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ABSTRACT This paper focus on the problem of guaranteed cost control for a class of genetic regulatory
networks with multiple time-varying discrete delays and multiple constant distributed delays. Firstly, a novel
method is proposed to establish a sufficient condition for the existence of guaranteed cost controller. The
sufficient condition includes only several simple inequalities, which can easily solved by standard tool
softwares, such as MATLAB. Secondly, the desired guaranteed cost controller is designed based on the
solution of these inequalities. Thirdly, the proposed method is also available to the stabilization problem of
genetic regulatory networks under consideration. Finally, the results of two numerical examples demonstrate
the applicability of theoretical results. Compared with the existing results, this present paper has three merits:
(i) Do not require to construct any Lyapunov–Krasovskii functional; (ii) the class of genetic regulatory
networks under consideration is more general; (iii) the designed controller can be easily realized.

INDEX TERMS Genetic regulatory networks, guaranteed cost control, multiple discrete delays, multiple
distributed delays.

I. INTRODUCTION
As one class of complex dynamic nonlinear systems, genetic
regulation networks (GRNs) describe the interactions among
mRNAs and proteins in gene expression [1], [2]. Now,
the research on GRNs have been multi-disciplinary, such as
mathematics, statistics, biology and medicine. Particularly,
in recent years, one of hot topics in control theory at home
and abroad is the analysis and design of GRNs. As a result,
a great number of excellent works have been achieved. (see
[3]–[13] and the references therein).

Generally, the aim of controlling a dynamic system is to
seek a controller such that the resulting closed-loop sys-
tem is asymptotically/exponentially stable and satisfies the
requirement of certain performance index. When the perfor-
mance index is taken as the quadratic cost function, the cor-
responding control problem is known as guaranteed cost
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control (GCC). The GCC can give an upper bound of the
quadratic cost function. The first work on GCC is presented
by Chang and Peng in 1972 [14]. Then some representative
works on this general topic are reported (see [8], [15]–[17]
and the references therein). On the basis of Chang and Peng’s
method, the GCC problem of uncertain linear systems is
deeply studied [16]. Then the authors initially investigated the
GCC problem of uncertain time-delay systems by employing
the so-called Riccati equation method [18]. To decrease the
computational complexity of the method, the linear matrix
inequality (LMI) method is used to solve the GCC prob-
lem time-delay systems (see, e.g., [8], [15], [19]). Recently,
the GCC problem has been further studied by many experts
and scholars (see [20]–[25] and the references therein).

Due to the slow transcription and translation processes
in gene expression, time delays are unavoidable. So, func-
tional differential/difference equations have been employed
to model GRNs. It is well known that time delays often
result in poor performance and/or instability in dynamical
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systems [26]–[29]. Therefore, more effort has been devoted
to the analysis and design of delayed GRNs based on the
functional differential/difference equation models (see [3],
[11], [13], [30]–[37] and the references therein). Up to now,
the researches on delayed GRNs mainly focus on dynamic
analysis and state estimation, while very few results are
about control problems. To the best of authors’ knowledge,
the involved control problems include stabilization [30], [31],
[38]–[42], H∞ control [39], [40], [43], [44], sliding mode
control [45], passivity control [46], gene circuit control [33],
and GCC [8]. The so-called Lyapunov–Krasovskii functional
(LKF)method is employed to design controllers in these liter-
ature except for [42]. The LKF method is mainly divided into
two steps: (i) construct an appropriate LKF; and (ii) choose
appropriate techniques to estimate the derivative/difference
of LKF. However, there is no united approach to realize these
two steps. Moreover, the LKF method may result in solving
complex matrix inequalities, which requires a long compute
time. An analysis technique is proposed in [42] to stabilize a
class of delayed GRNs via periodically intermittent control.
Therefore, it is necessary to find the other methods to design
controllers for delayed GRNs.

