
SPECIAL SECTION ON BLOCKCHAIN-ENABLED TRUSTWORTHY SYSTEMS

Received March 24, 2020, accepted April 6, 2020, date of publication April 13, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987608

A Blockchain-Assisted Trust Access
Authentication System for Solid
TING CAI 1,2, ZETAO YANG1, WUHUI CHEN 1, (Member, IEEE),
ZIBIN ZHENG 1, (Senior Member, IEEE), AND YANG YU 1, (Member, IEEE)
1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2College of Mobile Telecommunications, Chongqing University of Posts and Telecommunications, Chongqing 401520, China

Corresponding author: Wuhui Chen (chenwuh@mail.sysu.edu.cn)

This work was supported in part by the National Key Research and Development Plan under Grant 2018YFB1003803, in part by the
National Natural Science Foundation of China under Grant 61802450 and Grant 61722214, in part by the Natural Science Foundation of
Guangdong under Grant 2018A030313005, in part by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams
under Grant 2017ZT07X355, and in part by the Science and Technology Research Program of Chongqing Municipal Education
Commission under Grant KJZD-K201802401.

ABSTRACT The Solid (Social Linked Data) project focuses on data sharing and privacy security and aims
to build a decentralized ecosystem that radically changes the way web applications work today. Our goal
is to introduce a ‘‘trust access authentication system’’ to achieve secure authentication and fine-grained
access control, thereby promoting the implementation of Solid. Blockchain, equipped with multiple security
properties and authentication functions, is a crucial technology. In this paper, we present a blockchain-
assisted system for secure authentication in Solid and for implementation of fine-grained access control
policies. Specifically, we explore to integrate threshold RSA signatures in a permissioned blockchain system
to enable a fault-tolerant distributed signature scheme, thereby enhancing the resilience and robustness of
authentication system. Moreover, we utilize smart contract to control transaction flows and manage access
control policies automatically. Experimental results show that our proposed trust access authentication
system enhances security, scales well, and is efficient and economically feasible.

INDEX TERMS Solid, blockchain, authentication, access control, smart contract, threshold signatures.

I. INTRODUCTION
Solid (Social Linked Data) is a web re-decentralization
project led by Tim Berners-Lee, the inventor of the World
Wide Web [1]. This project aims to build a decentralized
ecosystem for current social web applications, where the data
are completely owned by users themselves who can allow
external applications how to use it for certain purposes such
as social media [2]. This may response to our current pressing
issues on social web applications, such as Twitter, Facebook,
Wikipedia, Doodle, andmany other online platforms that usu-
ally store user data in centralized repositories, consequently
preventing users from controlling their data. For example,
they cannot reuse their data across different storage services,
or specify trusted authentication and personal access control
mechanisms [3]. Thus, many centralization problems have
attracted proposals for re-decentralizing the web; some exam-
ples areWebBox, Diaspora, andMusubi, but none of them has

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen Sun.

been widely adopted [4]. In this context, efforts to promote
Solid as a high-potential project are of great significance.

The Solid ecosystem consists of four main layers, namely,
Linked Data Resources,Decentralized Web, Pod Servers, and
Solid Applications, as shown in Fig. 1. The Linked Data
Resources are owned by users and can be stored in personal
online datastores (pods) via theDecentralized Web. To access
Linked Data Resources, the Solid Applications need to obtain
an identity profile from the Pod Servers, and then access data
in the user’s pod. The users control their data in pods through
using a resource description framework (RDF) profile stored
in the pod [5], [6].

Data sharing and privacy security is one of most important
concerns associated with the implementation of Solid [7].
Blockchain, as a recent technology applied in academia and
industry, has attracted increasing attention to provide secure
authentication and privacy for distributed systems [8], [9]. To
this end, we propose the introduction of blockchains to assist
Solid in developing a trust access authentication system. In a
blockchain-assisted Solid application scenario, for example,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71605

https://orcid.org/0000-0003-0245-333X
https://orcid.org/0000-0003-4430-7904
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0002-4091-6035

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

FIGURE 1. The illustration of a Solid ecosystem.

when a Solid application requests linked data resources from
the pod servers, the blockchain provides secure authentica-
tion for the requestor and grants access to the corresponding
resource after validation. The blockchain brings the following
advantages:

• Trustworthy Transactions: In the blockchain, a group
of participants work cooperately to validate and record
transactions and thus maintain a public ledger [10]. This
non-tampering property enables the Solid entity act in
trusted environments.

• Fine-grained Access Control: Solid uses an RDF-based
access control mechanism to achieve resource authorisa-
tion [2]. Whereas, blockchain can utilize smart contracts
to gain a more fine-grained effect to manage access
control policies in a secure and automatic manner.

• Traceability and Auditability: Activities such as the
Solid application’s access history, instead of being
stored in pod servers, are recorded in the blockchain
where all access records are traceable and auditable.

Although applying the blockchain into a Solid ecosystem
is a promising development, difficulties and challenges still
remain. In this paper, we only focus on how to exploit the
blockchain to ensure secure authentication with fine-grained
access control that is suitable for a Solid system. Digital
signatures, as a key component of a blockchain system, can
be integrated to provide secure authentication [11], [12]. Dif-
ferent from mainstream signatures such as the elliptic curve
digital signature algorithm (ECDSA) adopted in the Bitcoin
and Ethereum blockchains, our proposal is to introduce a
threshold signature scheme in blockchain systems. Threshold
signatures can enhance the robustness and resilience of an
applied system while maintaining the decentralized nature of
blockchains, which is why a threshold signature scheme is
necessary [13]. Furthermore, threshold signatures eliminate
the high cost of transmission arise from an increasing number
of signatures that occurs in a multi-signature scheme. Our
goal is to integrate threshold signatures with the blockchain
to enhance the security performance of Solid, i.e., provide
distributed yet fault-tolerant signatures to authenticate Solid
entities.

Extending the previous conference version [14] that has
already reported our preliminary works, we make advances
and new contributions in this journal version, including: 1)
adjust our centers around the ‘‘trust access authentication’’
to conduct more in-depth work; 2) a better representative
system model is proposed, which is closer to a real Solid

application scenario; 3) a new digital signature scheme is
applied in blockchain systems; 4) two signature reconstruc-
tion algorithms are considered, thereby making our solutions
available to many more potential applications in Solid; and 5)
based on the theory and assessment in our previous version,
this work implements the system designs such as developing
and deploying smart contracts, integrating signature schemes
in the transaction validation of permissioned blockchains,
and implementing our solutions to evaluate them with bench-
marks. Our main contributions are listed as follows:

• We propose a conceptual blockchain-assisted system
that provides trust access authentication, suited for the
web re-decentralization project Solid.

