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ABSTRACT The wide-adoption of edge computing promotes the scheduling of tasks in complex requests
upon smart devices on the network edge, whereas tasks are necessary to be offloaded to the cloud when they
are intensive in computational and energy resources. Traditional techniques explore mostly the scheduling of
atomic tasks, whereas complex requests scheduling on edge servers is the challenge unexplored extensively.
To address this challenge, this paper proposes an online task scheduling optimization for DAG-based
requests at the network edge, where this scheduling procedure is modeled as Markov decision process,
in which system state, request and decision space are formally specified. A temporal-difference learning
based mechanism is adopted to learn an optimal tasks allocation strategy at each decision stage. Extensive
experiments are conducted, and evaluation results demonstrate that our technique can effectively reduce the
system’s long-term average delay and energy consumption in comparison with the state-of-art’s counterparts.

INDEX TERMS Online DAG-based request optimization, edge computing, temporal-difference learning,
Internet of Things.

I. INTRODUCTION
With the increasing capacity of smart devices in the Internet
of Things (IoT ), complex requests are possible to be con-
ducted through the collaboration of IoT devices at the
network edge, such that tasks in certain requests are indepen-
dently assigned to appropriate edge servers. Consequently,
edge computing is brought nowadays to schedule tasks upon
edge servers in an optimized fashion, in order to guar-
antee the Quality of Experience (QoE), especially when
requests are latency-sensitive and network traffic intensive.
On the other hand, tasks in requests are mostly offloaded
to the cloud, when they are intensive in computational and
energy resources and thus can hardly be hosted by edge
servers. Generally, tasks to be offloaded to the cloud can
be determined before tasks scheduling on the network edge,
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and this offloading operation can be effectively supported
by techniques developed recently by researchers [1]–[4].
Therefore, this paper focuses on the scheduling of remaining
tasks upon edge servers, such that theQoE of requests, includ-
ing temporal/latency constraints specified between tasks and
energy consumption by edge servers, are the perspectives to
be considered.

Techniques have been developed to support task schedul-
ing at the network edge. Most of current techniques aim to
realize high efficiency of edge networks for the scheduling
of atomic tasks [5]–[8]. Besides, techniques are developed
to support complex requests scheduling on edge servers
[9]–[12]. Without loss of generality, Directed Acyclic Graph
(DAG) is adopted to represent requests with complex struc-
tures, where vertices in a DAG represent tasks, while edges
represent dependency relations between tasks. Although a
sequence or parallel task structure is a particular case of
DAG, the general case has gained wider attention [13].
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Currently, most literatures concentrate on scheduling a sin-
gle DAG-based request in certain time durations. A request
is processed step by step according to the partial ordering
between tasks. The goal is to achieve a scheduling for a par-
ticular request that minimizes system cost. Generally, system
only cares about the optimality of current request and it is
doubtful whether the global optimization can be achieved.
Furthermore, when there are multiple unfinished requests in
the system, there will be overlaps in their scheduling process.
A challenge in edge networks is to ensure the global optimiza-
tion of scheduling and reduce long-term consumption in the
presence of multiple interacting tasks.

To address the challenge in DAG-based requests
scheduling optimization, this paper proposes an online
Reinforcement Learning (RL) based tasks scheduling mecha-
nism, where tasks allocation strategies are learned incremen-
tally. The system’s long-term delay and energy consumption
are minimized and temporal constraints between concurrent
requests are satisfied. The contributions of this paper are
summarized as follows:
• We develop an online scheduling mechanism for
requests with complex structures, which is modeled as a
MarkovDecision Process (MDP). When modeling state
and action of this MDP, internal temporal constraints of
concurrent requests, network load and processor occu-
pation of edge servers are taken as a component of
the system state. To improve the efficiency of decision
making, we set up a reward function aiming to reduce
the system’s long-term delay and energy consumption
while improving the QoE of certain requests.

• We develop a T emporal-Difference (TD) learning based
mechanism to learn the optimal tasks allocation strategy
at each decision stage. Since state scale of this problem
is quite large, calculating a value function may lead to
a curse of dimensionality. Therefore, a linear approxi-
mation is adopted to contribute the parameterized func-
tional form of value function for each state. At the
same time, for the purpose of ensuring the long-term
optimal of the system, we use gradient descent method
to approximate the value function weight settings.

Extensive experiments are conducted to evaluate the appli-
cability and performance of our technique. Evaluation results
indicate that, with the continuous running of the system, task
allocation decisions are promising compared with the state-
of-art’s techniques, and thus minimizing the long-term delay
and energy consumption of edge networks.

