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ABSTRACT Computer-aided diagnosis systems with deep learning frameworks have been used to identify
benign and malignant pulmonary nodules in lung cancer diagnosis. It’s commonly known that a premise
of training complex deep neural nets is the large-scale labeled datasets. However, the abundance of
labeled datasets is usually unavailable in many medical image domains. This factor can lead to the poor
generalization performance of deep learning models. In this paper, we propose a novel multi-discriminator
generative adversarial network model combined with an encoder for the classification of benign and
malignant pulmonary nodules. To the best of our knowledge, we are the first to apply unsupervised learning
to identify benign and malignant lung nodules. Firstly, we use a multi-discriminator generative adversarial
network to build a generative model trained with unlabeled benign lung nodule images. Then an encoder is
combined with the trained generative model to establish a mapping of benign pulmonary nodule images to
the latent space. The benign and malignant lung nodules are scored by calculating the GAN discriminator
feature loss and image reconstruction loss. The model yields high anomaly scores on malignant images and
low anomaly scores on benign images. Experimental results show that our method with only a small number
of unlabeled datasets could achieve more competitive results compared with other supervised deep learning
approaches.

INDEX TERMS Computer-aided diagnosis (CAD), lung nodule, malignancy classification, unsupervised
learning, generative adversarial networks.

I. INTRODUCTION
According to the 2015 Global Cancer Statistics, lung cancer
is approximately more than 27% of all cancers and causes
19.5% of cancer-related deaths each year [1]. Early lung
cancer has no obvious clinical symptoms, and some are
only presented in the form of lung nodules. In the major-
ity of cases, it is too late for successful therapy once the
patient develops the first symptoms. In recent decades, with
the update and development of various clinical examination
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technologies, especially low-dose spiral computed tomog-
raphy in lung screening has provided an effective method
for the early diagnosis of lung cancer. Because of the large
range of nodule shape, texture variation and visual similarities
shared by malignant and benign nodules, pulmonary nodules
identification has become a research focus [1], [2].

It is a heavy task for doctors to identify lung nodules from
a large number of CT images and judge whether they are
benign or malignant. Due to the subjective nature of doctors,
there is a high chance of misdiagnosis. Thus, computer-aided
diagnosis (CAD) systems have been developed to overcome
this problem. There are twomain classes of CAD systems [3]:
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detection systems (CADe) and diagnosis systems (CADx).
The goal of CADe is to detect the presence of nodules at the
initial stage. The aim of CADx is to diagnose the benign and
malignant nodules based on the detected nodules, which can
assist doctors to make an accurate diagnosis of patients with
lung diseases in time [4]–[7].

Recently, deep learning techniques have achieved
profound success in many medical image domains, for
instance, the classification of benign-malignant lung nod-
ules [8]. Hua et al. [9] applied deep convolutional neural
networks (DCNN) and deep belief networks (DBN) to lung
nodule classification, respectively, and confirmed that deep
learning can better distinguish benign and malignant lung
nodules. Shen et al. [10] proposed to apply multi-crop
convolutional neural networks (MC-CNN) for lung nodule
malignancy classification and learn the heterogeneous fea-
tures of lung nodules by learning images of different scales.
Xie et al. [11] jointly used the nine multi-view knowledge-
based collaborative (MV-KBC) deep model to separate
malignant from benign nodules by characterizing the nod-
ules’ overall appearance, voxel, and shape heterogeneity,
respectively. These experiments indicate that deep learning
framework has good performance in the classification of
benign and malignant nodules.

A prerequisite for training deep learning models is the
presence of large-scale labeled datasets. However, labels are
especially difficult to obtain. This is due to a number of
factors: a) marking medical data usually requires a specially
trained physician; b) It is difficult for even experts to mark the
lesion boundaries due to the low signal-to-noise ratio in many
medical images; c) The annotators have to mark the entire 3D
volume of data, which can be expensive and time-consuming.
Because of these limitations, CT medical image datasets are
usually small, which may lead to over-fitting on the training
set, and by extension, poor generalization performance on the
test set [12].