• We integrate threshold RSA signatures and the permis-
sioned blockchain to enhance the resilience and robust-
ness of the proposed authentication system, which can
tolerate failed or corrupted peers.

• We leverage smart contracts to implement a fine-grained
access control mechanism in which the access permis-
sions on resources can be adaptively granted or revoked.
We also evaluate the performance of our solutions in
real-world scenarios.

The rest of this paper is organized as follows. In Section
II, we present our system model. In Section III, we introduce
the relevant building blocks used in our system. In Section
IV, we describe how to design our proposed system in detail
and provide the concrete implementation. In Section V, we
present the security analysis of our system, measure the cost
of smart contracts, and evaluate the performance on threshold
RSA signatures. Finally, Section VI concludes the paper.

II. SYSTEM MODEL
In this section, we present the system model and the relevant
functional descriptions. Fig. 2 shows the participants involved
in our system, including Solid Applications, Blockchain Net-
work, Pod Servers, Decentralized Web, and Linked Data
Resources.

A. SOLID APPLICATIONS
Solid applications constitute a set of social web applications
(e.g., Twitter, Facebook, and Wikipedia) that often request
for access or process the linked data resources. When a
Solid application is requesting an access, it needs to post a
corresponding transaction to the blockchain network.

B. BLOCKCHAIN NETWORK
The blockchain in the proposed system adopts permissioned
blockchains such as Hyperledger Fabric. Thus, the peers in
a blockchain may have the following roles: submitting peers
(submitter), who are responsible for submitting transactions
by providing a client interface; endorsing peers (endorser),
who is responsible for simulating and validating transactions
with the execution of chaincodes (i.e., smart contract) [15],
[16]. In general, any requests from the Solid applications

71606 VOLUME 8, 2020

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

FIGURE 2. Proposed blockchain-assisted trust access authentication system for Solid.

can be recorded in the blockchain after reaching a consensus
among peers.

C. POD SERVERS
Pod servers host a number of pods that store and process the
linked data resources, and respond to the authorized access
requests from Solid applications. A pod server is not con-
trolled by any third party, and it can be from the free providers
of commercial entity established by the Solid founding team
or the users whose personal computers are installed and run
as a node-solid server in the network.

D. DECENTRALIZED WEB
In a Solid ecosystem, the design of pods allow specific Solid
applications to access the specific resource through a decen-
tralized network, i.e., decentralized web. In our system, such
a decentralized web monitors the blockchain, receives data
operation requests, and helps transmit and store the linked
data resources to corresponding pods.

E. LINKED DATA RESOURCES
Although differences exist between non-linked data (e.g.,
image, PDF file) and linked data (e.g., Turtle and JSON-LD
formats) in a pod, all the data resources in Solid are grouped
into data folders with public or private access rights [17].
Therefore, in our system, we do not consider their distinctions
and uniformly represent them as the linked data resources.

III. SYSTEM BUILDING BLOCKS
In this section, we introduce the relevant building blocks
used in our system, including the blockchain, distributed

hash table for access control, threshold RSA signatures, and
transactions.

A. BLOCKCHAIN
Blockchain is the core data structure that consists of key com-
ponents such as the public ledger, consensus mechanism and
smart contract, which enables multiple parties to participate
in transactions without trusting each other [18]. Undoubtedly,
the permissionless blockchains such as Bitcoin and Ethereum
are the most popular blockchain systems where anyone can
engage and validate transactions [4], [19]. However, our
system adopts a permissioned blockchain (i.e., Hyperledger
Fabric) to realize construction. The option is for two reasons:
1) transactions in a Solid ecosystem need to be scalable and
fast, which in a permissioned blockchain such as Hyperledger
Fabric can process thousands of transactions per second;
and 2) a permissioned blockchain requires the transaction
validators to be the approved selected participants, which is
easy to satisfy in a Solid ecosystem.

Typical consensus mechanisms in blockchains are proof of
work, proof of stake, delegated proof of stake, and practical
byzantine fault tolerance (PBFT) [20]. The PBFT is used
as a representative consensus algorithm for permissioned
blockchains. In our design, every participating peer in the
blockchain network uses an ordering service with the PBFT
consensus protocol to maintain a synchronized ledger. The
details on the PBFT consensus protocol are found in Castro’s
scheme [21].

B. DISTRIBUTED HASH TABLE FOR ACCESS CONTROL
Distributed hash table (DHT), an implementation of storing
access control policies that are csimilar to the off-chain

VOLUME 8, 2020 71607

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

key-value store for blockchains, is adopted to offer
privacy-aware fine-grained access control [22]. Let H :

{0, 1}256 → {0, 1}n × {0, 1}n, where n � 256. That is,
hash_of _predicate : predicate × policy, where predicate
maps to various permission policies corresponding to differ-
ent access user_ID. For static access control rules, the policy
keeps the same predicate for insert, update, delete, and query.
In our system, the DHTs can be structured in the pod servers,
which can only be updated with smart contract.

C. THRESHOLD RSA SIGNATURES
A blockchain-assisted system for Solid can ensure authen-
ticity, integrity, pseudonymity, and non-repudiation with the
help of cryptography, specifically, digital signatures [8],
[23]. To achieve a single fault-tolerant signature from a
group of participants, we integrate threshold signatures in
the blockchain system. As the advantage of applications in
Bitcoin discussed byGoldfeder et al., the threshold signatures
can enhance our system’s robustness and resilience while
maintaining the decentralized nature of blockchains [24].

However, applying the threshold signatures in blockchain
systems has not been well exploited. In these limited studies,
most threshold signatures are developed for Bitcoin based on
a threshold ECDSA scheme [25]; thus, most of them focus
on the improvement of security and performance for per-
missionless blockchains [26]. In our system, we implement
an RSA threshold signature scheme based on Shoup’s work
[27], in which security is proven in the random oracle model.
To describe concrete construction, for example, a threshold
signature with (n, t), we assume a key generation center
(KGC) D /∈ P, the actors are a group of n participants, and
P = {P1,P2, . . . ,Pn}, where t is the number of possible
corrupted participants. In detail, we present the five general
steps in threshold RSA signatures as follows.