Motivated by the above discussion, in this paper we will
propose a new method to study the GCC problem for a class
of GRNs with multiple time-varying discrete delays and mul-
tiple constant distributed delays. A sufficient condition for the
existence of guaranteed cost controller is first investigated.
The sufficient condition can easily checked by standard tool
softwares, since it involves only several simple inequalities.
From which, the desired guaranteed cost controller can be
designed based on the solution of these inequalities. The
applicability of the proposed method is presented by a pair
of numerical examples. Compared with these mentioned lit-
erature on the control problems of delayed GRNs, this present
paper has the following advantages: (i) No LKF requires to be
constructed; (ii) the GRN model under consideration is more
general; (iii) the proposed method to design controller can be
easily realized.

The rest of this paper is organized as follows. In the next
section, we will formulate the GCC problem to be addressed.
The existence and design method of guaranteed cost con-
troller will be presented in Section III. Two numerical exam-
ples will be demonstrated in Section IV, and the conclusions
will be made in Section V.
Notations: Let Rn×m be the set of all n× m matrices over

the real number field R, and set Rn = Rn×1. For given X =
[xij],Y = [yij] ∈ Rn×m, we say X ≤ Y (X < Y ) if xij ≤ yij
(xij < yij) for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Particularly,
if X and Y are symmetric, then the symbol X ≺ Y (X � Y )
refers to the matrix X−Y is negative definite (semi-definite).
Let diag(·) and col(·) stand for a block-diagonal and -column
matrix, respectively. Let C([a, b],Rn) be the R-linear space
consisting of all continuous functions θ : [a, b] → Rn.
The norm ‖ · ‖τ on C([−τ, 0],Rn) is defined by ‖θ‖τ =
sup−τ≤s≤0 ‖θ (s)‖, where ‖ · ‖ is the 2-norm on Rn. Let 〈n〉
stand for the set {1, 2, . . . , n}.

II. PROBLEM FORMULATION
Consider the GRNs with multiple interval time-varying dis-
crete delays and multiple constant distributed delays:

ṁi(t) = −aimi(t)+
n∑
j=1

bijfj(pj(t − σij(t)))

+

n∑
j=1

wij

∫ t

t−δij
fj(pj(s))ds+ ui(t)+ Ji, (1a)

ṗi(t) = −cipi(t)+ dimi(t − τi(t))+ vi(t), t ≥ 0, (1b)

mi(s) = ϕi(s), pi(s) = φi(s), s ∈ [−κ, 0], i ∈ 〈n〉, (1c)

where the subscript i refers to the i-th node of GRN, mi :
[−κ,+∞) → [0,+∞) and pi : [−κ,+∞) → [0,+∞) are
the mRNA and protein concentrations at time t , respectively,
κ = max{σ̄ , δ̄, τ̄ } with σ̄ = max

1≤i,j≤n
σ̄ij, δ̄ = max

1≤i,j≤n
δij and

τ̄ = max
1≤i≤n

τ̄i, σij : [0,+∞) → [0, σ̄ij] and τi : [0,+∞) →

[0, τ̄i] are continuous functions representing the time-varying
discrete delays, δij ≥ 0 is the constant distributed delays,
ai > 0 and ci > 0 are the degradation rates of mRNA and
protein, respectively, di > 0 refers to the translation rate, Ji is
the external input, bij,wij ∈ R, ϕi ∈ C([−κ, 0], [0,+∞))
and φi ∈ C([−κ, 0], [0,+∞)) are the initial functions,
ui : [0,+∞) → R and vi : [0,+∞) → R are the control
inputs, and fi : [0,+∞) → [0, 1) is the regulatory function
in the Hill form, that is, fi(s) = shi/(1 + shi ) with the Hill
constant hi ≥ 1.
When σij(t) and δij are independent on the choice of

i, the GRN model (1) with ui = vi ≡ 0 reduces into
[3, (2.3)]. Cleasrly, fi is a monotonically increasing function
with saturation, and it satisfies

fi(0) = 0, |fi(s1)− fi(s2)| ≤ µi|s1 − s2| (2)

for any different s1, s2 ∈ [0,+∞), where µi > 0.
Definition 1: The pair (m̄, p̄) ∈ Rn × Rn with m̄ =

col(m̄1, m̄2, . . . , m̄n) and p̄ = col(p̄1, p̄2, . . . , p̄n) is called a
nonnegative equilibrium point of GRN (1) with ui = vi ≡ 0,
if it satisfies m̄ ≥ 0, p̄ ≥ 0 and

