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ABSTRACT The future smart grid would help to benefit both the users and the electricity providing
companies from smart pricing techniques. In addition, smart pricing can be used to achieve social objectives
and would in turn fluctuate wholesale market into demand side. Collecting abundant information regarding
the users electricity consumption pattern is a challenging task for utility providing companies. That is, users
may not be willing to expose their indigenous information without any incentive. In this paper an Optimal
Energy Consumption Scheduling (OECS) mechanism is proposed to tackle this problem. An agent-based
forecasting method is designed, which is capable of predicting energy consumption of each consumer with
a lead-time of one hour. This forecasting is exploited to estimate the cost of buying required amount of
energy from multiple suppliers. Consequently, based on the estimated required energy and cost, an auction
mechanism is proposed to optimize the energy traded between consumers and multiple suppliers within a
smart grid. The objectives include increased efficiency and cost reduction of electricity usage by the end
users. The results and properties of the proposed OECS mechanism are studied, and it is shown that the
auction technique is budget balanced for distribution of electrical energy among consumers from diverse
renewable generation resources. Extensive numerical simulations are also conducted to show and prove the
beneficial properties of OECS mechanism.

INDEX TERMS Smart grid, energy load prediction, demand response, energy consumption scheduling,

energy management, Vickrey-Clarke-Groves mechanism, social choice function, Nash equilibrium.

I. INTRODUCTION

A smart grid is an electrical network that allows bi-directional
flow of electricity and information exchange between suppli-
ers and consumers [1]. This system has potential to increase
power system reliability, reduce network losses, and encour-
age consumers’ participation in energy management [2].
Smart grid technology facilitates the consumers to analyze
their electricity utilization information in real time, this
enables them to manage electricity bills by scheduling con-
sumption to off-peak hours [3]. Technology like intelligent
sensors, data management system and two-way communica-
tion in smart grid are responsible for such benefits. Increasing
use of electricity made it difficult for utility companies to reli-
ably and efficiently fulfill the demand of their consumers [4].
Average utilization of generation capacity is recorded below
55% in oft-peak hours [5]. Therefore, designing a grid to
fulfill only peak demand of electricity is not feasible [6].
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It triggered the research towards Demand Side Management
(DSM), which focuses not only on electricity load shifting
but also on reducing consumption. Smart pricing is a vital
characteristic of DSM that encourages users to utilize elec-
tricity efficiently which in tern benefits both the supplier and
consumers [7]-[11].

DSM requires either full or partial information of users’
electricity consumption patterns, and sometimes users are
not willing to reveal their personal information. Users may
also alter their electricity consumption patterns based on real-
time pricing, unaware that this amount of load shifting may
increase the value of real-time pricing [12]. This load shifting
can convert off-peak times into peak times, making it very
difficult for a supplier to cater the demand [13], [14]. There-
fore, above- mentioned assumption is not a fruitful approach
[15], [16]. An auction-based mechanism where bidders send
their bids to be evaluated by a third party agent could be
a solution to this issue. Under this construct, the demands
of higher bidders are fulfilled to maintain reliability of an
electric grid, even in the peak hours [17].
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In recent years, significant research has been conducted
on demand side management, which focused on scheduling
user demand according to real-time pricing [18]. In particular,
Samadi proposed an auctioning scheme based on efficient
pricing algorithm using Vickrey-Clarke-Groves (VCG). VCG
based mechanism is used to maximize social benefits of
each user [19], [20]. To calculate payments, energy providers
require accurate information of users’ energy demands and
constraints [21]. Systems are therefore designed to calcu-
late incentive for users based on their truthful declaration
of information. The benefits to users are modeled as utility
functions [22].

Mohsenian-Rad et al. proposed an energy consumption
scheduling game based on cooperative game theory, where
each consumer acts as a player and scheduling of daily
household load are their strategies [23]-[26]. Optimal per-
formance in terms of minimizing energy costs is achieved
via Nash Equilibrium for the proposed energy consumption
scheduling game. To ensure users’ participation, incentives
are also calculated. Similarly Salinas et al. presented a third-
party tool for managing the energy consumption of a group of
users [27], [28]. Users are bound to shift their load to off-peak
hours to minimize their utility bills, which will ultimately lead
to increased grid generation utilization, even during off-peak
hours [28].

Load scheduling problems are formulated as a constrained
multi-objective optimization problem (CMOP) [29], [30].
The optimization objectives achieved through CMOP mecha-
nism includes minimize the electricity consumption cost and
maximize utility. Two Evolutionary Algorithms (EAs) are
designed to obtain the Pareto front solutions and e-Pareto
front solutions for the multi-objective optimization prob-
lem. Different residential load controlling techniques have
been compared by Rasheed et al. [18], Khalid et al. [7],
Javaid et al. [5], and Afzal et al. [3].