1) GENERATE KEYS
The KGC selects two prime numbers P and Q, where
P = 2p+ 1, Q = 2q + 1, p, q are prime numbers, and
P, Q are both safe primes that are equal in length. Let N
represents an RSA modulus, and N is equal to PQ. Then,
the KGC selects a prime number e as the public exponent
for RSA, and e > n; thus, the public key is established as
(N , e). Next, the KGC computes a secret key d that satisfies
de ≡ 1 mod m. The KGC then sets a0 = d and chooses
the coefficients ai(1 ≤ i ≤ tc) at random from {0, . . . ,m− 1}
to define a polynomial f (x) =

∑t
i=0 aiX

i
∈ Z [X]. For

1 ≤ i ≤ n, the secret key shares si can be caculated as follows:

si = f (i)4−1 mod m (1)

where 4 = n!. Note that the KGC also generates a global
verification key v by selecting a random v ∈ Qn and then
computes the local verification keys vi = vsi ∈ Qn, where
Qn = Zm × Z2 × Z2 and Qn is the subgroup of squares in
Z∗m of order m. Note that Z∗n ' Zm × Z2 × Z2, a subgroup
of elements u ∈ Z∗n with Jacobi symbol (u|n) = −1 can be
added to vi.

2) GENERATE SIGNATURE SHARES
Let M be a message, and u ∈ Z∗n be the random element
where there is (u|n) = −1 (i.e., Jacobi symbol). We have:
1) if

(
x̂ |N

)
= −1, then x = H (M) = x̂ue, where

x̂ = H (M); and 2) if
(
x̂ |N

)
= 1, then x can be hashed as

x = H (M) = x̂. Every participant’s signature share can be
generated as follows:

σi = x2si ∈ Qn (2)

To verify the signature shares, a ‘‘proof of correctness’’ is
provided along with the signature share σi. For this, we adopt
an interactive protocol proposed byChaum andPedersen [28]
in which a player randomly selects a r ∈ Zq and then sends
(a, b) = (gr , xr) to a verifier, where q represents the prime
order of a group Gq generated by part of the public key,
i.e., g

(
g ∈ Gq

)
. Then, verifiers randomly select and send a

challenge c to the player; accordingly, the player returns a
z = r + cs in which s is the secret key. Follow Shoup’s work
in [27], a hash functionH ′ that produces a fixed-length output
L1 = 128 is adopted. Then, a participant Pi randomly selects
a number r ∈

{
0, · · · , 2L(N)+2L1

}
to calculate v′ = vr and

x ′ = x̃r ; thus, the following challenge is obtained:

c = H ′
(
u, x̃, vi, x2i , v

′, x ′
)

(3)

For a signature share si, the proof of correctness is tuple
(c, z) calculated as follows:

z = sic+ r (4)

3) VERIFY SIGNATURE SHARES
To verify the above generated proof of correctness, the
logx̃

(
x2i
)
= logv (vi) needs to be proved, that is:

c = H ′
(
u, x̃, vi, x2i ,

vz

vci
,
xz

x2ci

)
(5)

We must point out that the exponentiation in (5) is an
expensive operation because z is the length of L(N)+ 2L1.

4) COMBINE SIGNATURE SHARES
According to an (n, k, t) threshold signature scheme [33], a
signature σ is required to be generated by some subset of
at least k signers that work together. We assume that k is
from a set of participants S, and S = {i1, i2, · · · , ik} ⊂
{1, 2, · · · , n}. Let x = H (M) ∈ Z∗n, we have

w =
∏
j∈S

σ
2λS0,j
j (6)

where λSi,j = 4
∏
j′∈S\{j} (i−j

′)∏
j′∈S\{j} (i−j

′)
∈ Z, which are always integers

because 4 is equal to n!. According to the Lagrange’s inter-
polation formula, we can compute as follows:

we =

∏
j∈S

x2sj2λ
S
0,j

e

= x4e
∑

j∈S λ
S
0,jsj = x4c (7)

71608 VOLUME 8, 2020

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

The signature σ can be calculated as σ e = x. Furthermore,
gcd (4, e) = 1, and a, b exist such that 4a + eb = 1; thus,
σ = waxb is the combined signature.

5) VERIFY SIGNATURE
The receiver can verify the signature σ simply as similar to
verifying a standard RSA signature. That is, a messageM that
is hashed by a hash function H must be checked to satisfy
σ e = H (M).

To make the algorithm easy to describe, we generally
denote the above steps as five main methods, i.e., GenKeys(),
GenSigShares(), VerSigShares(), ComSigShares(), and
VerSig(). To integrate such an RSA threshold signature
scheme in our system, we implement a ThresholdSinger
interface including the following two functions:

• Sign(): Taking a massage M , this method returns a sig-
nature share σi based on the secret key share si.

• Verify(): Taking a massage M and a signature σ , this
method returns true if σ is valid.

D. TRANSACTION
We leverage the blockchain to validate and record transac-
tions, thereby providing a trust access authentication sys-
tem for Solid. Therefore, unlike a cryptocurrency in the
blockchain systems such as Bitcoin and Ethereum, ‘‘trans-
actions’’ in our system mainly refer to various instructions.
Specifically, the blockchain in our system accepts two types
of transactions such as Tdata and Taccess, as described in the
following:

1) RESOURCE REQUEST TRANSACTION
A resource request transaction, denoted as Tdata, is a request
for linked data resources such as a data retrieval from the
Solid applications; or a storage request on the linked data
resources. The following lists the possible items contained in
a transaction Tdata. Therefore, we can formally define a Tdata
as follows: Tdata = Sign(from||to||type||timestamp||pk||res_
info||chain_ID||tx_ID).

• from: a requestor’s address, perhaps a unique identity
requestor_ID of the requestor, which is a necessary
item;

• to: a receiver’s address, e.g., the address of submitting
peer in the blockchain network;

• type: especially designs for data request transactions,
which includes ‘‘storage’’ and ‘‘retrieval’’;

• timestamp: a sequence of characters that identifies when
the transaction occurred;

• pk: a requestor’s public key that can be used to encrypt
messages when it communicates with the pod servers or
decentralized web nodes;

• res_info: the identity of the resource owner who controls
the ownership of requested linked data;

• chain_ID: the parameter or functions that are used to
trigger the related smart contracts;

• tx_ID: the unique identity of a transaction, which is
generally a hash value of the transaction;

• sig: the signature of a transaction signing with the
requestor’s private key using the function Sign().

2) PERMISSION MANAGEMENT TRANSACTION
A transaction for permission management, denoted as Taccess,
is used to manage access control over linked data resources.
Specifically, we can grant or invoke permissions by updating
the access policies related to different predicates. Based on
the aforementioned items, we can define a Taccess as Taccess =
Sign(from||to||timestamp||pk||predicate||policy||chian
_ID||tx_ID). Note that only the resource owner can issue a
transaction Taccess.

IV. SYSTEM DESIGN AND IMPLEMENTATION
In this section, we explain how to integrate the threshold RSA
signatures in a permissioned blockchain, i.e., HyperLedger
Fabric. Furthermore, we use a Solid application scenario to
describe our system design in detail.