−aim̄i +
n∑
j=1

(bij + wijδij)fj(p̄j)+ Ji = 0,

−cip̄i + dim̄i = 0, i ∈ 〈n〉.

Following the approach to prove [47, Theorem 1], one
can easily show the following sufficient condition for the
existence of nonnegative equilibrium of GRN (1) with
ui = vi ≡ 0.
Proposition 1: For every i ∈ 〈n〉, let Ji be the subset {j :

bij + δijwij < 0} of 〈n〉. Then GRN (1) with ui = vi ≡ 0
has at least one nonnegative equilibrium point, if one of the
following (i) and (ii) holds:

(i) Ji = ∅ for all i ∈ 〈n〉.
(ii)

∑
j∈Ji |bij + δijwij| ≤ Ji for all i ∈ 〈n〉.
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Let (m∗, p∗) be a nonnegative equilibrium of GRN (1) with
ui = vi ≡ 0, and let xi(t) = mi(t)−m∗i and yi(t) = pi(t)− p∗i
for any i ∈ 〈n〉 and t ≥ −κ . Then

ẋi(t) = −aixi(t)+
n∑
j=1

bijgj(yj(t − σij(t)))

+

n∑
j=1

wij

∫ t

t−δij
gj(yj(s))ds+ ui(t), (3a)

ẏi(t) = −ciyi(t)+ dixi(t − τi(t))+ vi(t), t ≥ 0, (3b)

xi(s) = ϑi(s), yi(s) = θi(s), s ∈ [−κ, 0], i ∈ 〈n〉, (3c)

where gj(yj(·)) = fj(yj(·) + p∗j ) − fj(p∗j ), ϑi(s) = ϕ(s) − m∗i
and θi(s) = φ(s)− p∗i .

From the relation between fj and gj, it follows from (2) that

gj(0) = 0, |gj(s)| ≤ µj|s|, ∀s ∈ (−∞,+∞). (4)

By applying the state feedback controller

ui(t) = kixi(t), vi(t) = liyi(t), i ∈ 〈n〉, t ≥ 0 (5)

to GRN (3), we derive the following closed-loop system:

ẋi(t) = −âixi(t)+
n∑
j=1

bijgj(yj(t − σij(t)))

+

n∑
j=1

wij

∫ t

t−δij
gj(yj(s))ds, (6a)

ẏi(t) = −ĉiyi(t)+ dixi(t − τi(t)), t ≥ 0, (6b)

xi(s) = ϑi(s), yi(s) = θi(s), s ∈ [−κ, 0], i ∈ 〈n〉, (6c)

where ki and li are state feedback gains to be designed,
âi = ai − ki and ĉi = ci − li.
Define a performance index Jc associated with the closed-

loop system (6) by

Jc =
∫
∞

0
X T (t)FX (t)dt (7)

with

X = col(x(t), u(t), y(t), v(t)),F = diag(Q1,R1,Q2,R2),

x(t) = col(x1(t), . . . , xn(t)), y(t) = col(y1(t), . . . , yn(t)),

u(t) = col(u1(t), . . . , un(t)), v(t) = col(v1(t), . . . , vn(t)),

where QT
k = Qk � 0 and RT

k = Rk � 0 (k = 1, 2) are
known real matrices.
Definition 2: We say that a state feedback controller in

the form of (5) globally exponentially stabilizes GRN (3),
if the zero equilibrium of the resulting close-loop system (6)
is globally exponentially stable, that is, there exist positive
constants α and γ such that

‖(x(t), y(t))‖ ≤ α‖(θ, ϑ)‖κe−γ t

for any t ≥ 0 and θ, ϑ ∈ C([−κ, 0],Rn), where
‖(x(t), y(t))‖ =

(
‖x(t)‖2 + ‖y(t)‖2

)1/2
,

‖(θ, ϑ)‖κ = max{‖θ (s)‖κ , ‖ϑ(s)‖κ}.