Multiple mechanism designs are available to solve the
problem of cost optimization and reduce peak-to-average
ratio (PAR). Literature studies indicated that VCG was
most efficient and well-known mechanism due to its accu-
racy [31]. It is very important that an applied mecha-
nism is able to accurately reveal users’ information, and
VCG performs best in this respect. Energy consumption
controller for demand side management in smart grid
using VCG mechanism is proposed in [20], [32]. The
objective was to change users’ total energy consump-
tion by shifting load to off-peak hours but this mecha-
nism was not budget balanced. Although efficiency and
truthfulness of user’s information in VCG was tested but
budget imbalance of the designed mechanism was not
validated [33].

Moreover, Vickrey-Clarke-Groves mechanism inherently
encounters the budget imbalance in public goods prob-
lem [34]. Therefore, any deficit towards consumers or sup-
pliers will effectively limit their further participation. This
budget imbalance is dependent upon the profile types of
consumers [3], [20], [35].
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In VCG user’s payments are not exactly equal to their
submitted bids, it depends on the profile valuation of all other
participants [36]. Furthermore, to overcome the stated issue
of VCG mechanism, another mechanism named ‘“Moulin
Mechanism” is implemented in this research, which will
calculate a surplus represented as rebate given to consumers,
which will in turn help to reduce budget imbalance problem.
The rebate of consumers depends upon the type profile of all
other participants. Thus rebate is not destroying the structure
of the VCG payments, ensuring that allocative efficiency and
Dominant Strategy Incentive Compatible (DSIC) properties
are retained. This research will interchangeably use the word
Smart Home User (SHU), consumer and buyer.

Furthermore, using existing mechanism [34] for p items,
bidders must submit sufficient information to determine 27 —
1 bids for all combinations of p items. This exponential
growth of the process increases the number of items, it sig-
nificantly increases the bid preparation time. This mecha-
nism increases the total simulation time of the system with
increased number of participants, which ultimately reduces
overall efficiency of the mechanism [16].

Above discussion triggers the need of a mechanism that is
budget balanced and efficient in term of bid allocation. This
research is an extension of our previous work [37], that pre-
sented an algorithm for an agent based energy load prediction
using weighted average prediction approach. This research
aims to predict cost of Predicted Load (PL). The idea is to
broadcast PL information of each Smart Home User (SHU)
using multi-agent system. It also aims to calculate cost to
get PL from multiple resources including in-house genera-
tion, neighboring smart homes and other electricity providers
interested in trading of electricity. Payoff of each SHU to
measure benefit of using the OECS mechanism is calculated.
Utility companies should have knowledge of user preferences
to achieve maximum consumer social benefits [16].

A game-theoretic auction based mechanism is proposed in
this research, in which electricity consumers are players of
the game and their valuation profiles against each supplier are
strategies. Players’ bids are sent to a third party Control Agent
(CA). The CA evaluates all bids and negotiates with multiple
suppliers to fulfill the demands of players based on their
valuation profile. The system then determines the payment
amounts for each player based on the profiles of other payers
to maximize social benefits for all players. By implementing
OECS both grid reliability and budget balance are main-
tained, even in peak hours. Optimal performance in terms of
increase in payoff function of each player is achieved via the
Nash Equilibrium of the OECS mechanism.

A mixture of distributed and centralized approach is
proposed. Buyer considers maximum benefit from chosen
resources of electricity. At distribution level, buyer first ful-
fills energy consumption requirement from in-house gener-
ation, which is the cheapest resource of electricity. Then,
centralized approach is used where every SHU’s prefer
to buy electricity from neighboring SHU’s, which is also
cheapest due to closest resource as energy transmission
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FIGURE 1. Proposed system model with multi-agent system at both production and consumption level.

cost is also considered in OECS. To fulfill further demand
each SHU’s consider electricity trading using coordination
between multi-agent systems. Every SHU can participate in
trading. At the end, total electricity bill is calculated which
depends how much quantity is selected from each resource.
After systematically analyzing literature, it was found that
agent based electricity trading requires more researchers’
attention, more research is required towards semi-centralized
and multiple consideration approaches. Moreover, positive
and negative surplus for each SHU is also calculated in the
form of rebate to make the mechanism budget balanced.
Tentative electricity bill is also shown to electricity buyer’s
one-hour prior to actual usage time interval.

The contribution of this work is summarized as follows:

« An agent-based forecasting method is designed, which
is capable of forecasting the amount of energy consumed
by each consumer with a lead time of one hour.

o The forecasted information is exploited to estimate cost
of buying required energy from multiple suppliers.