A. IMPLEMENTING THRESHOLD RSA SIGNATURES
IN THE BLOCKCHAIN
An RSA threshold signature scheme enables a group of par-
ticipants to generate a single yet fault-tolerant signature in a
cooperative distributed way [29], [30]. As a powerful tool, the
threshold RSA signatures may have many potential applica-
tions for blockchain systems. For example, every peer in the
Hyperledger Fabric is identified with a certificate signed by
one certificate authority (CA), instead of which a group of
CAs can be replaced using the threshold signature scheme
[31]. In this paper, our goal is to integrate the threshold
RSA signatures into Hyperledger Fabric and focus on the
transaction flow working with the threshold signatures.

1) SIGNATURE SHARE COMBINATION ALGORITHMS
Signature shares enable robustness in a threshold signature
scheme; thus, how to combine such shares into a signature
plays an important role in our system design [32]. Assuming
this scenario, we find a (n, k, t) threshold signature scheme,
where n represents the signing servers S1, S2, . . . , Sn. A client
C wants to sign a message M with such a threshold sig-
nature [33]. To this end, client C needs to request at least
k (t < k ≤ n− t) valid signature shares from the singing
servers and then reconstruct a signature σC using an equipped
function ComSigShares(). Assuming that a reliable and syn-
chronized network transmits the signature shares to client
C, we present two solutions to achieve the aforementioned
purpose.
Solution 1: C calls the function ComSigShares() after it

receives k validated signature shares, and thereby recon-
structs the final signature σC as shown in Algorithm 1.
Solution 2: Algorithm 2 takes the first received k signa-

ture shares as the arguments of function ComSigShares() to
reconstruct an assumed signature σt , and then validates if σt

VOLUME 8, 2020 71609

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

Algorithm 1 Unoptimistic Signature Reconstruction
Input: s1, s2, . . . , sn
Output: σC
1: function UnCombineSignature(s)
2: validShares← []
3: length← 0
4: for s ∈ signatureShares do
5: if VerSigShares(s) then
6: validShares.add(s)
7: length← length+ 1
8: end if
9: end for
10: if length > k then
11: σC← ComSigShares(validShares)
12: return σC
13: end if
14: end function

is valid. If it is valid, then σt is the correct signature σC. If it
fails, then the algorithm continues to receive signature shares
and tries other different combinations of subsets of k+i shares
until a final signature is obtained.

2) TRANSACTION FLOW WITH THRESHOLD SIGNATURES
In this subsection, we explain how to exploit the threshold
signatures to validate transactions in the proposed system.
Fig. 3 illustrates the transaction flow with adopted threshold
signatures. In our design, we accelerate the transaction val-
idation by integrating the threshold signatures in transaction
endorsement, so that we do not need to verify every one of the
endorsements. In detail, our solution consists of the following
phases:
Phase 0: When a transaction is created and delivered to

a submitting peer via a client, the submitter needs to verify
the signature of the client. If the verification is successful,
then the transaction is wrapped as a proposal message and
the proposal is sent to a group of endorsers.

Algorithm 2 Optimistic Signature Reconstruction
Input: s1, s2, . . . , sn
Output: σC
1: function OpCombineSignature(s)
2: invalidCombinations← []
3: for i ∈ 0, 1, . . . , n− k do
4: validCombinations← {s1, s2, . . . , sk+i}
5: for c ∈ validCombinations do
6: if c /∈ invalidCombinations then
7: σC← ComSigShares(c)
8: if Verify(σC) then
9: return σC
10: else
11: invalidCombinations.add(c)
12: end if
13: end if
14: end for
15: end for
16: end function

Phase 1: Once the endorsers receive the proposal, they
start to simulate the transaction after successfully verifying
the signature and then return the proposal responsemessages
(i.e., endorsements) to the submitter together with their sig-
natures. The submitter, upon receiving the required number
of endorsements, utilizes these endorsers’ signature shares to
reconstruct a signature, thereby adding only one endorsement
message signed with the signature to the transaction, which
is submitted to the ordering service.
Phase 2: After receiving the endorsed transaction, the

ordering service orders the transaction, packages it in a block,
and broadcasts it to all peers in the blockchain network.
Phase 3:The peers engagewith the endorsement validation

in which they only need to verify only one signature because
of our threshold signature scheme in the endorsement proce-
dure, as described in Phase 1. Thereafter, the peers chains the
transaction in local ledger and modify the world state.

FIGURE 3. Transaction flow with the proposed threshold RSA signatures.

71610 VOLUME 8, 2020

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

Algorithm 3 Smart Contract for Access Control
1: procedure AcContract
2: linked_data_requestor ← apolicy, apre
3: policyCheck ← false
4: procedure Create()
5: dataOwner_ID← sender .pk
6: t ← []
7: length← 0
8: end procedure
9: procedure UpdateDHT(pk, predicate, policy)
10: if sender .pk is dataOwner then
11: if t [i] .hash = H (predicate) is exist then
12: if policy = NULL then
13: Delete(t [i])
14: length← length− 1
15: else
16: policy← t [i] .policy
17: end if
18: else
19: if policy! = NULL then
20: length← length+ 1
21: t [length] .hash← H (predicate)
22: t [length] .policy← policy
23: end if
24: end if
25: end if
26: end procedure
27: procedure CheckPolicy(apre, apolicy)
28: if (t [i] .hash = H

(
apre

)
is exist) and (apolicy ∈

t [i] .policy) then
29: policyCheck ← true
30: else
31: policyCheck ← false
32: end if
33: end procedure
34: end procedure

B. SYSTEM DESIGN
1) INITIALIZATION
The proposed system needs to initialize related system
parameters, which mainly comprises the following two
phases:

• Signature Initialization: Select the required arguments
such as the RSA modulus size N , number of signing
nodes n, and number of secret shares t based on the
Solid application scenario. The proposed system gen-
erates the public key pair (N , e), the secret key shares
si, and the group of verification keys vi by invoking
the method GenKeys(). When a Solid application first
registers through a client, a signing key σ combined by
n signature shares can be generated using the method
ComSigShare().

• Contract Deployment: Code the designed smart con-
tracts such as Algorithm 3 and Algorithm 4, compile

Algorithm 4 Smart Contract for Transactions
1: procedure TxContract
2: procedure Create()
3: submitter[] = {sp1, sp2, · · · , spn}
4: vTx ← []
5: vTxLen← 0
6: uvTx ← []
7: uvTxLen← 0
8: end procedure
9: procedure UploadTx(pk,Tx, k) F run by peers
10: if k = 1 then
11: if pk ∈ submitter then
12: vTxLen← vTxLen+ 1
13: vTx[vTxLen]← Tx
14: end if
15: else
16: uvTxLen← uvTxLen+ 1
17: uvTx[uvTxLen]← Tx
18: end if
19: end procedure
20: procedure getTx(k) F run by submitting peers
21: if k = 0 then
22: Tx ← uvTx[uvTxLen]
23: uvTx[uvTxLen]← 0
24: uvTxLen← uvTxLen− 1
25: else
26: Tx ← vTx[vTxLen]
27: vTx[vTxLen]← 0
28: vTxLen← vTxLen− 1
29: end if
30: end procedure
31: end procedure

and deploy them on the blockchain. Smart contracts
deployed on blockchains are successful transactions,
whichmeans they have passed the validation process and
been recorded into blocks. Each smart contract on the
blockchain has one unique address, for example, we use
A_ID to stand forAcContractc and T_ID for TxContract.

