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ABSTRACT Nature-inspired optimization is amodern technique in the past decades. Researchers report their
successful applications in various fields such as manufacturing, biomedical, and environmental engineering,
while other researchers doubt its applicability. In this paper, we collect newly emerging nature-inspired
optimization algorithms proposed after 2008, present them in a unified way, implement them, and evaluate
them on benchmark functions.Moreover, we optimize the behavioural parameters for these algorithms. Since
it is impossible to cover all interesting topics regarding nature-inspired optimization, this paper only focuses
on the continuous encoding algorithms for single objective global problems, which is fundamental for other
related topics.

INDEX TERMS Nature inspired optimization, meta-heuristics, unified framework, parameter optimization,
meta-optimization.

I. INTRODUCTION
A. MOTIVATION
Conventional optimization methods such as the
Newton-Raphson method and interior-point methods have
been implemented in many software packages. However,
the well-crafted software packages may still hardly solve
some real-world problems. For example, for the nonlinear
optimization problem which has large numbers of local
optima, conventional optimization algorithms may lose their
search ability. Nature-inspired optimization (NIO) algorithms
have superior abilities to avoid local optima compared to
conventional optimization techniques. Therefore, the NIO
algorithm become an important option for solving some
challenging real-world problems [1].

Animals and plants naturally develop strategies for mil-
lions of years to ensure their survival when resources are
scarce [2]. It is understandable that the abundance and success
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of these strategies merit consideration in the development of
algorithms for optimization. Over the past few decades, NIO
algorithms such as particle swarm optimization and genetic
algorithm have provided a wealth of meta-heuristics for solv-
ing desired problems. The No Free Lunch (NFL) theorem
states that there is no meta-heuristic best suited for solving
all optimization problems [3]. Consequently, researchers con-
stantly propose new NIO algorithms, thereby keeping this
field active and spurring steady progress every year. Since
the research of NIO algorithms become more active from
2008 than before, in this paper, we focus on the newly emerg-
ingNIO algorithms that were proposed after 2008.We believe
it is time to investigate whether these new NIO algorithms
are powerful in solving challenging problems and how to use
them with appropriate parameters.

B. SCOPE AND REVIEW METHODOLOGY
Optimization problems can be divided into two categories:
those where solutions are encoded with real valued vari-
ables, and those where solutions are encoded with discrete
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variables [4]. Continuous optimization problems arise for the
former category, while we find combinatorial optimization
problems for the latter category. We realize that it is really
hard to examine and evaluate the NIO algorithms if we
consider them both. So we limit our review to the continu-
ous optimization problems. Moreover, we only examine the
NIO algorithms for the basic global optimization problems,
and do not go into various more complex problems such as
multi-modal optimization problems [5], dynamic optimiza-
tion problems, and multi-objective optimization problems.
This is done in order to keep the scope of our analysis in such
a breadth where it is possible to examine each NIO algorithm
in detail rather than superficially.

Our studies adopt the guidelines for undertaking system-
atic review as recommended in [6]. The original set of papers
is collected from the searchers run on the ‘‘science citation
index expanded’’ (SCIE) collection of ‘‘web of science’’
(WOS) which is a high standard indexing system. The search
is performed in 2019, which covers the period between
2008 and 2019. As a general rule, we include in the review
the papers which firstly proposed a new NIO algorithm and
which was then cited by other authors more than twice in
the WOS core collection. Explanation should be added for
‘‘firstly proposed’’ that the first public appearance of some
algorithms to other journals or conferences beyond the scope
of SCIE collection may be earlier than ‘‘firstly proposed’’ in
this paper. The citations are also limited within the scope of
WOS core collection. There is an exception that the black
widow optimization algorithm [7] has not been cited yet.
The black widow optimization algorithm was just proposed
at the end of 2019. We believe it will be cited in the near
future. Corresponding resulting set of papers undergo manual
reduplication.

The papers which are dedicated to hybrid algorithms, such
as [8] which is hybridization between the NIO and non-
NIO algorithms, [9] which is hybridization of two NIO algo-
rithms, [10] which is hybridization of three or more NIO
algorithms are not included in this review.

Each research paper we collect is closely related to a NIO
algorithm. From these papers, we obtain over a dozen NIO
original algorithms. We implement all algorithms in Python
language, evaluate them on benchmark functions, and per-
form parameter optimization for them.

C. OTHER LITERATURE REVIEWS
There are some review works in the past decades.
Fister et al. [11] gave a comprehensive list of nature inspired
optimization algorithms from 1992 to 2013. A taxonomy for
NIO algorithms was presented in this paper. Yang introduced
another taxonomy in his review paper [12]. Kar [13] also sum-
marized the development of 10 nature inspired algorithms
from 1970s to 2015, and focused on applications in some spe-
cific environments. Valdez et al. [14] studied the importance
and improvement in performance of the adaptiveness of the
parameters of PSO, GSA, and ACO. Agarwal [15] conducted
a detailed study of five NIO algorithms including ABC, FA,

FIGURE 1. The timeline of NIO algorithms.

FPA, CS, and BA by testing the convergence performance on
CEC’2014 (Institute of Electrical and Electronic Engineers,
Congress on Evolutionary Computation 2014). Nanda and
Panda [16] systematically summarized the single-objective
NIO algorithm for cluster analysis. Molina et al. put forward
several recommendations and points of improvement for bet-
ter methodological practices, after critically analyzing more
than three hundred papers of different types of nature and bio-
inspired algorithms [17]. Since there are vast excellent NIOs
and many topics in this field, it is inevitable that all the review
papers to date only focused on a limited scope.

D. CONTRIBUTION
We select over a dozen NIO algorithms from articles pub-
lished after 2008. Fig.1 counts the number of SCIE indexed
articles related to each algorithm. The colors of lines dif-
ferentiate the algorithms. The texts appearing in the legend
are the abbreviations for various algorithms (see Table 1).
Additionally, the past two years saw somany new competitive
NIO algorithms that we can hardly put them all into this
review. So, we list some of them in Table 2 without providing
more details. The X variable represents the year, while the
Y variable is the number of papers which appeared and were
indexed in SCIE that year. We omit some papers unintention-
ally and inevitably since some papers do not fall into the scope
of SCIE. Another reason is that titles and keywords do not
suggest salient connection with the NIOs for some papers.