« Based on the information of estimated energy and cost,
OECS mechanism is implemented to optimize energy
traded between consumers and multiple suppliers.

The remainder of the paper is organized as follows.
In section II, a detailed description of the proposed system
model and the role of a multi-agent system in a residential
load control scheme are presented. The game-based auction-
ing mechanism for optimal energy consumption scheduling
on a smart grid is explained in section III. In section IV,
performance of the proposed auctioning scheme is evalu-
ated based on simulation parameters. Finally, our concluding
remarks and future directions are stated in section V.
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Il. SYSTEM MODEL

In this section, an agent-based Optimal Energy Consump-
tion Scheduling (OECS) model is proposed. To implement
the proposed system model, some infrastructure changes are
required at both consumption and distribution levels. A smart
community comprising of a large number of smart homes is
considered. A residential area is divided into multiple clus-
ters, each cluster presents 3-4 smart homes. Every smart home
is equipped with distributed energy generation and storage
units (shown in Fig. 1). SHU’s are the sellers as well as buyers
of electricity within a community.

Atinitial stage to train agents, Andersen model [38], [39] is

used which performs load aggregation technique. Aggregated
load of SHU is calculated based on the category of user. Other
categorical variables used in calculating aggregated load are,
hours of the day, types of days (weekday and weekends), and
months. Moreover, the weather changes according to months
therefore daily profile of every SHU may change according
to the month of the year. With hourly metering of individual
customers using Advanced Metering Infrastructure (AMI),
data for individual consumption profiles is taken from [40].
The proposed system consists of multiple steps as explained
below:
Step 1: Each MAS-I, shown in Fig.1, computes the PL of
each SHU to which they belongs. The predicted load (PLf 41
) of a smart home user j, for upcoming time slot r + 1 is
calculated as follows.

J J J
PLz+1 = {fl,t—H * Wit +fz,,+1 * W2t
+f3j,t+1 *W3p+ ... +f,j,,,,+1 * Wiyt }/m

ey
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PL! 41 1s based on two factors, agents i advice (flj )
and weight of agent (w;,). Predicted load is calculated by
taking mean value of above-mentioned factors. Advice flj 41
of single agent i belongs to set /' of an expert agent’s advice,
e, F = flj,z+1vfiz+1’f3],r+1 -------- ) r]n—l,z+1v r]n,t—H' Set
of advice is maintained by taking data with some variations
from SHU’s previous electricity consumption pattern. m is the
total number of agents and w; ; belongs to set W of expert’s
weights. Weights are in a range of 1-5 used as scaling factor.
More detail of these values are explained in section I'V.

Step 2: Based on step 1 calculation, MAS-I calculates the
cost to get electricity from in-house mini micro-grid that is
explained in detail in section III. Furthermore, in case of sys-
tem failure each smart home user can utilize their mini micro-
grid generation and storage unit [41], [42]. User can also get
electricity from grid via grid connection shown in Fig. 1.
Step 3: To fulfill further demand, MAS-II will calculate cost
to get electricity from neighboring SHU’s (SHU can sell their
surplus electricity). Selling surplus electricity is one of the
core objectives of this research, explained in section III.
Step 4: Until PL is still not fulfilled, system has two options,
first, play game with multiple suppliers (including other smart
homes, other electricity supplier companies or a grid itself)
by submitting valuations against remaining PL and second,
get electricity directly from grid using current tariff (which
may be very high in peak hours). The electricity rates of grid
will increase, when all the demands are shifted towards grid.
Moreover, it is in favor of SHU to fulfill remaining PL by
participating in the game.

Step 5: Buyers submit energy valuation vector against PL.
Buyer can submit multiple offers using OECS mechanism.
Step 6: Winner players will get their required electricity at
the cheapest rate.

Step 7: Looser player can either switch electricity demand or
use grid electricity supplier to fulfill remaining PL.

Step 8: The estimated total electricity bill of every buyer j, to
buy PL for time slot ¢ is calculated, one hour earlier explained
in section I'V. The variation in bill may occur depending on the
change in electricity usage pattern. Users can compare their
electricity bills with and without using the system.

Step 9: When actual time ¢ is revealed, weights of expert
agent’s are revised based on the accuracy of the predic-
tion. Algorithm 1 is used for re-assignment of agents’
weights [37]. According to the algorithm, for every user j,
actual load (AL? 41) is compared with each agent’s advice
(fi.r+1), if the difference is within defined threshold then
weight of that agent for next time slot is increased otherwise
decreased.