In recent years, with the popularization of medical
examinations, the demand for processing large amounts of
unlabeled medical image data has become more and more
urgent. Therefore, it is of great significance to explore
the computer-aided diagnosis of pulmonary diseases based
on weakly supervised learning, semi-supervised learning,
and unsupervised learning in the field of medical imaging.
Zhu et al. [12] proposed DeepEM, a novel deep 3D ConvNet
framework augmented with expectation-maximization (EM),
to mine weakly supervised labels in EMRs for pulmonary
nodule detection. Feng et al. [13] applied a weakly supervised
method to pulmonary nodule segmentation. In this method,
multiscale learning and global average pooling (GAP) were
used to obtain the true nodule location, and then pulmonary
nodules were segmented in combination with the iterated
conditional mode. Zhang et al. [14] presented an unsuper-
vised multi-hidden layer deep belief network to extract the
deep features of lung nodule images, and then used extreme
learning machine as a classifier to classify the extracted fea-
tures into benign and malignant ones. However, the practical

classification method of benign and malignant pulmonary
nodules with unsupervised learning has not been proposed.

Generative adversarial networks (GANs) introduced by
Goodfellow et al. [15] is one of the most promising unsuper-
vised learning methods. The proposed algorithm is based on
GAN. A GAN consists of two adversarial networks, a gener-
ator G and a discriminator D. G is a generative network that
uses a random to generate an image. D is a discriminating
network that discriminates whether an image is real. The
formulation of GAN training suffers from training instability
and is prone to mode collapse, and thus GAN is hard to
train [15]. DCGAN [16] is a better improvement after GAN,
which provides a good network topology for GAN training.
However, training instability is not fundamentally solved, and
the training process of G and D needs to be carefully bal-
anced during training. Unlike DCGAN, WGAN [17] mainly
improves GAN from the perspective of the loss function.
It uses Wasserstein distance to measure the distance between
the generated data distribution and the real data distribution,
and theoretically solves the problems of training instabil-
ity and collapse mode. Gulrajani et al. [18] proposed an
improved WGAN training procedure replacing weight clip-
ping by gradient penalty to solve the problem that WGAN
sometimes generates low quality images.

Here, we proposed an unsupervised method for the clas-
sification of benign-malignant lung nodules based on the
combination of a multi-discriminator generative adversarial
network (MDGAN) and an encoder in the medical images
domain. Our model training doesn’t require large amounts of
labeled data, and only the benign nodules images are required
as the training set to classify benign andmalignant pulmonary
nodules. The idea of our method is motivated by anomaly
detection [19]. Anomaly detection is a common application
of machine learning algorithms, which is to find objects that
are different from normal objects. It is generally required that
the data have a ‘‘normal’’ model, and anomaly are considered
deviations from this normal model, and the degree of their
deviation will be used to calculate anomaly scores. In this
paper, we define benign pulmonary nodules as normal data,
and malignant pulmonary nodules as anomalous data. Our
method is to use a multi-discriminator generative adversarial
network and an encodermodel to learn the feature distribution
of normal data by establishing the mapping of real normal
data to the MDGAN latent space and then calculate the
MDGAN discriminator feature loss and image reconstruction
loss which are used to score benign and malignant lung
nodules. In general, our model yields high anomaly scores on
malignant images and low anomaly scores on benign images.
Our main contributions can be summarized as follows:

1) Our method is the first to successfully introduce unsu-
pervised learning into the classification of lung nodule
malignancy. It overcomes the shortcomings of exist-
ing deep learning methods that required large labeled
datasets for training.

2) The combination of a multi-discriminator generative
adversarial network with an encoder is more conducive
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FIGURE 1. Flowchart of proposed approach: (a) Sample datasets construction; (b) Model training; (c) Lung nodule malignancy classification.

to improving the generator performance and better
learning the characteristic distribution of pulmonary
nodules images.

II. METHODS
An overview of the proposed classification approach of lung
nodules is shown in Fig.1, which mainly includes three
steps: a) sample datasets construction; b) model training:
multi-discriminator generative adversarial network training
and MDGAN guided encoder training; c) lung nodule malig-
nancy classification.

Using the publicly available LIDC-IDRI dataset, the infor-
mation of lung nodules’ locations and their malignancy lev-
els are extracted from the XML file and the ROI regions
of lung nodules are segmented to form the sample dataset.
Benign nodules images without any label are used to train
the multi-discriminator GAN network. The trained generator
and discriminators are combined with an encoder to map
the real unmarked lung nodules images into the latent space.
The latent representation is subsequently used as an input to
the MDGAN network generator. The corresponding image
is generated based on the compressed data representation,
making the difference between the real image and the gen-
erated image very small, and the degree of their deviation
will be used to calculate the abnormal score. In general, our
model yields high anomaly scores on malignant images and
low anomaly scores on benign images. Benign and malignant
classification results can be obtained according to the defined
threshold.