When introducing variousNIOs, we present a new perspec-
tive concerning the number of elites, thus giving a new tax-
onomy for the NIO algorithms. Furthermore, we make efforts
in unifying most NIO algorithms, though it is impossible to
unify all NIO algorithms. Such a unified framework allows
users to develop a well-structured NIO software. In fact, our
implements of the NIO algorithms have already benefited
from the unifying and abstraction.

It is always reasonable to ask if some methods are bet-
ter than others. We selected 41 benchmark functions from
[18]–[22] to test the performance of NIOs and compare them
fairly and objectively. Even though the benchmark tests indi-
cate that some NIO algorithms really demonstrably perform
better on most functions than others, we cannot scientifically
answer the above-mentioned question yet.
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E. LIMITATIONS
Before we proceed with the description of NIO algorithms,
the limitations of the review process should be noted. Firstly,
the scope of this review is limited. As mentioned previ-
ously, we focused only on research publications dealing pri-
marily with the continuous global optimization problems.
The papers regarding combinatorial optimization problems,
multi-modal optimization problems, multi-objective opti-
mization problems, and dynamic optimization problems are
all excluded. Secondly, the analysis in this paper is done based
only on our understanding. We did not contact the authors
to verify the correctness of our understanding. Thirdly, for
some NIOs, there exists the original algorithm and some
amended algorithms. It is impossible to exclude the factor
of subjectivity while determining which is the most repre-
sentative paper for a NIO algorithm. Fourthly, some high
standard paper related to a NIO algorithm may does not find
their place in this review due to it is not indexed by ‘‘Web of
Science’’. Fifthly, we certainly miss some papers when the
title, the abstract, or the keywords of the papers did not bring
the paper into our collection. Finally, the review is only valid
at the time of writing this paper. It is subject to change since
NIO is a hot research topic recently. Nevertheless, the liter-
ature search method still ensure an acceptable level of the
completeness of this review. Hence, we believe that the set of
papers is representative and the results of the analysis may be
generalized.

Researchers have a natural desire to provide theoreti-
cal basis for NIOs. As a pioneer work, Holland [23] used
Schema theory to theoretically explain the genetic algo-
rithm. However, the attempt for such a classical NIO was
criticized as being an inadequate theoretical basis [24].
Even worse, it is hard to analyse the computational com-
plexity for any NIO due to the difficulties in stochas-
tic search and fitness landscape analysis [25]. So we
take extensively measurements of the cost function eval-
uation counts instead of the computational complexity
estimation.

F. ORGANIZATION
Section II gives the taxonomy and the unified framework for
NIOs to be described. We provide some technical notations
and abbreviations to facilitate further description and discus-
sion. In section III, the essence of eachNIO algorithms is epit-
omized. This is followed by the evaluation (section IV) and
parameter optimization (section V) of the NIO algorithms.
Section VI concludes the paper finally.

II. OVERVIEW
In this paper, we focus on the NIO algorithms which are
based on various animal habits or nature processes such as
foraging and breeding. Table 1 lists these NIO algorithms in
descending order of published year. The first reference for
each algorithm is the earliest published literature of the NIO
algorithm.

FIGURE 2. Taxonomy of Fister et al. [11] and Siddique [12].

FIGURE 3. Proposed taxonomy.

A. TAXONOMY
It is a tremendous challenge to define a widely accepted
taxonomy for nature inspired optimization algorithms due to
diversity of the nature. Fister et al. [11] classified the NIO
algorithms into swarm intelligent (SI) based algorithms, bio-
inspired but not swarm intelligence based algorithms, physics
and chemistry based algorithms, and other algorithms. Sid-
dique [12] classified the biology-based algorithms into evo-
lutionary algorithms (EA), bio-inspired algorithms (BIA) and
swarm intelligence-based algorithms (SIA).

We visualize the taxonomy mentioned previously in Fig.2.
As illustrated in Fig.2a, the bio-inspired algorithm is a type of
nature inspired algorithm, and the SI-based algorithms belong
to the category of bio-inspired algorithm. It is impossible
to exhibit all NIO algorithms in Fig.2b due to the space
limitation. We do not fully enumerate all algorithms. Only
some representative algorithms are exhibited to save space.
And we use ‘‘. . . ’’ to represent those NIO algorithms not
listed here.

In this paper, we add a taxonomy by classifying the NIO
algorithms into single-elite, multi-elite, and non-elite algo-
rithms, based on the number of elites they used in the algo-
rithm. An elite is defined as the individual in a swarm who
has the highest fitness, while multi-elites are defined as the
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TABLE 1. The collected NIO algorithms.

TABLE 2. Other newly proposed NIO algorithms.

best several individuals. Elites guide other individuals during
the course of searching for optima. The classification of the
collected NIO algorithms in this paper is illustrated in Fig.3.

B. UNIFIED FRAMEWORK
It is beneficial for implementation to develop a unified frame-
work in terms of algorithm structure. Over the past several
years, vast literature provides valuable insights into how to
understand the employed strategies and what the general
characteristic of the NIOs is ( [82] and [83]). The framework
we present here inevitably uses these concepts as the basis of
the description and reconstructed them to form more detailed
principles and practices for scientific research or program-
ming.

Almost all NIO algorithms mentioned in this paper share
a common flowchart as Fig.4. In the framework, each NIO

process can be divided into four steps. The widely used stop-
ping criteria encompass fitness evaluation bound, generation
bound, and specified precision.

Furthermore, we describe the detailed procedures of each
step in Table 3. Each sub-procedure is labelled in ascending
order.We list all contained sub-procedures for eachNIO algo-
rithm in Table 4. It should be noted that the steps in Table 4 are
optional and few NIO algorithms contain all sub-procedures.
More details for each NIO algorithm will be described in the
next section.