IlIl. OPTIMAL ENERGY CONSUMPTION SCHEDULER

A. PROBLEM FORMULATION

Every buyer j, submits valuation against PL of electricity
to sellers. Payment function Pj(.) for buyer is calculated
associated with quantity of electricity demanded. This pay-
ment is in cents per kilowatt hour at which a seller js is
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Algorithm 1 Weight Re-Assignment Algorithm

1: Input: Set of agents (A), agents’ advise (F'), agents’
weights (W), total number of agents (m), actual load
ALi 41 of user j for time ¢ 4+ 1. Dataset (D), total number
of users (n) Output: Updated weights (W). At start
to initialize advice F, all agents get data from D [40]
(previous actual load available according to day, time and
month).

2: Initialize user j = 1.

3: Initialize agenti= 1.

4: while (j <= n) do

5: Define threshold S for ¢.

6 repeat

7: if IAL], | — fii411 <= S then
8: Wirr1 = wi +1

9 else

10: Wil = wip —1

11: end if

12: Increment i.

13: until (i <= m)

14: Increment j.

15: end while

ready to sell quantity g of the electricity. Resources follow a
quantity—price strategy, formed as a pair of quantity and price,
expressed as (gj,, pj,)- To balance the load between sellers and
buyers of the electricity, an increasing convex price function
is adopted to calculate the price payed by buyer j, against the
quantity g of predicted load (PL). The cost function can be
defined as:

Pj, (@) = gj, x ¢j, ()
Subject to
P. (q) = ¢j, >0 forqg < gj
W= + for g > gj,

The cost function in Eq. (2) indicates that price Pj,(q)
payed by buyer j, depends on the quantity g;, and g;j, is the
maximum quantity of electricity that seller j; can provide. cj,
is the per unit electricity cost imposed by seller j;. Constraints
shows that; for higher quantities, the cost becomes infinite.
The multi-agent system selects the quantity g to purchase
from each seller j;. Assuming the the demand is completely
satisfied at the scheduled price. It can be expressed as:

s
Y @ =d, (3a)
Js=1
Constraints:
g, >0 (3b)
@j,) = qj, (30)

where dj, is the total demand of buyer j, and gj; is the amount
of electricity provided by seller j;. Eq. (3a) indicates that
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the amount of electricity collected from multiple suppliers
of electricity is equal to the demand of buyer j;. s" is the
total number of suppliers. Constraints (3b), (3¢) ensure that
amount of electricity purchased should not be zero and quan-
tity (gj,) of electricity purchased from the seller j; should
not be greater than the available quantity (g;,) at the seller
site. The objective is to minimize the total system cost. The
electricity bill of every buyer j is calculated depending on the
amount of electricity and per unit price defined by seller. The
objective of this model is to minimize the electricity cost for
SHU. The objective function can be written as

min i Bill;, (4a)
Jjr=1
In other words:
min 35 P, (4b)
D YD BN (40)
Pj, = C) + Gl + Py (4d)

Eq. (4b) indicates that the objective is to minimize the elec-
tricity cost for all buyers. Eq. (4c) is derived by substituting
the value of Pj, in Eq. (4b) from Eq. (2). For single buyer jj,
price can be written as Eq. (4d). In Eq. (4d), C{:’ is the cost to
fulfill electricity demand of SHU from in-house generation.
CJ} is the cost to get electricity from neighboring smart home
seller. The detail of these two parameters has been published
by the author of this research work in [43]. OECS game is
performed with Pg’ (payment paid by buyer j, to get the
electricity from grid).

B. AUCTIONING IN SMART GRIDS TO MINIMIZE COST
The objective function described in the previous section is a
merger of centralized and distributed management performed
by multi-agent system. The cost to fulfill demand of electric-
ity from in-house generation is calculated at distributed level,
similarly cost to fulfill further demand from neighboring
smart homes is also calculated at cluster level. In case if
demand is not satisfied then all the requests are transferred
to electricity supplier company. In this scenario (which is
most common), the demands of those electricity buyers are
guaranteed who are willing to pay more than other buyers.
To make sure that system remains budget balanced and no
participant will end up with negative payment, the system
is controlled at centralized level. Negative payment means
participants are suffering with loss as compared to others,
which stop them from further participation.

For example, n consumers demand d identical objects and
d < n; obviously all demands cannot be fulfilled to make
system stable. Identical objects (d) will be assigned to those
consumers (n) who value the objects more than other con-
sumers, so that d = n. To achieve this objective in smart grid,
a game-based auctioning mechanism is proposed, to make
the electricity grid reliable even in insufficient electricity
conditions.
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C. ENERGY TRADING GAME MODEL

The proposed energy trading game requires participation
from all players. Every SHU, whose electricity demand is
not fulfilled at local level (from in-house generation and
neighboring smart homes seller) is the player of the game.