Compared with the previous supervised deep learning
methods, we propose to apply the idea of anomaly detection
based on unsupervised learning to benign and malignant
classification of pulmonary nodules. We only need to train
benign data to classify benign and malignant nodules with

adversarial generation networks and encoders. Furthermore,
in order to improve the learning ability of the generator,
we propose to use multiple weak discriminators as a whole
to provide more positive feedback for the generator. When
classifying benign and malignant lung nodules based on
abnormal scores, a scoring threshold is needed to divide them
into two categories. We propose a formula for calculating the
scoring threshold.

A. SAMPLE DATASETS CONSTRUCTION
The LIDC-IDRI dataset contains 1018 cases [20]–[22]. Each
case contains a CT image and a corresponding XML anno-
tation file, which provides the nodule contours marked by
4 radiological experts. Nodule diameters in lung nodule
images generally range from 3 mm to 30 mm. According
to the nodule diameter, lung nodules are divided into non-
nodules, nodules smaller than 3 mm, or nodules larger than
3 mm. According to the mainstream screening scheme [10],
[12], [22]–[28], we use nodules larger than 3 mm for our
experiments. A 64 × 64 pixels ROI region is cropped by
reading the XML annotation file, and the improved Threshold
Probability Map algorithm [12] is used to segment the lung
nodule. According to the malignant degree of a lung nodule
in the XML annotation file, the malignant degree of each
nodule is evaluated by at least one radiologist and at most
four radiologists. For the nodule labeled by at least two radi-
ologists, the mean malignancy level (MML) was taken as the
ground truth label by the semantic attribute scores of different
radiologists, and the lung nodule was stored as the malig-
nancy by rounding method. If the MML is less than 3, it’s
labeled as a benign nodule; if it’s equal to 3, it’s labeled as an
uncertain nodule; if it’s greater than 3, it’s labeled as a malig-
nant nodule. To reduce the impact on the evaluation of the
uncertainty of nodal malignancy, we excluded all uncertain
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FIGURE 2. The architecture of our MDGAN: (a) Generator architecture; (b) Single discriminator
architecture.

pulmonary nodules. Therefore, there were 1375 benign and
930 malignant nodules in Table 1.

TABLE 1. Distribution of malignancy level of each nodule.

We only utilized unlabeled benign lung nodule images as
the training set with unsupervised learning. In the experi-
ments of this method, 5-fold cross-validation is used. The
1375 benign nodules sample set is divided into 5 groups,
one group is reserved as the testing set, and the remaining
4 groups are input to the integrated model as the training set.
The experiment was repeated 5 times, and the average value
is taken as the final result of the experiment. The randomly
selected 400 images from 930 malignant nodules images are
included in the testing set. Due to the limited amount of data
in the training set and in order to advance the generalization of
our model, we employed data argumentation, through simple
techniques such as cropping, rotating, and flipping input
images as in [29]–[31] to create more data and to increase
the randomness and diversity in the training set. The test set
is maintained without data augmentation and is used directly
in the final test step. To expand the training set, the benign

nodules are augmented by translating the nodule patches
along the x-axis and y-axis with ±2 pixels, and rotating 90◦,
180◦, and 270◦ [14]. The training set of 16000 nodules was
then obtained.

B. MULTI-DISCRIMINATOR GENERATIVE ADVERSARIAL
NETWORK TRAINING
Unsupervised learning extracts sample features by learning
data distribution. We utilize Multi-discriminator Generative
Adversarial Network (MDGAN) to complete an unsuper-
vised learning task [19]. The model includes two adversar-
ial models: a generator and a group of discriminators as
an ensemble. Among them, the generator produces images
according to the input noise of latent space, which comes
from the compression of the real images. The distribution of
generated images is as close as possible to the distribution
of real images. On the other hand, the discriminator group
determines whether the input image to be identified comes
from the generated images or the real images.