C. TECHNICAL NOTATIONS
To facilitate further description and discussion, we give some
technical notations and abbreviations in Table 5. Also a sym-
bol list is provided in Table 6. With Table 6 in hand, we give a
pseudo code version of the unified framework as Algorithm 1.
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TABLE 3. Specification of steps and sub-steps in the NIO algorithms.

TABLE 4. Steps or sub-steps contained in collected NIO algorithms.

TABLE 5. Technical notations and abbreviations.

III. INTENSIVE REVIEW OF NIO ALGORITHMS
A. SAILFISH OPTIMIZER
SFO is inspired by the attack-alternation strategy of the group
hunting sailfishes (predators) and a school of sardines (prey).
This strategy saves the energy of the predators while other
predators are injuring the prey.

In the SFO, catching prey occurs when the sardine becomes
fitter than its corresponding sailfish. Then the position of sail-
fish substitutes with the latest position of the hunted sardine
to increase the chance of hunting new prey. The elite sailfish
is assumed to be the best position among sailfishes. A sailfish
updates its position according to current position, the position
of the elite sailfish, and the position of the injured sardine,
which is formulated as:

X_sf t+1i,d = X tbest_sf − λ

× (r ×
X tbest_sf + Xs

2
− X_sf ti,d ),

λ = 2× r × PD− PD, PD = 1−
Nsf

Nsf + Ns
,

r ∼ U (0, 1), (1)
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FIGURE 4. Flowchart of the NIOs.

TABLE 6. Symbol definitions.

where PD (prey density) is used to control the number of
sardines in each iteration; X_sf stands for the position of
sailfish; Xbest_sf stands for the best individual of the sailfish
group; Nsf stands for the number of sailfishes; Ns stands for
the number of sardines.

Sardines update their position based on their position and
the AP (attack power):

X_st+1i,d = r · (X tbest_s,d − X_s
t
i,d + AP),

AP = A0 × (1− 2× t × ε), r ∼ U (0, 1), (2)

where ε is the coefficient that reduces the attack power AP
linearly from A0 to 0. The position of sailfish substitutes with
the position of the hunted sardine:

X_sf ti,d ← X_sti,d if (f (X_sti,d ) > f (X_sf ti,d ). (3)

Algorithm 1 Pseudo Code of the Unified NIO Framework
Input: The optimization problem with the search domain

Output: The optimal solution and its fitness

begin

Define f (X ), X = (x1, x2, · · · , xD)
Generate initial swarm X within the search domain
Set algorithmic parameters
Evaluate the swarm with f (X ), and obtain elite(s)
while not meeting stopping criteria do

Generate a new solution x t+1i from x ti and elite(s)
Re-evaluate the swarm with f (X ), and obtain elite(s)

end while
Output the optimal solution and its CFV.

FIGURE 5. The flowchart of SFO.

Fig. 5 illustrates the SFO algorithm. The sailfishes inten-
sify the search around the best solution so far, while the
sardines expand the search space. SFO is a single-elite algo-
rithm.

B. BLACK WIDOW OPTIMIZATION ALGORITHM
BWOA is inspired by the mating behavior of black widow
spiders. The female spider consumes the male during mat-
ing. After eggs are hatched, the offspring engage in sibling
cannibalism.

In each generation of BWOA, the best nr individuals are
selected as parents Xp1, Xp2 according to procreating rate.
Each pair of children can be formulated as:

y1 = α × Xp1 + (1− α)× Xp2,

y2 = α × Xp2 + (1− α)× Xp1,

α ∼ U (0, 1), (4)

y1 and y2 are children. Since each pair of parents produces
several pairs of children in a generation, the population size
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FIGURE 6. The flowchart of BWOA.

FIGURE 7. The flowchart of S(q)SA.

increases after mating. The children and mother are put to an
array and sorted by their fitness value. Then the population
size is restored through cannibalism or competition. Finally,
individuals are randomly selected for mutation according to
the mutation rate.

Fig. 6 illustrates the BWOA algorithm. In BWOA, the opti-
mal individual does not impact the update of other individuals
in the population, hence BWOA is a non-elite algorithm.

C. SQUIRREL SEARCH ALGORITHM
S(q)SA is inspired by the foraging strategy and gliding mech-
anism of flying squirrels. The flying squirrels do not have the
ability to fly. Instead they slide to save energy.

In autumn, the squirrels search for food resources by glid-
ing from one tree to the others. They eat acorns in oak trees
immediately upon finding them. They also search for the
hickory tree as optimal food source. Storing hickory nuts
helps them survive in the winter.

In S(q)SA, there are four elites including one squirrel
on the hickory tree and three squirrels on oak trees. Three
types of gliding correspond to exploitation. Specifically, fly-
ing squirrels which are on oak trees may move towards the
hickory tree. Flying squirrels on normal trees move towards
oak trees or the hickory tree. The glidings can be formulated

FIGURE 8. The flowchart of RTO.

FIGURE 9. The salp chain and the update strategy of the leader.

as:

X t+1i,d =

{
X ti,d + dg · Gc · (Xelite,d − X

t
i,d ), r ≥ pdp,

U (bl,d , (bu,d − bl,d )), otherwise,
(5)

where pdp is the predator presence probability, Gc is the
gliding constant, and dg is a random gliding distance. An
exploration operation is conducted mimicking the random
search at the end of winter:

X t+1i,d = bl,d + Lévy(λ) · (bu,d − bl,d ), λ = 1.5, (6)

The four elites are updated in each iteration by reordering
fitness among the population.

Fig. 7 is the flowchart of the S(q)SA.

D. ROOTED TREE OPTIMIZATION
Tree roots play an essential role in the processes of
plant growth, especially in the search for water resources.
The roots are prone to grow in the water-rich place.
Rooted Tree Optimization (RTO) mimics the behaviour of
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FIGURE 10. The flowchart of S(a)SA.

FIGURE 11. The A value in WOA/GWO (WOA/GWO performs exploration
when |A| > 1).

FIGURE 12. The flowchart of WOA.