2) REQUEST ISSUANCE
We assume thatA is a Solid application that wants to publish
a request on linked data resource. It needs to execute the
following steps:

• Create Transaction: Prepare all components required
in a request transaction as defined in Section
III(D) to construct a transaction Tdata. Specifi-
cally, Tdata = SignskA (AID||spi||timestamp||pkA||TID,
UploadTx

(
pkspi ,H (nonce) , 0

)
||H (nonce)), where

from is the unique identityA_ID ofA; to refers to the tar-
get receiver, a submitting peer spi in the blockchain net-
work; chian_ID instantiates as the function UploadTx()
with parameters pk = pkspi , tx = H(nonce), and
s = 0, which means that transaction Tdata will trigger

VOLUME 8, 2020 71611

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

the smart contract as shown in Algorithm 4 and thereby
be added to invalid transactions uvTx[]; and Tx_ID is
the unique identity H(nonce) of transaction Taccess. In
addition, the public and private key pair (pkA, skA) used
in Tdata are generated by the CA when registered for
initialization.

• Simulate Transaction: After the transaction invoca-
tion, the transaction Tdata is sent to the endorsing peers
in the blockchain network to simulate the transaction.
Notably, the simulation of Tdata is executed by the
transaction chaincodes (i.e., smart contracts TxContract
and AcContract), and then the result of a simulation
proposal response returns to the submitting peer spi
together with the signature σi of each endorsing peer.
As illustrated in Fig. 3, the submitting peer spi waits to
collect required t signature shares of σi (1 ≤ i ≤ n) to
reconstruct the signature σ (see algorithms in Section
IV(A)), and adds only one endorsement result appended
with the signature σ to the transaction Tdata.

3) CHAIN TRANSACTION
This phase needs to validate transactions, record and chain the
verified transactions on blockchains, and modify the world
state in the blockchain network.

• Ordering Transactions:The endorsed transaction Tdata
is signed by the submitting peer spi and is submitted to
the ordering service. In the ordering service, the trans-
action Tdata is ordered into a block with other endorsed
transactions in uvTx[] using a consensus procedure (i.e.,
PBFT). Thereafter, all peers in the blockchain network
receive the broadcasted transaction Tdata from the order-
ing service.

• Validate and Record Transaction: To validate the
transaction Tdata, the peers must check if the predicate
of Tdata is the permission granted by the resource owner
by invoking the CheckPolicy() in AcContract, and if the
signature σ is valid using the function Verify(). Here,
the peers utilize the PBFT consensus mechanism to
make an agreement. After validation, the transaction
Tdata is recorded in the blockchain ledger. Notably,
a validated Tdata can first be obtained from invalid
transactions uvTx[] by invoking a getTx(0) and then
set as a valid transaction in vTx[] by invoking the
function UploadTx(pkA, uvTx [i] , 1), as illustrated in
Algorithm 4.

4) RESPONSE REQUEST
Pod servers and decentralized web gateways continue com-
municating with the blockchain to make instant request
response. A new valid request that is validated and recorded
by blockchains can be processed by the corresponding entity,
as explained in the following:

• Pod Servers: The pod servers are responsible for
responding to validated transactions such as Tdata which
requests for data storage or retrieval. For instance, the

type in Tdata is retrieval, and then the final response is
(EnpkA (data) , SHA256

(
EnpkA (data) , pkpodi

)
), where

EnpkA (data) is the encrypted request resources with the
public key of requestorA, pkpodi represents the respond-
ing pod server, and SHA256() ensures the confidentiality
and authentication of messages.

• Decentralized Web: A validated transaction for per-
mission management such as Taccess is handled by the
decentralized web. For example, we assume that Taccess
is a validated request to change the permissions on some
data resources granted to a Solid application. The new
set of permissions specified by the data owner can be
functioned by revoking the function UpdateDHT () in
smart contract AcContract via the decentralized web.

V. EVALUATION
A. SECURITY ANALYSIS
The application of blockchains establishes a secure access
environment for multiple entities in Solid without mutual
trust. We integrate threshold RSA signatures into the transac-
tion validation process and utilize smart contracts to achieve
the following security performances:

1) All Solid entity behaviors in the system are trustworthy:
Each valid operation on the data resource is formalized
as one transaction, which is verified and then recorded
on chains. This immutable records on the blockchain
enables a trustworthy data sharing ecosystem for Solid.

2) Fault tolerant: Due to the threshold RSA signatures,
our system allows a group of peers in the blockchain
network to engage in the signature reconstruction. All
peers create signature shares, which are combined into
a single fault-tolerant signature.

3) Security authentication: Different from blockchain
systems such as Bitcoin and Ethereum, our system is
built on a permissioned blockchain (i.e., HyperLedger
Fabric). In this manner, other than digital signatures, a
Fabric CA is used to help issue and validate certificates.

4) Fine-grained access control: In a smart contract, the
resource owner can predefine the mappings of pred-
icate and policy. Furthermore, during the transaction,
the permission of predicates can also be modified by
revoking the function UpdateDHT ().

5) Privacy protection: In our proposed system, the linked
data resource can be sent for storage in the pods in
encrypted form so that eavesdroppers in a network
cannot obtain it.

B. PERFORMANCE OF SMART CONTRACT
We consider the performance of our proposed smart contracts
because the cost affects the system overhead. To this end,
we exploited the Remix IDE1 to develop, deploy, and test
the smart contracts such as AcContract and TxContract. In
Table 1, we list the gas cost of all functions included in
the two smart contracts with 100 resource requestors. Gas, a

1http://remix.ethereum.org/

71612 VOLUME 8, 2020

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

TABLE 1. Cost of functions in smart contracts

special unit in the Ethereum blockchain, is used as a meter to
measure the resource consumption of the smart contract. The
execution cost shows the gas costs of executing the contract
instructions, whereas the other cost indicates the consumed
gas on transactions calling the function. As shown in Table 1,
the total gas for AcContract is 64355 gas, which enables a
permission management transaction that includes AddDHT
and DeleteDHT. According to the current exchange rate,
i.e., 1 Ether ≈ 197$, and 1 Wei = 10−18 Ether ; thus,
only 0.012677935$ is required for a resource owner to man-
age the DHT. As shown in TxContract, the total cost for
a resource requestor is 0.038778071$, which includes call-
ing the functions AddDHT, CheckPolicy, and GetTx once,
and running the UploadTx function twice. The total cost
for function Create seems somewhat a little high, but it
only runs once at the first time when the smart contract
is created. From the results, we can conclude that the cost
of smart contracts could be economically feasible for our
system.