We adopted the improved WGAN-GP network as in [18],
which has a faster convergence speed than standard WGAN,
and provides a stable GAN training method. It can generate
higher quality images with almost no tuning. The generator
and discriminator use a standard convolutional decoder in
Fig.2 and a convolutional encoder combined with the residual
network structure, respectively [19].
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The generator network is constructed as follows: firstly
the input is 1 × 128 noise and it is input to the fully con-
nected layer. The number of neurons in the fully connected
layer is 4 × 4 × 512. The next four network blocks are
standard residual blocks. The number of convolution kernels
is 512-256-128-64, the size of the convolution kernel is 3×3,
the step size is set to 1, and then it is input to a convolution
layer. ReLU activation function is used in the generator of the
GANmodel and the final output layer of the generator applies
a tanh activation function, afterwards, a final 64 × 64 image
is produced.

The construction of a single discriminator network is as
follows: The input is a 64 × 64 lung nodule image. After
processing by a convolution layer, it is input into four net-
work blocks that are standard residual blocks, in which the
number of convolutional kernels is 128-256-512-512. Each
convolution kernel is 3× 3 and the step size is set to 1. Finally,
it is input to a fully connected network for classification. The
training set and validation set are used to iteratively train
the adversarial generation network 50,000 times. The loss
function is defined as [15]:

min
G

max
D

V (D,G) = E xvP data(x) [log (D (x))]

+E zvP z(x) [log (1− D (G (z)))] (1)

Since the goal of the GAN network model is to learn the
data distribution, we prefer a more powerful generator than
a more accurate discriminator. In [32], training against a far
superior discriminator can impede the generator’s learning.
This is because the generator is unlikely to generate any
samples by the discriminator’s standards, and so the generator
will receive uniformly negative feedback contained in the
gradient. The information will weaken the generator’s data
distribution. Our goal isn’t to present a better approximation
maxDV (D,G) of to the generator. We need to soften the max
operator. Therefore, we need a soft-discriminator to provide
generators with positive feedback to promote generator learn-
ing. We consider multi-discriminator variants that attempt to
better approximatemaxDV (D,G) providing a harsher critic to
the generator. The generator trains using feedback aggregated
over multiple discriminators (See Figure 1). If F :=max, G
trains against the best discriminator. If F :=mean, G trains
against an ensemble.

We use multiple weak discriminators as an ensemble to
combat the generator. Therefore, we reformulate the objective
of generator G as min

G
maxF(V (D1,G) ,···,V (DN ,G)), and

eachDi(i∈(1, 2,···N )) is expected to find themaximumvalue
of V (Di,G). So we sometimes abbreviate V (Di,G) to Vi,
and F(V (D1,G) ,···,V (DN ,G)) to FG (Vi). When F(·) is the
mean value, the generator G is against the whole composed
of multiple discriminators.
At the beginning of training, when maxDV (D,G) may be

too harsh for the generator, we explore a variety of functions
that allow us to soften it. We can use soft versions of the

classical Pythagorean means [32] parameterized by λ:

AM soft (V , λ) =
N∑
i

w i V i (2)

where w i=e λV i/
∑

je λV j with λ≥0,V i < 0.
And we can set λ closer to 0 to use the mean, increasing the

chance of providing positive feedback to the generator. Note
that we only require continuity to guarantee that computing
the softmax is actually equivalent to computing V (D,G)
whereD is some convex combination ofDi. And the minimax
objective function of the generator can be written as:

1
N

N∑
i

E xvPG(x) [log (1−Di (x))]=
1
N
E xvPG(x) [log (z)]

(3)

where z=
∏N

i (1− Di(x)). From Eqn.(3), the generator gradi-
ent is ∂log(z)

∂z . It’s minimized at z=1 over z∈ (0, 1]. From this
formula, it is clear that z=1, if and only if Di=0∀i. So the
generator G only needs to fool a single Di for receiving posi-
tive feedback. This result allows the generator to successfully
minimize the original generator objective, log (1−D).

C. MDGAN MODEL GUIDED ENCODER TRAINING
The encoder with the trained generative adversarial network
model is combined to construct an anomaly scorer. The
encoder is used to extract important information on a real
pulmonary nodule image. It maps the real image to latent
space, while the generator, similar to decoder, maps from
latent space to the image space. In the training process of the
encoder, the parameters of the generator are fixed whiles the
parameters of the encoder will be optimized.