FIGURE 13. The flowchart of WWO.

tree roots. RTO groups its root (the swarm) into three sub-
swarms. The sub-swarm far from the water source Rr will
randomly choose the location to grow, which is formulated

FIGURE 14. The flowchart of ALO.

FIGURE 15. The flowchart of GWO.

FIGURE 16. The flowchart of DFO.

FIGURE 17. Determining neighbourhood by the sensing distance in KH.

as

X t+1i,d = Xrand + c1 × Dwi × r ×
|Xmax − Xmin|

Gen
,

r ∼ U (0, 1), c1 ∼ U (0, 1). (7)

The sub-swarm not far from the water source (termed as
continuous roots) Rc will move forward from the previous
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FIGURE 18. The flowchart of KH.

FIGURE 19. The flowchart of FPA.

FIGURE 20. The moths and flames in MFO.

FIGURE 21. The flowchart of MFO.

generation to the best root so far, which is formulated as

X t+1i,d = Xbest + c3 × Dwi × r ×
|Xmax − Xmin|
Gen× t

,

r ∼ U (0, 1), c3 ∼ U (0, 1). (8)

The roots which are near to the water source Rn update
their positions stochastically around the best root, which is
formulated as

X t+1i,d =X
t
i,d+c1×Dwi×r×(Xbest−X

t
i.d ), r ∼ U (0, 1),

(9)

FIGURE 22. The flowchart of FA.

FIGURE 23. The flowchart of CS.

where Dwi is the wetness degree of each root, which can be
calculated as

Dwi = 1−
f (X ti )

X tbest
. (10)

RTO is a single-elite algorithm. It relates the update rules
of Rc and Rn to the elite Xbest . Fig.8 illustrates the RTO
algorithm.

E. SALP SWARM ALGORITHM
S(a)SA is inspired by swarming behaviours of the salp chains
(see Fig.9a). The leader which is the salp at the front of the
chain guides the followers to search foods in the sea. S(a)SA
updates the position of the leader in the following way:

X t+11,d =


Xbest,d+c1((bu,d−bl,d )c2+bl,d ), c3≥0.5,
Xbest,d−c1((bu,d−bl,d )c2+bl,d ), c3<0.5,

c1=2e−(
4t
T )2 , c2, c3 ∼ U (0, 1),

(11)

where c1 is a coefficient used to balance the exploration and
the exploitation. The leader tends to move toward the best
found solution, as shown in Fig.9b. The followers are then
updated using the equation:

X t+1i,d =
1
2
· (X ti,d + X

t
i−1,d ). (12)

The new position of each follower is between the current
position and the position of its front neighbour. Therefore,
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FIGURE 24. The images of the 2-D benchmark functions defined in Table 9.

the salp swarm keeps the chain shape during the course of
search. The flowchart of S(a)SA is presented in Fig. 10

F. WHALE OPTIMIZATION ALGORITHM
WOA is inspired by the foraging behaviour of the hump-
back whales which is called bubble-net feeding method. The
shrinking encircling and spiral attacking are two essential
mechanisms in the bubble-net feeding method. The mecha-
nisms can be mathematically modelled as:

X t+1i,d = Xbest,d−A× |2r × Xbest − X ti,d |,

A = 2a · r − a, r ∼ U (0, 1), (13)

for shrinking encircling where a decreases linearly from 2 to
0 with iteration, and

X t+1i,d = |Xbest,d − X
t
i,d | · e

b·r
· cos(2πr)+ Xbest,d ,

r ∼ U (−1, 1), (14)

for spiral attacking, where b is a constant defining the shape
of the spiral. The shrinking encircling and spiral attacking
are performed randomly with the probability of 0.5 in each
iteration. The exploration process of WOA can be modelled
as:

X t+1i,d = X trand,d−A× |2r × X
t
rand,d − X

t
i,d |. (15)

The exploration happens when the individual is far away from
the best solution (|A| > 1), as illustrated in Fig. 11.
WOA is a single-elite NIO algorithm. The flowchart of

WOA is shown in Fig.12.

G. WATER WAVE OPTIMIZATION
WWO is inspired by the shallow water wave theory. Each
individual of WWO is a wave with position X , wave length
λ and amplitude h. There are three operations in WWO
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FIGURE 25. Convergence curves.

including Propagation, Refraction, and Breaking. Propaga-
tion creates a new position by shifting each dimension d of
the original wave as:

X t+1i,d = X ti,d + r · λ · Dd , r ∼ U (−1, 1), (16)

where Dd is the length of the d th dimension of the search
space. If the new position is better than the old one, it replaces
the old one with itself, and thereafter the new solution updates
its amplitude as hmax . Otherwise, the wave length keeps
unchanged, but its height h is decreased by one. WWO per-
forms refraction on waves whose heights decrease to zero,
and calculates the new position:

X t+1i,d =r ·(
Xbest,d

2
,
|Xbest,d−X ti,d |

2
), r∼N (µ, θ). (17)

After refraction, the amplitude of the wave is set to hmax , and
the wave length is set to:

λ′ = λ
f (X t )
f (X t+1)

. (18)

WhenWWOfinds an enough optimal solution which exceeds
the threshold value β, the wave breaks. In breaking, WWO
performs local search near the optimal solution:

X t+1i,d = X ti,d + r · β · Dd , r ∼ N (0, 1). (19)

By the end of each iteration, the wavelength of each wave is
updated as follows:

λ← λ · α
−

f (X )−fmin+ε
fmax−fmin+ε , (20)
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FIGURE 26. Convergence curves of the 50D and 100D functions.

where α is the wavelength reduction coefficient and ε is a
positive infinitesimal. fmax and fmin are the maximum and
minimum CFV in current swarm.

Fig. 13 is the flowchart of the WWO. WWO is a single-
elite NIO. Only the individual with best fitness has impact on
other individuals.