Definition 3: We say that a state feedback controller in
the form of (5) is a guaranteed cost controller for GRN (3),
if it globally exponentially stabilizes GRN (3) and satisfies
Jc ≤ χ‖(θ, ϑ)‖κ for some scalar χ > 0.

The aim of this paper is to design a guaranteed cost con-
troller (5) for GRN (3).

III. GUARANTEED COST CONTROLLERS
In this section we will present a novel method to design
guaranteed cost controllers for GRN (3).
Theorem 1: For given positive scalars γ , σ̄ij, δij, τ̄j and

µj (i, j ∈ 〈n〉) and matrices QT
k = Qk � 0 and RT

k =

Rk � 0 (k = 1, 2), the state feedback controller (5) with
ki = x−1i k̂i and li = y−1i l̂i is a guaranteed cost controller
for GRN (3), if there exist positive scalars ξ1 and ξ2, and
vectors x := col(x1, . . . , xn) > 0, y := col(y1, . . . , yn) > 0,
k̂ := col(k̂1, . . . , k̂n) and l̂ := col(l̂1, . . . , l̂n) such that

−Ax+ k̂ + (B̂+ Ŵ )µy < −γ x, (8)

−Cy+ l̂ + D̂x < −γ y, (9) −ξ1In 3x 3k̂
3x −Q−11 0
3k̂ 0 −R−11

 � 0, (10)

 −ξ2In 3y 3l̂
3y −Q−12 0
3l̂ 0 −R−12

 � 0, (11)

where
A = diag(a1, . . . , an), C = diag(c1, . . . , cn),
B̂ =

[
|bij|eγ σ̄ij

]
n×n, Ŵ =

[
|wij| e

γ δij−1
γ

]
n×n

,

µ = diag(µ1, . . . , µn), D̂ = diag(d1eγ τ̄1 , . . . , dneγ τ̄n ),
3x = diag(x1, . . . , xn), 3k̂ = diag(k̂1, . . . , k̂n),
3y = diag(y1, . . . , yn), 3l̂ = diag(l̂1, . . . , l̂n).
Proof: First, we show that the state feedback controller

(5) with ki = x−1i k̂i and li = y−1i l̂i globally exponentially
stabilizes GRN (3).

Choose α1 > 0 such that

α1x ≥ col(1, 1, . . . , 1), α1y ≥ col(1, 1, . . . , 1). (12)

For any but fixed θ, ϑ ∈ C([−κ, 0],Rn), define

u(t) = α1‖(θ, ϑ)‖κe−γ ty, t ∈ [−κ,∞) (13)

and

v(t) = α1‖(θ, ϑ)‖κe−γ tx, t ∈ [−κ,∞). (14)

Then

|y(s)| ≤ u(s), |x(s)| ≤ v(s), ∀s ∈ [−κ, 0]. (15)

We claim that |y(t)| ≤ u(t) and |x(t)| ≤ v(t) for any
t > 0. Assume on the contrary that there exists t0 > 0 such
that either |y(t0)| � u(t0) or |x(t0)| � v(t0). Set t1 = inf
{t > 0 : |y(t)| � u(t) or |x(t)| � v(t)}. By continuity of
functions x and y, it is obtained that t1 > 0 and one of the
following statements (C1) and (C2) holds:
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(C1) |y(t)| ≤ u(t), t ∈ [0, t1], |x(t)| ≤ v(t), t ∈ [0, t1), and
there is i0 ∈ 〈n〉 and ε > 0 such that

|xi0 (t1)| = vi0 (t1), |xi0 (t)| > vi0 (t),∀t ∈ (t1, t1 + ε).