C. PERFORMANCE EVALUATION OF THRESHOLD
RSA SIGNATURES
This section provides a group of experiments to evaluate
the proposed threshold signature schemes for a blockchain-
assisted Solid system. We conducted the simulations using a
laptop on which installed a Linux virtual machine (VMware
Workstation Pro 15.5) with Ubuntu OS. The hardware param-
eters of the laptop were as follows: Intel(R) Core(TM)
i7-8550U CPU @ 2.80 GHz, 16 GB RAM, Windows 10
Professional 64 bit. The technical characteristics of the
virtual machine are listed: Ubuntu 18.04.3 LTS (64-bit),
12 GB RAM.

To evaluate the performance of our proposals, we mea-
sured execution time of a signature reconstruction operation.
Specifically, we compared the performance of our proposed
two algorithms in Section V(A), i.e., the unoptimistic and
optimistic solutions. To simulate the signature reconstruction,
we considered a network of n signing peers among which p
signature peers might be faulty. Let n = 3p+1 and k = p+1,
andwe adopted the (3p+1, p+1, p) threshold signatures [24].
We conducted comparison experiments under two different
presumed scenarios: 1) all received signature shares from the
signing peers are valid; and 2) p corrupted signature shares are
randomly distributed in n signing peers. For an RSAmodulus,

FIGURE 4. Performance of threshold RSA signatures based on signature
reconstruction algorithms when the tested modulus for an RSA key is
2048 bits.

FIGURE 5. Performance of threshold RSA signatures based on signature
reconstruction algorithms when the tested modulus for an RSA key is
3072 bits.

we selected the size of 2048 bits and 3072 bits because at
least a 2048-bit modulus size in a RSA scheme is considered
safe up to now. Fig. 4 and Fig. 5 show the time required
for a signature reconstruction operation in the RSA threshold
signature scheme with the increasing number of participants
under the 2048-bit and 3072-bit RSA modulus, respectively.
Fig. 6 compares the proposed two signature reconstruction
algorithms in different RSA modulus sizes.

On the other hand, we compared our proposed thresh-
old RSA signatures with RSA multisignatures, an efficient
distributed signature scheme. In contrast to the threshold
signatures, a multi-signature scheme only has one solution
to reconstruct a signature, that is, the reconstruction occurs
when a sufficient number of valid signatures are received

VOLUME 8, 2020 71613

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

FIGURE 6. Comparison of the optimistic and unoptimistic solutions to the
signature reconstruction when the number of participants is 10.

FIGURE 7. Signature reconstruction comparison of two distributed
signature schemes in an all-valid signature shares scenario.

from signers, which means that each signature needs to be
verified until k valid signatures are collected. Such pro-
cedures of the RSA multi-signature scheme are equal to
the unoptimistic solutions to the RSA threshold signature
scheme. In this part, we first compared the time cost for
a signature reconstruction operation in two RSA signature
schemes, and then tested the verification time of their recon-
structed signatures. The experiments also considered an all-
valid share scenario and a part-invalid share scenario where
the experimental settings were n = 3p + 1 and k = p + 1,
and a 3075-bit RSA modulus was adopted. Fig. 7 and Fig. 8
show the comparison of time costs in signature reconstruction
operations under two scenarios such as all-invalid signature
shares and part-invalid signature shares. Fig. 9 shows the
comparison of time costs in signature verification operation
of the two RSA signature schemes.

From Fig. 4 and Fig. 5, we can observe that the optimistic
algorithm (i.e., Algorithm 2) is more efficient than the
unoptimistic algorithm (i.e., Algorithm 1) in a network
without invalid signature shares. The reason is that the
unoptimistic algorithm has to execute VerSigShares() many
times, and such a function VerSigShares() is more expen-
sive than the function Verify() performed in the optimistic
algorithm. However, when corrupted signature shares exist,
the time costs in signature reconstruction operation for the
optimistic algorithm increase exponentially and quickly out-
paced the upoptimistic algorithm. Moreover, a comparison of

FIGURE 8. Signature reconstruction comparison of two distributed
signature schemes in a part-invalid signature shares scenario.

FIGURE 9. Performance comparison of two distributed signature schemes
on signature verification.

Fig. 4 and Fig. 5 show that the time costs in the signature
reconstruction operation are different with an RSA modulus,
i.e., the threshold signatures with a 3072-bit RSAmodulus are
more expensive but have higher security. Fig. 6 also illustrates
this trend that the optimistic algorithm performs better than
the unoptimstic algorithm with an increasing RSA modulus
size, even in cases where signature shares are partly corrupt
or invalid. Therefore, we suggest that the choice between the
unoptimistic and optimistic algorithms depends on the real
application. The optimistic algorithm is more efficient and
suitable for a small and reliable network that does not have too
many corrupted signature shares. Besides, the combination of
such two algorithms in a signature reconstruction operation
can also be a good choice.

In Fig. 7 and Fig. 8, the RSA multisignature scheme is
more efficient than the RSA threshold signatures for a sig-
nature reconstruction operation. We must point out that the
operation costs for the RSA multisignatures are less than
22 ms. The high costs in the RSA threshold signatures are due
to the expensive verification of signature shares. Moreover,
compared with the multisignatures, the threshold signatures
have extra operation costs of the polynomial interpolation. In
Fig. 9, we can observe that the verification time of the RSA
threshold signatures keeps an average value of 0.025 ms/op
because only one signature is to be verified in a threshold
signature scheme. However, the overhead costs for RSAmul-
tisignatures increase linearly as the number of verification
operations grows. To summarize, for a signature reconstruc-
tion operation, the RSA threshold signature scheme is more

71614 VOLUME 8, 2020

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

expensive than that of the RSA multisignatures. By contrast,
in a signature verification operation, the threshold RSA sig-
natures require a fixed cost of time and can scale better in a
large network with numerous participants. Furthermore, the
signature size of the threshold RSA signatures is 384 bytes,
whereas that of the RSA multisignatures is 384 ∗ k bytes,
thereby validating the proof that the RSA threshold signature
scheme has better scalability.