H. ANT LION OPTIMIZATION
ALOmimics the huntingmechanism of ant lions. It maintains
two fitness matrix for antlions and ants. The global search is
implemented mimicking the random walk of ants. Each ant
randomly selects a trap built by an antlion, and walks around
it:

Rtant,d =
(X ti,d − bl,d ) · (bu,d − v

t
l,d )

vtu,d − bl,d
)+ bl,d , (21)

where vtl,d and vtu,d are bound of random walk at d th dimen-
sion in the t th iteration. ALO performs local search by nar-
rowing the range of random walk:

vt+1l,d =
vtl,d
I
, vt+1u,d =

vtu,d
I
, (22)

where I is the ratio of constriction. ALO is aNIOwith a single
elite. The new solution is obtained by averaging the current
random walk and the random walk around the best solution
founded:

X t+1i,d =
Rtant,d + R

t
best,d

2
. (23)

If an ant finds a position with better fitness, the ant lion
updates its position correspondingly.

ALO is outlined in Fig. 14.

I. GREY WOLF OPTIMIZER
Inspired by the social hierarchy and hunting behaviour of
grey wolves, GWO selects three leaders in each iteration. The
fittest wolf is Xα . The second and third are Xβ and Xγ , respec-
tively. Other wolves are represented by Xω which follow the
leaders during the hunting. Encircling prey is modelled as:

XI = X tI ,d − A× |2r × X
t
I ,d | − X

t
i,d ,

I = (α, β, γ ), (24)

where XI represents the impact of the elites on X ti . The
definitions of A is same as that in WOA. In hunting, GWO
updates the positions of wolves toward:

X t+1i,d =
Xα,d + Xβ,d + Xδ,d

3
. (25)

The parameter A determine if the GWO performs global
search or local search. If an individual is near the leaders
(|A| ∈ [−1, 1]), then it performs local search. Xα , Xβ , and
Xδ have even impact on other individuals in the population.
Otherwise, it performs global search, as illustrated in Fig. 11.

The leader and the elite are identical in GWO. Fig.15
illustrates the GWO algorithm. GWO is a multi-elite NIO
algorithm.

J. DISPERSIVE FLIES OPTIMIZATION
DFO mimics the swarming behaviour of flies over food
sources. The flies disperse if they are disturbed. They return
and form a swarm again immediately after the disturb is
over. DFO is similar to the FPA algorithm. Both of them
use a probability parameter to balance the global search and
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FIGURE 27. Box plots of the CFV errors.

the local search. Specifically, the parameter in DFO is the
disturbance parameter dt .
DFO maintains a ring topology. The local search is per-

formed under the guidance of the left neighbour, the right
neighbours, and the best individual:

X t+1i,d = X tnghb_b,d + r · (Xbest,d − X
t
i,d ),

Xnghb_b,d = min(f (Xleft,d ), f (Xright,d )),

r ∼ U (0, 1). (26)

DFO uses a variable dt to simulate the disturb. When a ran-
dom number r is smaller than dt , DFO relocates the individual
as:

X t+1i,d = bl,d + r · (bu,d − bl,d ), r ∼ U (0, 1), (27)

which is a uniformly random position in the search domain.
DFO is a single-elite NIO algorithm. The flowchart of DFO

is shown in Fig. 16.

K. KRILL HERD
KH mimics the krill herd in response to specific biological
and environmental processes. Three actions including for-
aging activity, movement induced by other krill individuals,
and random diffusion are considered. The search dynamic is
modelled as the following Lagrangian model:

dXi/dt = Ni + Fi + Di, (28)

whereNi is the motion induced by other krill individuals;Fi is
the foraging motion, andDi is the physical diffusion of the ith
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FIGURE 28. Box plots of the 50D and 100D functions.

krill individual. Each krill herd individual update its position
by:

X t+1i,d = X ti,d + dXi/dt. (29)

The movement guided by other krills is modelled as:

N t+1
i = Nmax

· αi + ωn · N t
i ,

αi = α
local
i + α

target
i , (30)

where Nmax is the maximum speed, ωn is the inertia weight,
αlocali is the neighbour effect, αtargeti is the target direction
effect. The foraging activity is modelled as:

F t+1i = Vf · βi + ωf · F ti , βi = β
food
i + βbesti , (31)

where Vf is the foraging speed, ωf is the inertia weight, β
food
i

is the food attractiveness and βbesti is the effect of the best
position of ith krill. The neighbourhood is determined using
a sensing distance around a krill individual (see Fig. 17).
The physical diffusion of the krill individuals is modelled

as:

Di = Dmax · δ, (32)

where δ is the random directional vector and its arrays are
random values in [-1,1]. Additionally, crossover andmutation
are incorporated into the KH.

Fig. 18 is the flowchart of KH.

L. FLOWER POLLINATION ALGORITHM
FPA is inspired by the pollination process of flower. About
90% of flowering plants belong to biotic pollination, while
10% of pollination takes abiotic form. Similarly, FPA uses a

switch probability to control the local pollination and global
pollination. The global search (global pollination) is mod-
elled as:

X t+1i,d = X ti,d + l · (X
t
i,d − Xbest,d ), l ∼ L(λ), (33)

where L(λ) represents the Lévy distribution. The local search
(local pollination) is modelled as:

X t+1i,d = X ti,d + ε · (X
t
j,d − X

t
k,d ), ε ∼ U (0, 1), (34)

where j and k are two randomly selected individuals.
Fig. 19 is the flowchart of FPA. Since the global search

of FPA is guided by the elite, FPA is a single-elite NIO
algorithm.

M. FRUIT-FLY ALGORITHM OPTIMIZATION
FOA is a meta-heuristic based on the foraging behaviour of
the fruit fly. The fruit fly has super olfaction. It can even smell
food source from 40 km away. In FOA, each individual per-
forms stochastic search. Unlike other NIOs, FOA normalizes
individual positions with respect to the optimum. The update
rule can be formulated as

Xi = Xaxis + r, Yi = Yaxis + r,

Xaxis,d ,Yaxis,d = U (bl,d , bu,d ),

r ∼ U (−1, 1). (35)

For normalization, FOA calculates the distance to the opti-
mum as the reciprocal of concentration value:

Si =
1√

x2i + y
2
i

. (36)

VOLUME 8, 2020 72633



H. Li et al.: Newly Emerging NIO - Algorithm Review, Unified Framework, Evaluation, and Behavioural Parameter Optimization

FIGURE 29. The contour plots of ALO, BA, CS, DE, DFO.

