subset
can be transformed gradually to ensure the traceability of
Event-B against the AADL.

Our mapping rules are clear and have no ambiguous
semantics. The mapping rules have included all details of the

transformation of AADL to the Event-B model, which makes
the implementation of the automatic transformation tool easy
according to thesemapping rules. The transformation tool can
be a Plug-in unit of Osate with RODIN.

In order to ensure the correctness of the transforma-
tion, we have ensured that the transformation is determin-
istic, terminating and preserves the semantic. We have first
ensured the correctness of the class diagram description of
AADL, then ensured the correctness of the mapping of the
AADL class diagram into Event-B. The AADL class diagram
description has been defined from the perspective of the
grammatical structure since both sides of the transformation
model have exactly no ambiguous grammatical structure.
We used Osate tool to further clarify the AADL semantics
through experimental verification such as the concept of flow
in AADL and the behavioral semantics of threads. Then,
we applied a one-to-one description of the AADL model
elements, the behavior of the elements, and the relationship
among the elements to the UML class diagram. Each AADL
element has corresponding, determined and unique descrip-
tion result. The AADL class diagram has been transformed
into Event-B by one-to-one mapping since each AADL class
diagram element, attribute, relationship and method has a
unique transformation result.

VIII. CONCLUSION
The formal verification of AADL models using the model
transformation aspect to a formal language has been used to
verify some critical safety properties. This paper presented
the formal verification of the AADL model by transforming
the semantics of the model into Event-B. The Event-B has
been selected because it can cover all AADL architectural
and behavioral semantics with preservation of the AADL
properties. It can also formally verify most of AADL critical
safety and liveness properties.

We have introduced the AADL model subset description
using the UML class diagram, which has played the role of
intermediary for the transformation. By modeling the UML
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class diagram for AADL, we have described the details,
features, and behavior of each AADL component and the
relationships of the components. We have defined a set of
mapping rules from the AADL class diagram to Event-B;
these mapping rules were presented according to the one-
to-one mapping of the AADL classes, attributes, methods and
the relationships among the AADL classes into the Event-B
model. The behaviors of the AADL components, which are
described as class methods in the AADL class diagram, were
mapped to Event-B based on algorithms that were defined to
represent the detailed semantics of the component behavior,
such as the description of thread dispatch. These algorithms
have been translated to Event-B semantics and validated
using the RODIN ProB tool.

This paper involves the transformation of most of the
AADL components, which have been recently included in
the real-time system model due to the expansion of these
systems and their increasing complexity. We have consid-
ered a large AADL subset including software components,
process, all dispatch thread types (periodic, aperiodic, spo-
radic, and timed), subprograms, data components, connec-
tions (data port, event port, event data port, parameters,
access), remote and local subprogram calls, shared variables
by several threads, mode transitions and thread behavior
annex. After the AADLmodel has been transformed, the crit-
ical properties to be verified have been defined as Event-B
theorems and invariants. The properties have been extracted
from the behavior of the system that causes these properties
to occur, and they have been mathematically expressed using
Event-B invariant and theorems. Then, the corresponding
proof obligation rules of these invariants and theorems have
been automatically generated and verified by the RODIN
platform. This paper has verified additional safety properties
such as Shared data deadlock and proven the correctness of
AADL refinements. Moreover, the transformation correct-
ness has been verified using graph homomorphism.

The effectiveness of our approach has been demonstrated
by modeling the AADL of the Movement Authority (MA)
control of the Chinese Train Control System. The AADL
model has been transformed to Event-B using our methodol-
ogy; then, the transformed Event-B model has been verified
using proof obligation rules.
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