(C2) |x(t)| ≤ v(t), t ∈ [0, t1], |y(t)| ≤ u(t), t ∈ [0, t1), and
there is j0 ∈ 〈n〉 and ε > 0 such that

|yj0 (t1)| = uj0 (t1), |yj0 (t)| > uj0 (t),∀t ∈ (t1, t1 + ε).

When (C1) holds, it follows from (4) and (6) that

D+|xi0 (t)|
∣∣
t=t1

= sgn(xi0 (t1))ẋi0 (t1)

≤ −âi0 |xi0 (t1)| +
n∑
j=1

|bi0j||gj(yj(t1 − σi0j(t1)))|

+

n∑
j=1

|wi0j|
∫ t1

t1−δi0j
|gj(yj(s))|ds

≤ −âi0 |xi0 (t1)| +
n∑
j=1

|bi0j|µj|yj(t1 − σi0j(t1))|

+

n∑
j=1

|wi0j|µj

∫ t1

t1−δi0j
|yj(s)|ds,

where D+ denotes the Dini upper-right derivative. Then one
can easily derive from (C1) and (13)–(15) that

D+|xi0 (t)|
∣∣
t=t1

≤ −âi0α1e
−γ t1‖(θ, ϑ)‖κxi0

+

n∑
j=1

|bi0j|µjα1e
−γ t1eγ σi0j(t1)‖(θ, ϑ)‖κyj

+

n∑
j=1

|wi0j|µj
e
γ δi0j−1
γ

α1e−γ t1‖(θ, ϑ)‖κyj

≤ α1e−γ t1‖(θ, ϑ)‖κ

×

−âi0xi0+ n∑
j=1

(
|bi0j|e

γ σ̄i0j+|wi0j|
e
γ δi0j−1
γ

)
µjyj

 .
This, together with ki0 = x−1i0 k̂i0 , (8) and (14), implies that

D+|xi0 (t1)| < −γα1‖(θ, ϑ)‖κe
−γ t1xi0 = v̇i0 (t1),

and hence D+(|xi0 (t)| − vi0 (t))
∣∣
t=t1

< 0. So, the function
|xi0 (t)| − vi0 (t) is decreasing within some neighbourhood of
t1, which contradicts to (C1).

When (C2) holds, we have from (6) and (13)–(15) that

D+|yj0 (t)|
∣∣
t=t1
= sgn(yj0 (t1))ẏj0 (t1)

≤ −ĉj0 |yj0 (t1)| + dj0 |xj0 (t1 − τj0 (t1))|

≤ −ĉj0α1e
−γ t1‖(θ, ϑ)‖κyj0

+ dj0α1e
−γ t1eγ τj0 (t1)‖(θ, ϑ)‖κxj0

≤ α1e−γ t1‖(θ, ϑ)‖κ (dj0e
γ τ̄j0 xj0 − ĉj0yj0 ).

Using lj0 = y−1j0 l̂j0 , (9) and (13), we obtain

D+|yj0 (t1)| < −γα1e
−γ t1‖(θ, ϑ)‖κyj0 = u̇j0 (t1).

This contradicts to (C2).

In summary, we have |y(t)| ≤ u(t) and |x(t)| ≤ v(t) for
any t ≥ −κ . Thus,

‖(x(t), y(t))‖ ≤ ‖(v(t), u(t))‖

= (‖v(t)‖2 + ‖u(t)‖2)
1
2

= α1e−γ t‖(θ, ϑ)‖κ (‖x‖2 + ‖y‖2)
1
2 ,∀t ≥ 0.