Encoder training is based on the convolutional autoen-
coder (AE) architecture [19]. Similar to the discriminator,
the first input is a 64 × 64 lung nodule image, which is input
to the convolution layer. The number of neurons in the fully
connected layer is 5× 5× 128. The next four network blocks
are a standard residual block. The number of convolutional
kernels is 128-256-512-512. Each convolution kernel is 3× 3,
and the step size is set to 1. This then serves as an input to the
fully connected layer using tanh as an activation function. The
output of a trained adversarial generative network connects to
the MDGAN guided encoder as input for training. We used
the training set to train the pulmonary nodule benign and
malignant scorer network to iterate 100,000 times. During the
encoder training with fixed parameters of G and D, only the
encoder parameters are adapted. We define a loss function
for the mapping of new images to the latent space that com-
prises two components, an image loss and a discrimination
loss. The image loss enforces the visual similarity between
real input images and generated images. The discrimination
loss enforces the residual on discriminator’s features. During
training, the loss function is:

L(x)=L image(x)+LD(x) (4)
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where x is the input image, Limage is the residual loss mea-
sures the visual dissimilarity between the real image and the
generated image. This is defined by:

L image (x) =
1
n
||x-G (E (x))|| 2 (5)

where n is the number of pixels in an image. E is the encoder
model, and G is the generator model. The loss function for
discriminator LD(x), is defined by:

LD(x)=
κ

nd
||f (x)−f (G (E (x)))|| 2 (6)

where the f (·) is the standard deviation function based on
feature matching, nd is the dimensionality of the intermediate
feature representation, and κ is a weighting factor. In order to
simplify experiment as in [19], we use κ = 1.0.
The anomaly scorer adapts batch training. Each epoch will

optimize the model on the data in batches. The Adam opti-
mization method is used when training the network. When a
given training epoch is over, the model will stop training, and
the model parameters of each epoch will be saved.

D. LUNG NODULE MALIGNANCY CLASSIFICATION
We used the trained MDGAN model guided encoder to clas-
sify the benign and malignant lung nodules in the test set.
First, the benign and malignant scores of the pulmonary
nodules are calculated, and then the classification results
based on the threshold are obtained. The implementation
steps are as follows: Firstly, a single unknown image x in the
test set is taken as an input into the MDGAN model guided
encoder. Encoder extracts the important lung nodule feature
z which is the input of the generator. The generator produces
a corresponding image G (x) based on these features. Since
only benign pulmonary nodules are used for training and ver-
ification, the generated image G (x) is the closest generated
image of benign pulmonary nodules mapped by encoder and
generator. The test image and the generated image are fed
into the discriminator and the benign and malignant scores
are calculated. According to [19], the final anomaly score can
be expressed as:

M(x)=
1
n
||x−G (E(x))|| 2+

κ

nd
||f (x)−f (G (E(x)))|| 2 (7)

In general, our model yields high anomaly scores onmalig-
nant images and low anomaly scores on benign images.
According to the distribution of abnormal scoring results
from multiple experiments, the abnormal scores of benign
pulmonary nodules are generally between 0 and 0.1, while
the abnormal scores of malignant pulmonary nodules are
generally scattered between 0.1 and 0.7. The difference in
abnormal scores between benign and malignant pulmonary
nodules is obvious. Therefore, as long as we give a scoring
threshold T , these abnormal scores can be divided into two
categories. The abnormal score above the threshold T is
abnormal, so this image is determined to be a malignant
pulmonary nodule. Conversely, it below the threshold is nor-
mal, and this image is determined to be a benign pulmonary

nodule. After training, our model can calculate the abnormal
score value M (Xi) of each test data. The M (Xi) belongs to
between 0 and 1. We propose the scoring threshold formula:

τ̂ = argmax
τ∈(0,1)

n∑
i=1

|τ −M (Xi)| (8)

where Xi is the input test image,M (Xi) is the abnormal score
value obtained by the model, n is the number of test images,
τ is the scoring threshold, and τ̂ is an approximation of the
scoring threshold. We solve τ̂ by stepping τ from 0 to 1 with
a step size of 0.001. Therefore, τ̂ s the scoring threshold T
that we need.

III. EXPERIMENTS
A. DATASET AND DATA PREPROCESSING
The Lung Image Database Consortium (LIDC) is a publicly
available dataset, whichwe used to train and test our proposed
methods. The database includes 1018 sets of chest CT image
data for 1010 cases, each of which includes an image file
(.dcm) and the corresponding diagnosis results label (.xml).
In order to improve the credibility of the experiment and
reduce the complexity of the algorithm, we use 3 to 30 mm
lung nodules marked by four radiologists. The XML file of
this kind of nodule contains the characteristic information and
the complete outline of the nodule [20]–[22].