Multi-agent system at residential level plays this game
based on their SHU’s preferences. Preferences include the
flexibility of their shiftable loads. Every smart home user can
be winner as well as loser of the game. In case, if smart home
user becomes a loser of the game, he will shift his flexible
load to other time slots or use grid Time of Use (TOU) tariff.
In this research work, details of load type of every SHU
are not considered. It is assumed that SHU’s set valuations
according to the preferences of loads against time of the day.
Electricity need of every user is different from each other
according to their electricity consumption pattern therefore
any player can not determine the valuations of other players
until they are not declared openly.

Each buyer player j, has an energy valuation vector E(jp)
for trading the electricity, E(jp) = [qv}b, 42 - ). qv;, indi-
cates the quantity of electricity (¢g) that buyer j, wants to buy,
at the valuation of v;,. Valuation is cost that buyer j is willing
to pay against the defined quantity. Similarly every buyer jj
maintain his energy valuation vector based on his valuation.
Energy valuation vector give more freedom to the buyers
and increase their chances to win the game. For instance,
each buyer submits multiple quantities vs. valuation in energy
valuation vector (the price SMU is willing to pay against
the defined quantity) to increase the chances of winning the
game. Therefore, if buyer is becoming a looser in a system
using valuation 4 then he can be a winner using second
valuation 42, depénding on the quantity of surplus energy at

seller site. s.t
93 > 4, 5

The ultimate goal of each buyer is to select the low-
est energy valuation vector that minimize the cost but it
should not be very less so that the chances of winning
game becomes low. In short, each buyer wants to select
the valuation that reduces electricity bills. In this mecha-
nism design, the outcome is represented as a vector x =

V1. Y25 -2 Y, P15 P25 -« -+ Pn)

1 if buyer jj receive the object

yj = .
/ 0 otherwise

where, p; is the payment transferred through buyer jp.

X = (yla"'aynapla"~'5pn)5 yJE{O,l}, pjeR’
n n
ViY y=1)> p<0 ©)
j=1 j=0

First, the system will play game by getting first valuation
from energy trading vector of every buyer j,. The valuation
of each agent is its private information and must be revealed
truthfully to ensure incentive compatibility in the system;

VOLUME 8, 2020



A. Afzaal et al.: Agent-Based Energy Consumption Scheduling for Smart Grids: Auction-Theoretic Approach

IEEE Access

however, valuation should always be positive v;, > 0. The
profile of valuation V' = [vj,, v(j,+1), V(jy+2), - - - » Vz] is main-
tained by getting all the valuations from all buyers. v;, is
the valuation submitted by first player j, and v(j, 1) is the
valuation submitted by second buyer and so on. z is the total
number of buyer participating in the game. The permutation
of valuation v* where, coordinates are arranged in decreasing
order is calculated to find the highest valuators.

V*] > pF

> 2> > 7

For buyer agent j, the valuation the profile V_j, is obtained
by eliminating jZ’ coordinate from profile of valuation (V).
Similarly v* b denote the permutation after removing j coor-
dinate. The objective is to maximize the payoff of all buyers
from the chosen outcome as stated in Eq. (8a). Here z is total
number of buyers.

max ]Z',,=1 P®vj,) (8a)

P(vj,) = es(V*) — ex(VZ,,

)+, (Vo)  (8b)
st eg(VF) = vl gy 2 93 i (8c)

eS(ijb) = viljb + vﬁh + v’gb A v*fjb (8d)

) N 7—1 pyw—d'—1 d' x L(Z, d/) ]

W)= 20 [kL(z, TR B
Lz d) = (") /BL, (89
vip(q) < cg(q) VieS (32)

Payoff P(v;,) of a single buyer jj, is calculated in Eq. (8b).
es(V*) is efficient surplus based on permutation of valuation

profile v of all the players shown in Eq. (8c). ijb is obtained

by deleting th from permutation of valuation profile shown

in Eq.(8d). rj,(V_j,) is a rebate function indicating a partial
refund to a buyer who has overpaid for utilities and to moti-
vate him for participation. Rebates are given to the buyer jp,
which helps to reduce budget imbalance of the mechanism.
Rebates for buyer j, are dependent on profile types of other
agents, and not on the valuation of buyer jj, It is calculated
in Eq. (8¢). In Eq.(8e), d’ is the identical objects means total
number of available electricity units at seller site for which
buyer j;, submit valuations.