VI. CONCLUSION
Solid is not a concept just out of reach, but an ongoing project
that promises a new working approach for the existing web.
To promote the implementation of such a web decentralized
project, this paper focused on how to exploit the permissioned
blockchain to implement secure authentication with fine-
grained access control system suited for a Solid ecosystem.
Specifically, the proposed system applies threshold RSA sig-
natures in the blockchain to authenticate Solid applications,
and uses smart contract to manage access control policies.
We analyzed the security of the system and evaluated the
performance of our solutions.

How to leverage blockchain technologies to empower the
Solid project is still an open issue. In a future research, we
will explore how to use threshold signatures to implement a
group of CAs in a permissioned blockchain. Furthermore, a
Solid ecosystem requires fast and efficient transactions, so we
are motivated to improve the blockchain performance.

REFERENCES
[1] J. Werbrouck, P. Pauwels, J. Beetz, and L. van Berlo, ‘‘Towards a decen-

tralised common data environment using linked building data and the solid
ecosystem,’’ in Proc. 36th CIB W, Newcastle, U.K., 2019, pp. 113–123.

[2] E.Mansour, A. V. Sambra, S. Hawke,M. Zereba, S. Capadisli, A. Ghanem,
A. Aboulnaga, and T. Berners-Lee, ‘‘A demonstration of the solid platform
for social Web applications,’’ in Proc. 25th Int. Conf. Companion World
WideWeb (WWWCompanion), Montreal, QC, Canada, 2016, pp. 223–226.

[3] W. Liang, K. Li, J. Long, X. Kui, and A. Zomaya, ‘‘An industrial network
intrusion detection algorithm based on multi-characteristic data cluster-
ing optimization model,’’ IEEE Trans. Ind. Informat., vol. 16, no. 3,
pp. 2063–2071, Mar. 2020.

[4] W. Liang, M. Tang, J. Long, X. Peng, J. Xu, and K.-C. Li, ‘‘A secure FaB-
ric blockchain-based data transmission technique for industrial Internet-
of-Things,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3582–3592,
Jun. 2019.

[5] G. Zyskind, O. Nathan, and A. Pentland, ‘‘Decentralizing privacy: Using
blockchain to protect personal data,’’ in Proc. IEEE Secur. Privacy Work-
shops, San Jose, CA, USA, May 2015, pp. 180–184.

[6] A. Sambra, A. Guy, S. Capadisli, and N. Greco, ‘‘Building decentral-
ized applications for the social Web,’’ in Proc. 25th Int. Conf. Compan-
ion World Wide Web (WWW Companion), Montreal, QC, Canada, 2016,
pp. 1033–1034.

[7] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem,
D. Zagidulin, A. Aboulnaga, and T. Berners-Lee, ‘‘Solid: A platform for
decentralized social applications based on linked data,’’ MIT CSAIL
QCRI, Cambridge, MA, USA, Tech. Rep. MIT-QCRI-2016, 2016.

[8] H.-N. Dai, Z. Zheng, and Y. Zhang, ‘‘Blockchain for Internet of Things:
A survey,’’ IEEE Internet Things J., vol. 6, no. 5, pp. 8076–8094, Oct. 2019.

[9] K. Liu, W. Chen, Z. Zheng, Z. Li, and W. Liang, ‘‘A novel debt-credit
mechanism for blockchain-based data-trading in Internet of vehicles,’’
IEEE Internet Things J., vol. 6, no. 5, pp. 9098–9111, Oct. 2019.

[10] W. Chen, Z. Zhang, Z. Hong, C. Chen, J. Wu, S. Maharjan, Z. Zheng,
and Y. Zhang, ‘‘Cooperative and distributed computation offloading for
blockchain-empowered industrial Internet of Things,’’ IEEE Internet
Things J., vol. 6, no. 5, pp. 8433–8446, Oct. 2019.

[11] Y. Yao, X. Chang, J. Misic, V. B. Misic, and L. Li, ‘‘BLA: Blockchain-
assisted lightweight anonymous authentication for distributed vehicular
fog services,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 3775–3784,
Apr. 2019.

[12] H. Wang, Z. Zheng, S. Xie, H. N. Dai, and X. Chen, ‘‘Blockchain chal-
lenges and opportunities: A survey,’’ Int. J. Web Grid Services, vol. 14,
no. 4, pp. 352–375, Oct. 2018.

[13] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, ‘‘Threshold ECDSA from
ECDSA assumptions: The multiparty case,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), San Francisco, CA, USA, May 2019, pp. 1051–1066.

[14] T. Cai, W. Chen, and Y. Yu, ‘‘Bcsolid: A blockchain-based decentralized
data storage and authentication scheme for solid,’’ in Proc. BlockSys.
Guangzhou, China: Springer, 2019, pp. 676–689.

[15] K. Gai, Y. Wu, L. Zhu, L. Xu, and Y. Zhang, ‘‘Permissioned blockchain
and edge computing empowered privacy-preserving smart grid networks,’’
IEEE Internet Things J., vol. 6, no. 5, pp. 7992–8004, Oct. 2019.

[16] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, ‘‘Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,’’ in Proc. IEEE
Eur. Symp. Secur. Privacy (EuroS P), Stockholm, Sweden, Jun. 2019,
pp. 185–200.

[17] N. M. Novak and A. M. Tjoa, ‘‘Towards a business value framework for
linked enterprise data,’’ in Proc. IEEE-RIVF Int. Conf. Comput. Commun.
Technol. (RIVF), Danang, Vietnam, Mar. 2019, pp. 1–6.

[18] Z. Li, Z. Yang, and S. Xie, ‘‘Computing resource trading for edge-cloud-
assisted Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3661–3669, Jun. 2019.

[19] Z. Li, Z. Yang, S. Xie, W. Chen, and K. Liu, ‘‘Credit-based payments for
fast computing resource trading in edge-assisted Internet of Things,’’ IEEE
Internet Things J., vol. 6, no. 4, pp. 6606–6617, Aug. 2019.

[20] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, ‘‘Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8,
pp. 8050–8062, Aug. 2019.

[21] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ in Proc.
OSDI, New Orleans, Louisiana, 1999, pp. 173–186.

[22] J. Pan, J. Wang, A. Hester, I. Alqerm, Y. Liu, and Y. Zhao, ‘‘EdgeChain:
An edge-IoT framework and prototype based on blockchain and smart
contracts,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4719–4732,
Jun. 2019.

[23] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
‘‘An overview on smart contracts: Challenges, advances and platforms,’’
Future Gener. Comput. Syst., vol. 105, pp. 475–491, Apr. 2020.

[24] R. Gennaro, S. Goldfeder, and A. Narayanan, ‘‘Threshold-optimal
dsa/ecdsa signatures and an application to bitcoin wallet security,’’ in Proc.
ACNS, Bogota, Colombia, 2016, pp. 156–174.