According to the characteristics of the LIDC dataset, this
paper converts the original CT images (.dcm) with a size
of 512×512 pixels into portable network graphics (.png) to
facilitate fast training. Because the lung nodule area only
accounts for 0.04% to 1.37% of the CT image size [14],
the entire CT image is directly used as the input data of
the classification model, the too-small target will cause the
learning process to be unclear, so segmentation is performed
to extract the ROI region that contains only lung nodules.
We utilize the improved Threshold Probability Map (TPM)
algorithm [12] to segment the lung nodules. The complete
CT is used to segment the lung parenchyma to remove irrel-
evant information and the corresponding XML file is read to
get the location information and the benign and malignant
degree information of pulmonary nodules, the 64×64 pixels
rectangular region is intercepted with the pulmonary nodules.
Finally, the lung nodules were classified and stored according
to the mean malignancy level (MML) as in [11]. The degree
of lung nodule malignancy is divided into 5 grades, of which
5 indicates the highest possibility of malignancy, 3 indicates
the degree of benign and malignant disease is uncertain,
and 1 indicates the lowest possibility of malignancy. If the
nodule’s malignancy label is less than 3, it is considered as a
benign nodule. If its malignancy label is greater than 3, it is
considered as a malignant nodule. Otherwise, it is considered
as an uncertain nodule.

Statistically, 2305 lung nodule images were extracted by
preprocessing, of which 1375 were benign, 930 were malig-
nant and 1380 were uncertain. All experiments in this paper
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TABLE 2. Comparison results of different methods for lung nodule classification. B denotes benign nodule and M denotes malignant nodule.

were run on a system with Python 2.7, Tensorflow 1.10,
CUDA 9.0. and Geforce GTX 1060 GPU.

B. EVALUATION
Common performance evaluation indicators of benign and
malignant diagnosis models of lung nodules are: a) Accu-
racy (ACC) in e.q.(9), the proportion of correctly classified
samples among all samples; b) Sensitivity (SEN) in e.q.(10),
the proportion of correctly classified malignant nodules Pro-
portion of all true malignant nodules; c) Specificity (SPE) in
e.q.(11), the proportion of benign nodules correctly classified
to all benign nodules. The larger the values of accuracy ACC,
sensitivity SEN, and specificity SPE, the lower the missed
and misdiagnosed rate the model has, and the better the
classification ability [33].

Acc = (TP+TN ) / (TP+TN+FP+FN ) , 0≤Acc≤1

(9)

Sen = TP/ (TP+ TN ) , 0 ≤ Sen ≤ 1 (10)

Spe = TN/ (TN + FP) , 0 ≤ Spe ≤ 1 (11)

The receiver operating characteristic (ROC) curve and area
under the ROC curve (AUC) is often used to evaluate the
pros and cons of a binary classifier [34], [35]. The ROC
curve is a graphical method showing the trade-off between
the true positive rate and the false positive rate of the classi-
fier [35], where the x-axis is the false positive rate (or 1-true
negative rate), the y-axis is the true positive rate, and each
point of the curve corresponds to a model summarized by a
certain classifier. A good classification model should be as
close as possible to the upper left corner of the ROC curve
(TPR= 1, FPR= 0); the area under the curve (AUC) provides
another method to evaluate the average performance of the
classification model. The area under the curve (AUC) of the
ROC curve provides another method to evaluate the average
performance of the classification model. A good model has
an AUC value close to 1.

To objectively evaluate the classification performance of
benign and malignant classification systems of pulmonary
nodules, we also calculated different AUC values to evalu-
ate different classification methods of benign and malignant
pulmonary nodules. The larger the AUC value, the better the
classification performance.

C. RESULTS
To verify the effectiveness of this method, we compared
the experimental results with the current lung nodule
classification models in Table 2. As seen from the table,

the current convolutional neural network is still the main-
stream of deep learning framework for benign and malignant
classification of lung nodules [10], [11], [36]. Convolutional
neural networks based on improved feature extraction meth-
ods can get good results on the LIDC dataset. However, in
reality, the clinical image dataset of pulmonary nodules has
the problem of a few data and missing labels. The main
problem of convolutional neural networks on small data sets
is overfitting, which will lead to weak generalization abil-
ity of the model. Our model is more applicable to clinical
application scenarios because the cases of benign pulmonary
nodules are far more than those of malignancy in clinical
practice. From Table 2 we can see that our method has much
higher ACC and SEN than other methods. Although SPE
and AUC have room for improvement, the main goal of our
method is to solve the problem with a new unsupervised
method. It’s a new way of thinking for lung nodule malig-
nancy classification. We test the testing set of 675 images,
which only takes approximately 5 seconds, indicating that our
method is competitive.