FOA is a single-elite algorithm. The elite with best fitness
attracts other individuals, which makes Xaxis,Yaxis in Eq. 35
be replaced by the position of the elite. Moreover, FOA is
an easily implemented NIO due to its simple computational
process.

N. MOTH FLAME OPTIMIZATION
The moth flies towards the flame which is the inspiration of
MFO. When the light source is far away, the moth may fly in

a straight line over a long distance following the moonlight
navigation. When the light source is not far away, the moth
will fly and spiral closer to the flames. MFO maintains a
swarm of moths and a group of flames. The movement of
each moth can be formulated as

X t+1i,d = Di,j · ebr · cos(2πr)+ Fj,d , r ∼ U (−1, 1), (37)

where b is a constant defining the shape of the spiral, Di,j
is the distance between the ith moth and the jth flame.
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FIGURE 30. The contour plots of FA, FPA, FOA, GWO, KH.

As sub-step 1-2 illustrated, MFO sorts the current moths
according to fitness which will become the flames of the next
generation.

The order in the sequence of moths keeps unchanged dur-
ing the course of the search. Each moth flies toward each
flame one to one in order, as shown in Fig. 20. If a moth
finds a better position from Eq. 37, the moth and the flame
are updated. Fig. 21 is the flowchart of MFO. There is no elite

which impacts other moths, so MFO falls into the non-elite
NIO category.

O. BAT ALGORITHM
Inspired by the echolocation behaviour of bats, BA is a single-
elite NIO algorithm. Bats fly with velocity vi at position xi
with a minimum frequency fmin, varying wavelength λ and
loudness A0 to search for prey. They adjust the pulse rates(ri)
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FIGURE 31. The contour plots of MFO, SSA, S(q)SA, WOA, WWO.

according to the degree of proximity to the optimal value
individual. At the beginning of each iteration, BA updates the
position and speed with the following formula.

vt+1i = vti + (X ti − X
t
best ) · fi,

X t+1i = X ti + v
t
i , (38)

where fi = fmin + (fmax − fmin) · β (β ∼ U (0, 1)) is
used to adjust the velocity change. BA uses pulse rates to

switch global search and local search. When random number
r > ri, BA performs local search around the elites, which is
modelled as:

X t+1i,d = X ti,d + ε · Ā,

Ā =

∑n
1 Ai
n

,

ε ∼ U (−1, 1). (39)
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FIGURE 32. The contour plots of SFO, BWOA.

FIGURE 33. The contour progress on Michalewicz-2D.

Then BA performs global search by flying randomly in the
search space. BA assumes that when the bat finds the prey,
it temporarily stops making sounds. The new solution is
accepted when r < ri. At the same time, BA updates the

individual’s loudness and pulse rate.

At+1i = α · Ati , r t+1t = r0i (1− e
−γ t ),

α = γ = 0.9. (40)
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FIGURE 34. The contour progress on Camel6-2D.

P. FIREFLY ALGORITHM
Fireflies produce short and rhythmic flashes to attract mat-
ing partners or potential prey. A firefly’s attractiveness is
proportional to the light intensity, which defines the fitness
of the individual in FA. The brighter flash an individual in
the population produces, the greater it impacts on the other
individuals. Moreover, brightness is related to absorption rate
and distance which also determine the attractiveness of an
individual to other individuals. The attractiveness is modelled
as

β(r) = β0e−γ r
2
, β0 = 1, (41)

where β0 is the attractiveness at r = 0.
Each firefly is attracted by a better adjacent firefly:

X t+1i,d = X ti,d + βr · e
−γ ri,j2 + α · (r −

1
2
)),

α, r ∼ U (0, 1), ri,j = |Xi − Xj|. (42)

The attractiveness attenuates with distance r2 exponentially.
FA is a multi-elite algorithm, however there is a minor dif-

ference between FA and other multi-elite algorithms. In FA,
each individual is compared with other individuals in each
generation. If there exists a better individual from the view-
point of itself, it will move towards the better individual. The
elite for each individual is not fixed as the best individual

in the population due to the absorption rate and distance.
Therefore, more than one elites may exist in the population,
and the total number of elites is not fixed during the process
of the optimization, unlike other multi-elite algorithms. The
flowchart of FA is given in Fig. 22.

Q. CUCKOO SEARCH
CS is inspired by the aggressive reproduction strategy of
cuckoo. Some cuckoos engage the obligate brood parasitism
by laying their eggs in the nests of other host birds. Each
cuckoo lays one egg at a time, and dumps its egg in ran-
domly chosen nest. In CS, nests, cuckoos and eggs are all
considered when generating new candidate solution. CS is
a non-elite algorithm, which means that in each updating
process each individual is not a reference to other individuals.
The updating process mainly rely on the random walk Lévy
flight. However, random walk does not always produce better
solutions. For those cases where the quality of the solution
is not improved, CS uses a process similar to the simulated
annealing algorithm to accept a worse solution with a certain
probability, which correspond to sub-step 4-2 and 4-3 in the
framework.

The random walk is modelled using Lévy flight:

X t+1i,d = X ti,d + α · Lévy(λ), λ = 1.5, (43)
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TABLE 7. The experimental configuration.

where α is the step size related to the scales of the problem.
A better nests X with high quality of eggs will carry over to
the next generations with a certain probability. Fig. 23 is the
flowchart of CS.

IV. PERFORMANCE EVALUATION
In this section, all the collected NIO algorithms will be eval-
uated on 41 benchmark functions which are frequently used
in related literature. Since these NIO algorithms have just
been proposed for a short time, we add PSO and DE which
are traditional excellent NIO algorithms tomake comparisons
more informative.

A. EXPERIMENTAL SETUP
We implement all aforementioned NIO algorithms in python
language and run them on the same environment. The hard-
ware and software configurations are shown in Table 7.