L(n, d) is the calculation of efficiency function of OECS.
It depends on binomial distribution of total objects and num-
ber of participants is calculated using Eq. (8f). From the above
payoff, it is clear that it totally depends on the valuation
profile of the buyer and other participants. To win with max-
imum payoff, SMU have to select minimum valuation value.
It would be in favor of buyer to select valuation, which is
less than the cost imposed by grid (for demanded quantity of
electricity (¢)) without playing game. The valuations, vj,(¢q)
submitted by buyer j, to get quantity ¢ should be less than the
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cost, cg(q) to get that quantity g directly from grid using TOU
tariff shown in Eq. (8g).

The cost of player j is reduced after achieving the objec-
tive (8b). The payments made by winner buyers are calculated
in. Eq. (9).

Z

=0 xq— Y o xq) ©)

Jp=1 Jb=L,jp#i

The payment calculation in (9) is the part of objective
function in (4d). The payment of buyer j;, consist of two parts.
In first part, sum of valuation of all the buyers multiplied by
their quantity g (mentioned in the energy valuation vector
of each buyer) till the end of total available quantity d is
calculated excluding buyer j, s valuation. In second compo-
nent welfare of other players from the chosen outcome of
buyer j,, is calculated. In OECS, rebate function play the
role of budget balancing. In a mechanism design budget
balancing is also very important with all other properties
including efficiency allocation, incentive compatibility and
individuality rationality.

The novelty features of OECS as compared from previous
studies [20], [32], [44], [45] are as follows:

o OECS not totally depends on the user’s truthful infor-
mation about future demand, the system start working
based on the predicted load of upcoming hours of each
user, which were not considered in the previous works.

« In [20], [44], the model did not consider electricity gen-
eration from renewable energy resources at local level.
OECS consider the costs of generating electricity from
in-house mini micro-grid and from neighboring micro
grids.

o OECS also prefer to get electricity from neighboring
SHU’s to reduce electricity transmission cost, that was
not considered in literature.

o The previous work in [20], [32], [44] and [45] also con-
sidered the energy consumption scheduling for demand
side management, based on VCG mechanism but have
not considered the budget imbalance property of VCG
mechanism. It inherently, imposes problem of budget
imbalance but OECS calculates a rebate function using
Moulin mechanism in (8e) to overcome these problems
and ensure user participation.

« Inthis research, OECS calculates the tentative electricity
bill for each SHU’s one hour prior actual usage time slot.
System also shows difference in electricity bills with and
without using OECS, which were not considered in any
previous works.

o The electricity bill calculated using OECS mechanism
is reduced as compared to other systems presented
in [20], [32].

IV. PERFORMANCE EVALUATION
Performance of OECS is evaluated from multiple aspects,
as described below:
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TABLE 1. Comparison of different existing mechanisms.

Social Choice Function Allocative Efficiency = Budget Balanced =~ Dominant Strategy Incentive Compatible  Individual Rationality
First Price Auction [46], [47] Yes No No Yes
Vickrey Auction [46], [48] Yes No Yes Yes
Vickrey Clarke Groves (VCG) Auction [49], [34] Yes No Yes Yes
OECS mechanism Yes Yes Yes Yes

@
3

@«
S

IS
S

© © ¢ eprivate
I ] ] Sector

A A S

P N

1 == Household
] ] ] ‘ ‘
| | ] ] | h ‘

N
S

Electricity Load (Kwh)
8
= -
= -
= o
= -

=
o

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

FIGURE 2. Weekly load profile of user according to categories of users,
used during simulation [38], [40].

1) Comparison of OECS with existing mechanisms using
same attributes is performed.

2) Load Prediction Accuracy: Accuracy of the PL is cal-
culated by comparing it with the actual load for time
interval (7).

3) Electricity Bill: This represents the electricity bill of
individual buyer calculated in (4c) compared with other
two systems. The tentative bill with and without using
the system and their difference with actual electricity
bill of each SHU is also evaluated.

4) Efficiency: Efficiency of the OECS mechanism with
the increase of consumer’s participation is observed;
agents behave as consumers in the simulation model.

5) Payoff: Payoff of every SHU is calculated and com-
pared with a threshold.

6) Budget Balanced: This is very important property
which considers that none of the participant ends up
with problem of budget imbalance. This shows that
how the OECS mechanism is better in term of total
budget of all the participants as compared to other
approaches used in [20], [32], [44].