Let α = α1(‖x‖2 + ‖y‖2)
1
2 . Then

‖(x(t), y(t))‖ ≤ αe−γ t ‖(θ, ϑ)‖κ (16)

for any t ≥ 0 and θ, ϑ ∈ C([−κ, 0],Rn), i.e., the zero
equilibrium of the resulting close-loop system (6) is globally
exponentially stable. By Definition 2, it is concluded that the
state feedback controller (5) with ki = x−1i k̂i and li = y−1i l̂i
globally exponentially stabilizes GRN (3).

Second, we prove that Jc ≤ χ (‖(θ, ϑ)‖κ ) for some nonde-
creasing function χ : [0,+∞)→ [0,+∞).

It follows from (10) and (11) that 3xQ13x +3k̂R13k̂ �

ξ1 In and 3yQ23y +3l̂R23l̂ � ξ2 In, and hence

Q1 +3
−1
x 3k̂R13k̂3

−1
x � ξ13

−2
x ,

Q2 +3
−1
y 3l̂R23l̂3

−1
y � ξ23

−2
y .

This, together with

X T (t)FX (t) = xT (t)(Q1 +3
−1
x 3k̂R13k̂3

−1
x )x(t)

+ yT (t)(Q2 +3
−1
y 3l̂R23l̂3

−1
y )y(t)

for any t ≥ 0, implies that

X T (t)FX (t) ≤ ξ1 max
1≤i≤n

x−2i ‖x(t)‖
2

+ξ2 max
1≤i≤n

y−2i ‖y(t)‖
2

≤ ξ‖(x(t), y(t))‖2, ∀t ≥ 0,

where ξ = max{ξ1max1≤i≤n x
−2
i , ξ2max1≤i≤n y

−2
i }. Using

(16), we drive that X T (t)FX (t) ≤ ξα2 ‖(θ, ϑ)‖2κ e
−2γ t for

any t ≥ 0, and hence

Jc ≤ χ ‖(θ, ϑ)‖2κ , χ =
ξα2

2γ . (17)

By Definition 3, the proof is completed by combining the
above two aspects.
Remark 1: From (17), it is observed that the performance

index Jc can be viewed as a function of variables γ , ξ1, ξ2,
α1, x, y, k̂ and l̂, and these variables are coupled by the LMIs
(8)–(11). Due to the complexity of χ (·), it is difficult to obtain
the optimal (i.e., minimal) value of Jc. Now, for given γ > 0,
we presents an approach to guarantee that the upper bound of
Jc given by (17) is as small as possible. In other words, solve
the following optimal problem:

min (ξ1 + ξ2)

subject to γ, ξ1 > 0, ξ2 > 0, x > 0, y > 0, k̂, l̂,

(8)–(11), (12). (18)

Remark 2: It is seen from (16) that γ is the decay rate
of the resulting closed-loop system (6). So, it is desired that
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γ is as large as possible. However, with the increase of γ ,
the solvability of inequalities (8) and (9) will decrease. So,
one can use a testing method to obtain the maximal value
of γ that guarantees the feasibility of those inequalities in
Theorem 1.
Remark 3: There are three differences between [8] and the

present paper: (i) The LKF method is used in [8], while no
LKF is required in this paper; (ii) The GRN model in this
paper is more general than one in [8]; and (iii) The guaranteed
cost controller designed in this paper can ensure the global
exponential stability of the resulting closed-loop system, but
only asymptotic stability can be guaranteed in [8].
Remark 4: If the LMIs (10) and (11) are omitted, then the

controller obtained from Theorem 1 can globally exponen-
tially stabilize GRN (3).