This paper is organized as follows. Section II reviews and
discusses relevant techniques. Section III describes the sys-
tem model. Section IV formulates the Online Optimization
for DAG-based Requests Problem-MDP (OODRP-MDP)
problem model. The proposed online edge server collabo-
ration optimization mechanism is discussed in Section V.
Section VI presents the experiments we have conducted to
evaluate the proposed mechanism and Section VII concludes
this work.

II. RELATED WORK
Task scheduling in edge networks has become the focus of
recent studies [14]–[17]. The structure of application requests
has become more and more complex as users demand more
and more functionality. Although tasks in most of literatures
are described as an atomic form, tasks with more complex
structures such as a DAG are considered in recently works.

Mao et al. [18] summarize the typical topologies of task
graphs as sequential dependency, parallel dependency and
general dependency. The advantage of tasks graph is that
it shows the interdependencies between tasks and allows
for better differentiation of subtask characteristics. As the
number of mobile devices grows, people are increasingly
relying on handheld devices to access web services such as
mobile phones. Because of the limited resources and capabil-
ities of mobile devices themselves, users need assistance of
other computing resources to handle complex tasks through
mobile phones. Zhang et al. [19] discuss optimizing the QoE
of ability constrained devices through collaborative mobile
computing. They focus on ensuring the QoE, user incentives
and other challenges such as networking technologies uti-
lized in multi-devices collaboration and they point out the
future directions in real-time device collaborative systems.
Calice et al. [20] propose a task splitting and offloading
mechanism which leverage nearby computational resources
between mobile devices. A request can be split to chunks
sizes and offloaded to other devices according to task match-
ing degree. These works primarily consider the offloading of
complex structured tasks between constrained devices, with
little discussion of offloading to more capable servers. With
the development of cloud computing edge computing, tasks
can be offloaded to such servers to get better QoE.

There have been further studies on task unloading with
complex structure. In [21], [22], heuristic algorithms are
applied to optimize concurrent tasks in mobile cloud or
edge computing. Jia et al. [21] propose a mechanism to
offload tasks to cloud while tasks mentioned are either
sequential type or concurrent type. The purpose is to mini-
mize completion time of application on mobile device while
a load-balancing heuristic is used to guide the offloading
processing. Shu et al. [22] discuss the shortage of prun-
ing method and they propose a heuristic to search out
a near-optimal offloading scheme for non-linear topology
under real-time constraint. They divide the topological graph
into a set of linear paths according to Partial Stochastic Path
and a namedOne-climb Policy is applied to obtain the optimal
offloading decision for each path of task graph. Guo et al. [23]
propose a mechanism which achieves energy-efficient com-
putation offloading under hard constraint for application
completion time. They develop an energy-efficient dynamic
offloading and resource scheduling policy which reduces
energy consumption and shorten application completion time
while satisfying task-dependency requirement and comple-
tion time deadline constraint. They also explore major factors
that influence the optimization of complex task execution,
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such as computing workload of a task, maximum completion
time of its immediate predecessors and clock frequency or
transmission power of the mobile device. In this kind of
works, only one task graph is considered at once while in fact,
the arrival of tasks may be an overlapping process.

In task scheduling context, according to the way it opti-
mizes the target problem, we divide it into two types, online
optimizing and offline optimizing. Compared with offline
problem, an online problem doesn’t use the global infor-
mation but the information in current state to optimize the
task scheduling [24]. Since online optimization problems are
often modeled using an MDP, solving specific problems can
be converted into the process of finding an optimal solu-
tion of MDP. For this reason, RL becomes popular solving
online optimizing problem as it can effectively solve an
MDP [25]–[27]. The advantage of RL mainly include several
aspects: RL has strong self-learning ability. Through action-
return, RL interacts with the environment and constantly
approaches the optimal target; RL requires less environment
information than DP and only partial information can be
applied to the optimization process; RL can also solve the
problem with large-scale of system state and action set
through function approximation [28]–[30].

The idea of edge servers collaboration is still relatively
new. Current work mainly considers a strong edge server
serving the network area it covers while through edge servers
collaboration, the execution efficiency of DAG-based tasks
can be effectively improved. In our previous work [31],
we have explored the possibilities of edge servers collabora-
tion. In that paper, concurrent requests represented in terms of
SQL queries are rewritten as atomic queries and these atomic
queries are optimally assigned to edge servers through adopt-
ing an algorithm inspired by minimum spanning tree. It tries
to distribute the tasks evenly on edge servers, while taking
into account several factors that affect QoE. The shortage is
that it doesn’t take into account the interplay of requests arriv-
ing at different times. In general, there is still a lack of studies
on online optimization of concurrent DAG-based application
requests based on collaboration of edge servers. Our main
work in this paper focuses on solving such problems.