[25] P. Dikshit and K. Singh, ‘‘Efficient weighted threshold ECDSA for secur-
ing bitcoin wallet,’’ in Proc. ISEA Asia Secur. Privacy (ISEASP), Surat,
India, Jan. 2017, pp. 1–9.

[26] S. Guo, X. Hu, Z. Zhou, X. Wang, F. Qi, and L. Gao, ‘‘Trust access
authentication in vehicular network based on blockchain,’’ China Com-
mun., vol. 16, no. 6, pp. 18–30, Jun. 2019.

[27] V. Shoup, ‘‘Practical threshold signatures,’’ inProc. EUROCRYPT, Bruges,
Belgium, 2000, pp. 207–220.

[28] D. Chaum and T. P. Pedersen, ‘‘Wallet databases with observers,’’ in Proc.
CRYPTO, Santa Barbara, CA, USA, 1992, pp. 89–105.

[29] K. Huang, X. Zhang, Y. Mu, X. Wang, G. Yang, X. Du, F. Rezaeibagha,
Q. Xia, and M. Guizani, ‘‘Building redactable consortium blockchain for
industrial Internet-of-Things,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3670–3679, Jun. 2019.

[30] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, ‘‘Multi-hop coop-
erative computation offloading for industrial IoT–edge–cloud comput-
ing environments,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 12,
pp. 2759–2774, Dec. 2019.

[31] H. Sukhwani, J. M. Martinez, X. Chang, K. S. Trivedi, and A. Rindos,
‘‘Performance modeling of PBFT consensus process for permissioned
blockchain network (Hyperledger Fabric),’’ in Proc. IEEE 36th Symp.
Reliable Distrib. Syst. (SRDS), Hong Kong, Sep. 2017, pp. 253–255.

[32] P. Rastegari, M. Dakhilalian, M. Berenjkoub, and W. Susilo, ‘‘Multi-
designated verifiers signature schemeswith threshold verifiability: Generic
pattern and a concrete scheme in the standard model,’’ IET Inf. Secur.,
vol. 13, no. 5, pp. 459–468, Sep. 2019.

[33] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Jun. 1979.

VOLUME 8, 2020 71615

T. Cai et al.: Blockchain-Assisted Trust Access Authentication System for Solid

TING CAI is currently pursuing the Ph.D. degree
in software engineering with the School of Data
and Computer Science, Sun Yat-sen University,
Guangzhou, China.

From 2012 to 2018, she was a Lecturer with the
College of Mobile Telecom, Chongqing Univer-
sity of Posts and Telecom, Chongqing, China. Her
current research interests include the blockchain,
access control, the Internet of Things security, and
edge/cloud computing.

ZETAO YANG is currently pursuing the B.Eng.
degree in software engineering with the School of
Data and Computer Science, Sun Yat-sen Univer-
sity, Guangzhou, China.

His current research interests include the game
theory, the resource allocation for edge computing,
and the blockchain.

WUHUI CHEN (Member, IEEE) received the
bachelor’s degree from Northeast University,
Shengyang, China, in 2008, and the master’s
and Ph.D. degrees from the University of Aizu,
Aizuwakamatsu, Japan, in 2011 and 2014, respec-
tively.

From 2014 to 2016, he was a Research Fellow
with the Japan Society for the Promotion of Sci-
ence, Tokyo, Japan. From 2016 to 2017, he was
a Researcher with the University of Aizu. He is

currently an Associate Professor with Sun Yat-sen University, Guangzhou,
China. His current research interests include edge/cloud computing, cloud
robotics, and blockchain.

ZIBIN ZHENG (Senior Member, IEEE) received
the Ph.D. degree from The Chinese University of
Hong Kong, in 2011.

He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen Uni-
versity, China. He serves as the Chairman of the
Software Engineering Department. He has pub-
lished over 120 international journal and confer-
ence papers, including 3 ESI highly cited articles.
According to Google Scholar, his articles have

more than 7000 citations, with an H-index of 42. His research interests
include blockchain, services computing, software engineering, and financial
big data. He was a recipient of several awards, including the Top 50 Influen-
tial Papers in Blockchain of 2018, the ACM SIGSOFT Distinguished Paper
Award at ICSE2010, and the Best Student Paper Award at ICWS2010. He has
served as the BlockSys’19 and the CollaborateCom’16 General Co-Chair,
SC2’19, ICIOT’18, and the IoV’14 PC Co-Chair.

YANG YU (Member, IEEE) received the bach-
elor’s and master’s degrees in computer science
from the Huazhong University of Science and
Technology (HUST), Wuhan, China, in 1988
and 1991, respectively, and the Ph.D. degree in
computer science from Sun Yat-sen University
(SYSU), Guangzhou, China, in 2007.

From 1991 to 2002, he was a Senior Engineer
and the CTO with a software company. In 2003,
he became a Vice Professor at the School of Infor-

mation Science and Technology, SYSU, where he has been a Full Professor
with the School of Data and Computer Science, since 2011. He has published
more than 60 articles and has been a reviewer for several prestigious inter-
national conferences and journals. His research interests include workflow,
service computing, cloud computing, and software engineering. He is a
member of ACM and a Senior Member of CCF.

71616 VOLUME 8, 2020

	INTRODUCTION
	SYSTEM MODEL
	SOLID APPLICATIONS
	BLOCKCHAIN NETWORK
	POD SERVERS
	DECENTRALIZED WEB
	LINKED DATA RESOURCES

	SYSTEM BUILDING BLOCKS
	BLOCKCHAIN
	DISTRIBUTED HASH TABLE FOR ACCESS CONTROL
	THRESHOLD RSA SIGNATURES
	GENERATE KEYS
	GENERATE SIGNATURE SHARES
	VERIFY SIGNATURE SHARES
	COMBINE SIGNATURE SHARES
	VERIFY SIGNATURE

	TRANSACTION
	RESOURCE REQUEST TRANSACTION
	PERMISSION MANAGEMENT TRANSACTION

	SYSTEM DESIGN AND IMPLEMENTATION
	IMPLEMENTING THRESHOLD RSA SIGNATURES IN THE BLOCKCHAIN
	SIGNATURE SHARE COMBINATION ALGORITHMS
	TRANSACTION FLOW WITH THRESHOLD SIGNATURES

	SYSTEM DESIGN
	INITIALIZATION
	REQUEST ISSUANCE
	CHAIN TRANSACTION
	RESPONSE REQUEST

	EVALUATION
	SECURITY ANALYSIS
	PERFORMANCE OF SMART CONTRACT
	PERFORMANCE EVALUATION OF THRESHOLD RSA SIGNATURES

	CONCLUSION
	REFERENCES
	Biographies
	TING CAI
	ZETAO YANG
	WUHUI CHEN
	ZIBIN ZHENG
	YANG YU