B. BENCHMARK FUNCTIONS
Twenty benchmark functions ( [18], [19]) are listed in Table 9.
Fig. 24 is the images of 2-D benchmark functions defined
in Table 9. The readers can find 3-D surface plots for most
two variable functions in the supplementary material. Some
benchmark functions have multi-modal feature, while others
are unimodal. Some benchmark functions have three vari-
ables or more, such as the Michalewicz function. Therefore,
the benchmark functions including various versions of some
functions are 41 in total.

C. ALGORITHM IMPLEMENTATION
It is difficult to make a fair comparison among the NIO algo-
rithms with arbitrarily assigned parameters, since parameters
do affect the results for most benchmark functions. Choosing
the parameters recommended by the original authors is a
compromise way. The recommended parameters are accept-
able in most cases.

Specifically, the recommended parameters of these NIO
algorithms along with PSO and DE, are listed in Table 8.
Swarm size is a common parameter for all algorithms. As
shown in Table 8, most NIO algorithms recommend 30 as
the swarm size. Only WWO recommend a small swarm size
which is much less than 30. For some algorithms without rec-
ommended swarm size, we assign the value 30 to the swarm
size in order to make comparison as fair as possible. Similar
treatment is given for the algorithms in which recommended

TABLE 8. The parameters of NIO algorithms (SS is the abbreviation of
‘‘swarm size’’).

swarm size is not far away from 30 (such as PSO in which the
swarm size is 25), or 30 is in the recommended range.

We use recommended value for other behavioural param-
eters. Some authors did not recommend parameters in their
original paper. In that case, we use the parameters in literature
they published later or from source codes they provided. If the
author only recommends a range for a behavioural parameter,
we randomly adopt a value in the range.

KH has four crossover and mutation strategies to address
various optimization problems. We just implement one strat-
egy to simplify comparison. Most algorithms generate initial-
ize swarm randomly. We employ the same seed when starting
the pseudo random generating processes to generate the same
initial swarm for fair comparison.

The bound of 200 generations is the common stopping
criterion for most NIO algorithms with swarm size 30. Larger
generation bound is given to WWO which has less swarm
size.

D. PERFORMANCE TEST
The convergence curves are shown in Fig.25 and Fig.26. Each
sub-figure represents a benchmark function. The convergence
curves of various NIO algorithms for each benchmark func-
tion are plotted together in each sub-Fig.

Most algorithms have good convergence performance.
For low dimensional functions, it is common to find the
optimumwith satisfied accuracy within 100 generations. And
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TABLE 9. Benchmark functions.

the performance difference among diverse NIO algorithms
with recommended parameters is not as great as expected.

For higher dimensional functions, NIO algorithms shows
significantly different performances.
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FIGURE 35. Definition of champion NIO.

TABLE 10. Occurrence of being champion NIOs.

It should be noted that employing the recommended
parameters is still unfair from the view of best performance.
In most cases, an algorithm with the recommended param-
eters may generate good results for some benchmark func-
tions, but may give poor performance for other benchmark
functions.

We run all algorithms with random initial swarm for
30 times independently. Comparison of the CFV error is
shown in Fig.27 and Fig.28. Since the results of the CFV
error show tremendous difference in scale, it is hard to
observe the slight difference in the same scale. Therefore,
we also provide the logarithm version of box plots to make
the difference more observable, which can be found in the

supplementary material. It is interesting that no NIO algo-
rithm shows advantage over other algorithms for all bench-
mark functions.

The contour plots regarding how diverse NIO algorithms
with the same initial swarm find the optimum are shown
in Fig.29, Fig.30, Fig.31, and Fig.32. The snapshots of Gen 1,
10, 100, and 200 are exhibited in different columns. We
only present contour plots of five NIO algorithms to save
place. For the same reason, only the contours of function f3
is displayed here. Vast other contour plots can be found in
the supplementary material. We also provide the 3D contour
progress plots for two 2D benchmark functions as shown
in Fig.33 and Fig.34. From the 3D contour progress plots,
one can observe more detailedly how diverse NIOs converge
during the course of search.

E. PERFORMANCE ANALYSIS
From the convergence test and repeated test for the NIO algo-
rithms, a basic fact is that most NIO algorithms can reach or
gradually approach the optimum of the benchmark function
(2D, 5D, 10D) with the default parameters in Table 8. The
convergence curves (see Fig. 25 and Fig. 26) show apparent
diversities for 30D or higher benchmark functions. Before
determining which algorithm is more competitive than others
for a certain benchmark function, we define the ‘‘champion
NIO’’ for a benchmark function as follows:

Given a certain accuracy, the algorithm who first hits the
optimum of the benchmark function with the pre-assigned
accuracy is defined as the champion NIO of type I (see
Fig. 35a and 35b). If all the algorithms do not hit the optimum
with the pre-assigned accuracy, then the algorithm with the
smallest error within the certain generation is defined as the
champion NIO of type II (see Fig. 35c). Specifically, in this
test, the generation bound is set to 200.

With the definition of champion NIO in advance, we can
summarize the previous results in Table 10 from the view-
point of ‘‘champion NIO’’. As shown in Table 10, it is a com-
paratively frequent occurrence forWOA, SFO, GWO, and FA
to be a champion NIO. As a matter of fact, for many bench-
mark functions, the performance difference among some
champion/quasi-champion NIO algorithms is very small.
Therefore, someNIO algorithm that do not appear in the table
may be an excellent but unlucky algorithm.

Compared with Table 10, Table 11 presents more details on
which algorithm the champion NIO is for each function, and
in which Type. All the champion NIO in the 2-D benchmark
is Type I. It means that there is at least one algorithm that con-
verges to the optimumwith a certain accuracywithin 200 gen-
erations on all 2-D benchmarks.

The outperformance results of benchmarks in 5D or higher
dimensions are shown in Table 11. It can be seen from
the table that WOA and GWO perform very well on high-
dimensional benchmark functions. WOA becomes cham-
pion for fourteen times, while GWO becomes champion
for five times, though these two algorithms do not perform
well in low-dimensional benchmark functions. It is worth
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TABLE 11. Champion NIOs for each benchmark function.