Our model is based on the combination of multi-
discriminators GAN network and encoder. It can indeed
effectively learn the image features and distribution of benign
pulmonary nodules in order to carry out subsequent classifi-
cation of benign and malignant pulmonary nodules. To verify
its availability, this paper sets up 3 variations of architecture
as shown in Fig. 3 for the experiment:

1) MDGAN + Encoder architecture: it combines the
Encoder with a GAN network based on multiple
weak discriminators and sends the generated images
and the real images to the discriminator group for
discrimination.

2) GAN+Encoder architecture: it uses the Encoder to
extract important information of the real image and
compresses it into a compressed representation z, and
then sends the compressed representation to the gen-
erator. The generator produces images based on the
compressed representation. The unique discriminator
utilizes the generated images and real images for
discrimination.

3) GAN architecture: it uses only GAN networks to learn
the image characteristics of benign pulmonary nodules,
inputs only random noise to the generator, and then
sends the image generated by the generator and the real
image to the discriminator for discrimination.

The three experiments are based on the same training set
and training parameters. After data argumentation,training
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FIGURE 3. The architecture of MDGAN encoder model and self-variants
contrast model: (a) MDGAN + encoder architecture, (b) GAN + encoder
architecture and (c) GAN architecture.

TABLE 3. Comparison results of different self-variants contrast methods
of lung nodule classification.

set=16000, testing set=775, batch size=64, epoch=10,
learning rate=0.001.

GAN training yields a generator only samples from the
normal distribution and maps from images to latent space.
However, no coding relationship between real image space
and latent space has been established. To establish the coding
relationship, we transform the real image received by the
encoder into an efficient internal representation. Latent space
noise can make the generated image approximately follow
the distribution of the real images. It can be seen from the
results that after the combination of GAN and Encoder, the
classification ability has been significantly improved in Fig.4.

To verify whether the multi-discriminator GAN network
model is more conducive to the generator learning data dis-
tribution, thereby improving the performance of benign and
malignant classification of pulmonary nodules. We set the
number of discriminators of the MDGAN model to 1, 3, 5,
7 and 9. Under the same experimental environment, training
data, training parameters and test data, the observed experi-
mental results can be seen in Table 4:

The experimental results show that the increase in the
number of discriminators helps to accelerate the convergence

FIGURE 4. ROC curves of the proposed MDGAN + encoder model and
self-variants contrast model.

TABLE 4. Comparison results of the different number of discriminators of
the MDGAN mode.

of the objective function of the GAN network to a stable
state. The convergence speed of the number of discriminators
N = 5 is about twice that of N = 1. But an excessive
number of discriminators increase model complexity without
improving efficiency.

The problems of unstable training, vanishing gradient,
and mode collapse have been widely recognized in previ-
ous work with GANs. We use the improved WGAN train-
ing procedure [18] for stable GAN training. The improved
WGAN solves the problem of unstable training by estimates
the Wasserstein distance between the generator and the real
data distribution and replacing weight clipping by gradient
penalty. Furthermore, we analyzed whether the learned latent
representation is smooth [19]. If there were only a few loca-
tions in latent space during GAN training, which could allow
the generator to generate realistic images, it indicated that
the unstable GAN training led to mode collapse. We tested
by selecting random z positions in latent space and gener-
ating image series from sampling points. According to the
experiment, we find that when z changes, the corresponding
generated imageG(z) also changes continuously. The smooth
transitions in the image series indicated that there was no
mode collapse.

IV. CONCLUSION
With the issue of inadequate labeled medical image datasets
and the cost involved in obtaining labeled sets in clinical,
we propose an unsupervised multi-discriminator generative
adversarial network combined with an encoder for benign
and malignant classification of lung nodules. As far as we
know, this is the first time that unsupervised learning has
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been successfully applied to the classification of benign and
malignant lung nodules. The experimental results on the
LIDC dataset reveal that compared with other supervised
deep learning methods, our proposed approach can achieve
better classification results using only unlabeled benign lung
nodule images for training. In future work, we will attempt to
apply this model to other small datasets or partially labeled
datasets. This method also can be extended to pulmonary
nodule detection or other disease anomaly detection to reduce
the demand for labeled data.
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