IV. AN ILLUSTRATIVE EXAMPLE
In this section, we will demonstrate the effectiveness and the
proposed method by two numerical examples.
Example 1: Consider GRN (1) with parameters: n = 3,

a1 = 4, a2 = 3.5, a3 = 3, b11 = −0.1, b12 = −0.3, b22 =
−0.4, b23 = −0.6, b31 = −0.8, b33 = −0.2, b13 = b21 =
b32 = 0, w11 = 0.3, w12 = w22 = 0.5, w23 = w31 = 0.1,
w33 = 0.7, w13 = w21 = w32 = 0, J1 = 0.4, J2 = J3 = 1,
c1 = 4, c2 = 2, c3 = 3.7, d1 = 0.7, d2 = 0.9, d3 = 1.3,
δ11 = 1.2, δ12 = 0.2, δ13 = 0.3, δ21 = 1, δ22 = 0.4, δ23 =
3.1, δ31 = δ33 = 1.5, δ32 = 2, fi(s) = s2/(1 + s2), τi(s) =
(sin s+ 1)/4 and

σij(s) =


(cos s+ 1)/8, if (i, j) ∈ {(1, 3), (2, 2), (3, 2)},
(sin s+ 1)/4, if (i, j) ∈ {(1, 2), (2, 1), (2, 3)},
1, if (i, j) ∈ {(1, 1), (3, 1), (3, 3)}

for any s ≥ 0 and i ∈ 〈3〉.
It is clear that µ1 = µ2 = µ3 = 3

√
3/8, τ̄1 = τ̄2 = τ̄3 =

1/2, σ̄13 = σ̄22 = σ̄32 = 1/4, σ̄12 = σ̄21 = σ̄23 = 1/2,
σ̄11 = σ̄31 = σ̄33 = 1, J1 = {2}, J2 = {2, 3} and
J3 = {1}. Thus, it is derived that

∑
j∈Ji |bij + δijwij| ≤

Ji for all i ∈ 〈3〉, and hence, by Proposition 1, the GRN
under consideration has at least one nonnegative equilib-
rium. Furthermore, by direct computation, it is obtained that
(m∗, p∗) with m∗ = col(0.0992, 0.2837, 0.3372) and p∗ =
col(0.0174, 0.1276, 0.1185) is a nonnegative equilibrium of
the considered GRN. Bymoving the nonnegative equilibrium
(m∗, p∗) to the origin, we can transform the considered GRN
into the form (3).

The performance index Jc associated with the considered
GRN is given by (7) with

Q1 = diag(2, 2, 2), R1 = diag(0.2, 0.2, 0.2),

Q2 = diag(3, 3, 3), R2 = diag(0.1, 0.1, 0.1).

Take γ = 0.5. Then D̂ = diag(0.8988, 1.1556, 1.6692),
and

B̂ =

 0.1649 0.3852 0
0 0.4533 0.7704

1.3190 0 0.3297

 ,

Ŵ =

 0.4933 0.1052 0
0 0.2214 0.7423

0.2234 0 1.5638

 .
By employing the toolbox YALMIP of MATLAB, one can
obtain a feasible solution of the LMIs (8)–(11) as follows:

ξ1 = 19.7290, x = col(1.8659, 1.8134, 1.7478),
ξ2 = 18.6677, y = col(1.4511, 1.2968, 1.3841),
k̂ = col(−1.5530,−1.8256,−2.2249),
l̂ = = col(−2.8990,−5.6692,−4.1993).

By Theorem 1, the state feedback controller (5) with

k1 = −1.7663, k2 = −2.5050, k3 = −3.4160,
l1 = −3.5904, l2 = −5.6428, l3 = −4.7735

is a guaranteed cost controller for the GRN under considera-
tion. Moreover, choose α1 = 0.7712. Then α1x ≥ col(1, 1, 1)
and α1y ≥ col(1, 1, 1). Following the proof of Theorem 1,
we can derive α = 3.0391 and ξ = 11.1004, and hence
Jc ≤ 102.5235 ‖(θ, ϑ)‖2κ with κ = 3.1. If the initial functions
of the resulting closed-loop system are taken as ϑi(t) ≡ ϑi
and θi(t) ≡ θi for all i ∈ 〈3〉 and t ∈ [−3.1, 0], where |ϑi| ≤ 1
and |θi| ≤ 1, then Jc ≤ 102.5235. In addition, we take
100 values of such initial functions by using the function
rand in MATLAB, the simulation results present that all
of the state trajectories of the resulting closed-loop system
converge to the origin. Partial simulation results are shown
in Figures 1–4. From which, it is seen that the closed-loop
state trajectories converge quicker than the open-loop ones,
which shows the effectiveness of the designed controller.