The comparison of different existing auctioning mecha-
nism with OECS is given in Table 1. Allocative efficiency
ensures that production of electricity presents consumers
preferences. Moreover, marginal benefit of consumers is
equal to the marginal production cost. A budget-balanced
property is used to ensure that no participant end up with
deficit or negative surplus. Budget balancing of OECS is less
than existing mechanisms as rebate is calculated in OECS
and given to the electricity consumers in the form of bud-
get surplus to overcome deficit if any. Dominant Strategy
Incentive Compatible (DSIC) is also achieved because every
user can reduce electricity bill by acting on true valuations
only. This is the same property hold by VCG as OECS also
preserves the properties of VCG mechanism. Individual ratio-
nality imposes that each user can obtain more benefits in term
of cost reduction when they individually submit valuations as
compared to submit combine valuations of each cluster.
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FIGURE 3. Monthly load profile of user according to time of day, used
during simulation [38], [39].

The hourly load profile is an important input for OECS sys-
tem. To achieve, this goal the performance of load prediction
module is tested. Typically, electricity demand varies over
days, weeks and months. Moreover, monthly data variation
also reflects the changes in weather therefore weather is not
considered separately in this validation. With hourly metering
of electricity consumption by individual customers, a large
amount of data has become available. In this work, accuracy
of PL is tested by agent based weighted average prediction
algorithm [37]. The whole day is divided into 24 hours time
slots. Electricity load prediction performs one-hour prior to
the actual time interval. To calculate the predicted load for
time slot ¢, forecaster agent calculates PL}; the upcoming
predicted electricity load of consumer j for time slot 7.

Furthermore, the agent based weighted average prediction
algorithm is based on two factors experts agents’ advise and
associated weights. To calculate experts advise, Anderson
model [38], [39] is adopted which uses electricity load aggre-
gation technique based on the categories of electricity con-
sumers. The data varies according to months, weekdays and
weekends. Expert agents choose advise with some variation
from the aggregated data given in Fig. 2 and Fig. 3.

Data for hourly electricity consumption is available at the
Danish Energy Association. A description of the bench-
mark data is found in [38], [40], [50]-[52]. The electricity
load profile depends on the categories of users (household,
public sector, private sector) as shown in Fig. 2. Monthly
load profile is shown in Fig. 3. The data is imported into
MATLAB for simulation of load prediction module to train
agents for advice. Initially 8 experts are considered, having
some weights in a range of (1-5). PL} for a single smart home
user is calculated using Eq. (1).

For comparison of actual and predicted load, mean value of
both predicted and actual load of all users according to time
is given in Fig. 4. Fig. 4 shows that there is a minor difference
between actual and predicted load. To re-assign the weights
of experts, actual load is compared with the advise of every
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FIGURE 4. The comparison between actual and predicted load of
electricity according to time of the day.
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FIGURE 5. Agents’ weights re-assignment algorithm’ outcome: The
difference between expert agents’ previous and updated weights.

agent and increase the weights of experts according to the
accuracy of their prediction using Algorithm 1. Comparison
of experts weights before and after the implementation of
Algorithm 1 is shown in Fig. 5. It is clear from the Fig. 5 that
weights of agents are increased whose prediction was close
to the actual load.

This research is conducted to minimize the electricity
cost of SHU’s. For simplicity, same SHUs are considered
whose load is predicted in the previous module. Further-
more, the cost of energy is high at the start of the day and
also at evening. Moreover, It is assumed that if electricity
is demanded from the electricity supply company directly
(grid station) without playing game then the cost function is
0.7 (8 AM-2 PM), 0.4 (2 PM-7 PM), 1 (7 PM-12 AM), 0.3
(12 AM-5 AM), and 0.4 (5 AM-8 AM). This data is taken
from Samadi, [19], [20]. First the cost to get PL from each
smart home mini micro-grid Cj, is calculated in [43]. Accord-
ing to OECS, each SHU prefer to buy electricity from their
adjacent neighbors within a cluster. Cost to get electricity
from adjacent neighbors C,, is calculated in [43]. To fulfill
further demand each SHU’s agent submits his valuations
against remaining quantity of electricity to the sellers and
electricity trading will start.

The data used for simulation is shown in Table 2 and
Table 3. Table 2 shows agent index (agents are working on
behalf of SHU’s), required units of electricity and valuations
submitted by each agent. The valuation of agents differs
based on their needs. The valuation for each agent is plot-
ted in Fig. 6. To define a threshold, two different systems
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TABLE 2. Data about agents: valuations given by each agent for their
specified amount of electricity units.