FIGURE 36. Cost function evaluation counts for different generations.

TABLE 12. Applications of the NIO algorithms I.

mentioning that 3/5 champion NIO types of GWO are of
type I, while 9/14 champion NIO types of WOA are of type I.

F. COST FUNCTION EVALUATION COUNTS
We take measurements of the cost function evaluation counts
extensively instead of the computational complexity estima-
tion for the NIOs. For each NIO algorithm, a counting agent
was inserted into the python codes to collect and sum up
the calls of cost function evaluation during the optimization
process.

If we specify a target cost function value, some NIOs may
fail for some benchmark functions. So we fix the generation
bound and swarm size to make fair measurements. Fig.36
exhibits the cost function evaluation counts for the Ackley
function in the 1st, 50th and 100th generation. All NIOs
have 30 individuals as described in Table 8. Since WWO
has only 8 individuals, its cost function evaluation count is
not exhibited in Fig.36. The original FA needs more cost
function evaluations because each firefly wants to determine
which one is the best adjacent firefly, thus calculating and
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TABLE 13. Applications of the NIO algorithms II.

comparing several times in each generation. In fact, the cost
function evaluation counts of the original FA can be reduced
by calculating cost function value once in advance and com-
paring many times later.

V. APPLICATIONS OF THE NIO ALGORITHMS
The past couples of years have seen vast successful applica-
tions in many and various fields such as energy, environment,
and communication.

It is impossible to compare and recommend professional
algorithms for all these applications, therefore, we briefly
summarize some successful applications that use NIO algo-
rithms in literature instead. The scope is still within the SCIE
collection of WOS.

Our survey includes some traditional applications and
some new applications published recently, as shown
in Table 12 and Table 13. Since some NIO algorithms such
as SFO and BWOA were just published, time is needed for
finding various supporting applications.

VI. BEHAVIOURAL PARAMETER OPTIMIZATION
Manually optimizing the behavioural parameter is not an effi-
cient way. Employing another overlaid optimizer to perform
the behavioural parameter optimization is a wise choice. The
overlaid optimizer is referred to as meta-optimizer [133]. The
NIO optimizer itself can be employed as a meta-optimizer.
In that case, it is interesting that both the meta-optimizer and
the optimized optimizer are NIO algorithms.

Fig.37 depicts the flowchart of a typical meta-optimization
system. As shown in Fig.37, the input of the optimized NIO is
the parameters generated by meta-optimizer. The optimized
NIO as a whole ‘‘black box’’ is the optimization objective
of the meta-optimizer. The meta-optimizer outputs the opti-
mized behavioural parameters finally.

When the parameters are optimized, the calculation
increases exponentially. To avoid combinatorial explosion,
we only select CS, DE, KH, and S(q)SA as optimized NIOs,
and select CS, GWO, KH, and WOA as the meta-optimizers.
The selected meta-optimizers are comparatively efficient
NIO algorithms. Table 14 lists the numbers of the behavioural

FIGURE 37. The flowchart of meta-optimization.

TABLE 14. Parameters and dimensions of the Optimized NIOs.

parameters and the pre-assigned parameter ranges of the
optimized NIOs. The number of behavioural parameters of
the optimized NIO is the dimension of the meta-optimization
problem.

Each optimized NIO runs 200 generations with 30 indi-
viduals to find the optimum of the function f19. Each
meta-optimizer runs 100 generations with 30 individuals to
find optimal behavioural parameters of the optimized NIO.
Table 15 gives the optimized behavioural parameters of CS,
GWO, KH, and S(q)SA.

Despite the fact that diverse meta-optimizers generate
diverse optimized parameters, these parameters are all excel-
lent in finding optimum. The behavioural parameters of CS,
DE, KH, and S(q)SA obtained by usingGWOmeta-optimizer
gain distinct advantage in optimizing the benchmark function
f19 (Michalewicz function with D = 5), as shown in Fig.38.
Generally, after parameter optimization, the optimized-NIO
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FIGURE 38. Convergence curves (recommended parameters vs optimized parameters).

FIGURE 39. Multiple tests (recommended parameters vs optimized parameters).

TABLE 15. Optimized parameters.

can have substantially better performance on the same test
function f19. An exception is that the optimized KH does not
converge faster after parameter optimization. The reason may
be that the KH with the recommended parameters already
have very good performance.

The behavioural parameters of KH obtained by KH,WOA,
and GWO meta-optimizers have greater advantage than
that by CS, see Fig.39. More results regarding NIO meta-
optimizations can be found in the supplementary material.

VII. CONCLUSIONS
This paper presents a review of over a dozen NIO algorithms
proposed after 2008. The NIO algorithms are selected from
highly impact journal or conference that are also widely cited.
We review the taxonomy of NIOs and present a new perspec-
tive concerning how many elites the NIO algorithm has. We
introduce various NIO algorithms and their inspirations from
this perspective.We test all NIO algorithms on 41widely used
benchmark functions. We compared these NIO algorithms in
terms of contour plots, 3D plots, and convergence curves.
All NIO algorithms have outstanding search ability for easier
problems. Most NIO algorithms show superb performance in
some hard problems but are not well-behaved for other hard
problems. It supports the Free-lunch to some extent.

We optimize the behavioural parameters of various NIO
algorithms using the NIO algorithms. Most optimized param-
eters are consistent with the suggested parameters by authors,
while some optimized parameters different to the suggested
parameters can provide better performance than the recom-
mended parameters.

It should be noted that there are so many limitations
this review cannot transcend. This paper does not cover
discrete metaheuristics which may have more applications
than the continuous algorithms. It does not cover the various
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optimization problems such as multi-objective, multi-modal,
dynamic problems, etc.. It does not provide any applica-
tions that is an important topic for NIOs indeed. Moreover,
the NIOs included in this paper are far less than all excellent
NIOs that has been proposed so far.
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