FIGURE 1. State trajectories of the open-loop system (Example 1).

For the GRN under consideration, the maximal value of
γ that guarantees the feasibility of those inequalities in
Theorem 1 is 4.2006. In this case, it is obtained that Jc ≤
4.0633×1012 ‖(θ, ϑ)‖2κ with κ = 3.1, which provides a very
rough bound of Jc. Therefore, in the practical problems, it is
necessary to consider a balance between the decay rate γ and
Jc’s bound. For this end, for several different values of γ > 0,
the bounds of Jc obtained by solving the optimal problem (18)
are given in Table 1.

VOLUME 8, 2020 80179



X. Zhang et al.: Guaranteed Cost Control of Genetic Regulatory Networks

FIGURE 2. State trajectories of the open-loop system (Example 1).

FIGURE 3. State trajectories of the closed-loop system (Example 1).

FIGURE 4. State trajectories of the closed-loop system (Example 1).

TABLE 1. The upper bounds of Jc for different γ .

Example 2: Consider GRN (1) with parameters: n = 2,
ai = 2.5, ci = 4, di = 1.8, Ji = 1.64, bij = 0, wii = 1,
wik = −1, δij = 1, τi(s) ≡ 6 and fi(s) = s2/(1+ s2) for s ≥ 0
and i, j, k = 1, 2 with i 6= k .

FIGURE 5. State trajectories of the open-loop system in Example 2.

FIGURE 6. State trajectories of the open-loop system in Example 2.

FIGURE 7. State trajectories of the closed-loop system in Example 2.

Clearly, µi = 0.65, τ̄i = 1, J1 = {2} and J2 = {1},
and hence

∑
j∈Ji |bij + δijwij| = 1 < 1.64 = Ji for

i = 1, 2. Applying Proposition 1, we obtain that the
considered GRN has at least one nonnegative equilibrium.
Furthermore, (m∗, p∗) with m∗ = col(0.6560, 0.6560) and
p∗ = col(0.2952, 0.2952) is a nonnegative equilibrium.
By moving (m∗, p∗) to the origin, one can transform the GRN
under consideration into the form (3).
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FIGURE 8. State trajectories of the closed-loop system in Example 2.

Take γ = 0.45, x = col(1, 1), y = col(0.7952, 0.7952),
k̂ = col(−0.1,−0.1) and l̂ = col(0, 0). Then the LMIs
(8) and (9) are feasible. By Remark 4, the state feedback
controller (5) with k1 = k2 = −0.1 and l1 = l2 = 0
globally exponentially stabilizes the considered GRN, which
claims that (m∗, p∗) is the unique nonnegative equilibrium.
The simulation results of the open-loop and closed-loop state
trajectories are presented in Figures 5–8, respectively, which
shows the effectiveness of the obtained stabilization con-
troller.

For the GRN under consideration, the stabilization condi-
tions given in [42, Remark 4] are not satisfied. Therefore,
the control method proposed in [42, Remark 4] is not avail-
able to the example.

V. CONCLUSION
This paper has dealt with the GCC problem of GRNs with
multiple time-varying discrete delays and multiple constant
distributed delays. A novel method is first proposed to inves-
tigated a sufficient condition for the existence of guaranteed
cost controller. The sufficient condition is to solve only sev-
eral simple inequalities, which can be proceeded by employ-
ing the MATLAB. Furthermore, the expired guaranteed cost
controller is designed based on the solution of these inequali-
ties. It should be mentioned that the proposed method can be
also applied to design stabilization controller for the class of
GRNs under consideration. The obtained theoretical results
are explained by a pair of numerical examples.
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