Agents Units Required Valuation of
Agents

1 2 59
2 4 20
3 1 7
4 4 29
5 4 69
6 4 27
7 1 51
8 2 30
9 2 45
10 3 32
11 1 62
12 3 46
13 1 36
14 3 61
15 2 22
16 4 47

-é 30 51 6

'_E ' = 7. 7 A l 15 3 36
1, s '.,!_‘. 11 15

FIGURE 6. Valuations submitted by agents against each unit.

are compared with OECS. First, system without OECS in
which demands of each electrical appliance of every SHU are
assumed to be fulfilled by electricity supply company only
(grid station). Second system is based on VCG mechanism
proposed in [20]. The simulation results of electricity cost of
each SHU by using OECS, without OECS and VCG based
system are depicted in Fig. 7. It is clear from the results that
there is a significant difference in electricity bill of same SHU
by using three different systems. Electricity bills for SHU’s
are reduced by using OECS.

The loss in efficiency incurred by using OECS is calcu-
lated using (8f) shown in Fig. 8. To calculate efficiency loss,
the binomial of the r identical objects based on n agents is
calculated, and the formulation of efficiency loss is performed
based on OECS mechanism.

Comparison of the OECS with the previous studies is also
performed. Table 3 shows the winner agents, based on their
valuation. By comparison, it is clear that the payoff of every
participant is improved using OECS, as can be inferred from
Fig. 9.

To test the budget imbalance property of OECS mecha-
nism, data is considered from same simulation values given
in Table 3. Same parameters are used to compare budget
imbalance of OECS with other published mechanism like
groves mechanism [20]. The difference is shown in Fig. 10.
Itis clear that budget imbalanced of OECS is reduced as com-
pare to other work done in this domain. It is also clear from
Table 3 that the payoff of OECS is high when compared to
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TABLE 3. Information about winners; Their valuations, payments, payoff and comparison of budget imbalance using different mechanisms; VCG and OECS.

Winners Agent’s Data

Units Valuation of | Per Unit | Units Values of | Payments of | Payoff using | Payoff using | Budget

Required agents ($) Vauation ($) | Provided agents Winners VCG OECS Imbalance

(KW /hr) (KW /hr) of Mecha-
nism($)

2 59 29.5 2 59 34.5 24.5 32.8333

4 69 17.25 2 34.5 30.6667 3.8333 12.1667 OECS ; 43

1 51 51 1 51 17.25 33.75 37.9167

2 45 22.5 2 45 34.5 10.5 18.8333

1 62 62 1 62 17.25 44.75 48.9167 VCG ; 90

1 36 36 1 36 17.25 18.75 22.9167

3 61 20.3333 3 61 49.8333 11.1667 23.6667

50

= System without OECS ~ ®™ System with OECS ™ System with VCG

Electricity Bill ($)

4
Buyers

FIGURE 7. Comparison of electricity bills of buyers using different
systems.
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FIGURE 8. Efficiency loss of the proposed system.

60

B VCG-based System B OECS-based System

Payoff ($)

1 2 3 4 5 6 7
Winner Agents

FIGURE 9. Comparison of agent’s payoff with Vickrey Clarke Groves (VCG)
approach and budget balanced optimal energy consumption scheduling
mechanism (OECS).

other mechanisms. Similarly, Table 3 also shows that budget
imbalance using OECS is less than previous research.

The tentative electricity bill of all SHU’s is also calculated
based on their predicted load. To motivate the electricity
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FIGURE 10. Comparison of budget imbalance of both mechanisms: VCG
and OECS.
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FIGURE 11. Comparison of tentative electricity bill with and without
using the OECS.

consumers for participation the difference between their ten-
tative electricity bill with and without using the system is
also provided to users using AMI. The difference between
tentative and actual bill is also shown in Fig. 11.

V. CONCLUSION AND FUTURE WORK

In this research, an auctioning scheme is modeled to consider
both SHU’s and suppliers. A weighted average prediction
algorithm was designed to forecast loads and share that infor-
mation among multiple electricity suppliers. In response to
the submission, energy trading is performed based on OECS.
The properties of the auctioning mechanism were analyzed,
and the results show that OECS possesses the properties of
allocation efficiency, dominant strategy and incentive com-
patibility, as well as being budget balanced. From exten-
sive simulation results, it is concluded that by implementing
OECS, SHU’s will benefit from a reduction in electricity bills
and an increase in payoff. The auctioning scheme also proved
beneficial for energy suppliers by reducing their PAR. System
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stability is achieved by reducing efficiency loss with increase
in participation from the consumers.

In future, OECS can enhance performance by using bene-
fits of recent research done in sensor-based system in smart
grid as proposed in [53], [54]. OECS could be implemented
by sensor based IoT enabled system, which can transfer opti-
mized electricity cost information of each consumers using
cloud data storage. Moreover, the effect of smart sensing
mechanism in electricity consumption scheduling could also
be considered. Multiple other risk factors including system
failure and recovery from failure could also be considered
to make the OECS more energy efficient and stable in all
possible circumstances.
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