III. SYSTEM MODEL
In this section, the basic concepts of an collaboration edge
networks and a necessary description for the system are illus-
trated. Some of the symbols are listed in Table 1.

A. IOT EDGE NETWORKS SYSTEM
As shown in Figure 1, users send their request across a nearby
Base Station (BS) [32], [33]. As a basic component of the
IoT edge network, Edge Servers (ES) are responsible for
storing IoT sensing data from IoT devices and processing user
requests. In general infrastructure construction practice, ES
often located near a BS. To keep it simple, we use ES to rep-
resent the combination of them. Depending on the function of
base station network, ES can establish communication links

TABLE 1. Notations.

FIGURE 1. Network structure.

with all others edge servers and exchange data. This becomes
the basis for collaboration in edge networks.

We use a discrete time system where time is divided into
equal length time slots. In each time slot, we consider that
a user request or an application comes according to a distri-
bution and unprocessed tasks are placed in a queue. In the
beginning of each time slot, there is a certain probability that
one or no request will arrive in the system. Then systemwould
decide how to respond to user requests in a very short period
of time during the initial phase, which is almost negligible
compared to the whole time slot. In this paper, user requests
or applications are not answered by only one ES because
they are always made up of different structures in practice,

VOLUME 8, 2020 72987



Y. Zhang et al.: Online Scheduling Optimization for DAG-Based Requests Through Reinforcement Learning

which requires more sophisticated analysis. In fact, a user
request or an application with complex structure are usually
completed over multiple time slots, not over a single time
period. We look more deeper in this view. The structure of
user requests or applications will discuss later.

B. IOT USER REQUEST MODEL
For a user request Req, it consists of two parts: a set of
subtasks and a set of time constraint between subtasks. It can
be expressed as:

Req = {{SubTaskk}k∈K , {TCw}w∈W } (1)

where there are K number of subtasks in this Req and W
number of links TC between subtasks with time constraints.
We consider that a user request has a structure like a DAG.

For a node which represents a SubTask in DAG, it consists
of three parts: a set of required data Dtn from different data
sources n ∈ N , a set of input links TC and the process
Proc which represents a function to deal with the input data.
We have:

SubTaski = {{Dtn}n∈N , {TCw}w∈Wi ,Proc} (2)

whereWi in equation (2) denotes the number of links point at
SubTaski. Figure 2 shows an example of a DAG-based request
structure. For any subtask in a request, there must be some
kinds of data that are required from other resources. t1, t2 . . .
mentioned in the figure indicate time constraints in TC . Two
SubTasks connected by a TC mean that the subsequent task
need to be executed at some time after the preorder task
completes.

FIGURE 2. DAG-based user task structure.

C. DATA TRANSMISSION MODEL
1) TIME CONSUMPTION
ESs connect each other by adopting the Orthogonal
Frequency Division Multiple Access (OFDMA) technique.
An edge server’s channel is divided into subcarriers of dif-
ferent frequency bands, each of which is responsible for

communication with another specific ES. The network com-
munication mode between servers is two-way propagation
mode. Bij denotes bandwidth between two edge servers ESi
and ESj and there is a system delay dij that is influenced by
network condition. Assume that a package with size of Q
will be transmitted between edge servers, we can calculate
the transmission time as follow:

Tij(Q) =
Q
Bij
+ dij (3)

2) ENERGY CONSUMPTION
In data transmission processing, the energy consumption
for data package happens at the receiver and sending ends.
As base stations connect with each other by central switch-
board, we consider that the energy consumption on both sides
are the same when a data package is transmitted. It can be
calculated as follow:

ETij(Q) = Eelec ∗ Q (4)

where Eelec denotes energy cost when transmitting a unit of
data within two edge servers.

D. DATA PROCESSING MODEL
1) TIME CONSUMPTION
We set that each processor of an edge server has ability to
process tasks. Delay of task processing is proportional to the
amount of required data received by the server. F denotes
CPU frequency of an edge server and Z denotes the number
of CPU cycles required to process a unit of data. If a task with
data of size Q is processed, the process time TP is shown as:

TP(Q) =
Z ∗ Q
F

(5)

2) ENERGY CONSUMPTION
When it processing a task, the energy costs are calculated by:

EP(Q) = TP(Q) ∗ P1+ tidle ∗ P2 (6)

where P1 denotes the energy consumption per unit of time
when the processor is busy and P2 is the energy consumption
when it is free. tidle denotes CPU idle time.

IV. PROBLEM DEFINITION
In this section, we formulate the online optimization for
complex requests in collaboration edge computing networks
as an average return MDP in infinite time domain.

A. SYSTEM STATE
As we have mentioned above, a discrete time system is
applied in this paper. The various system states we observe
are based on each time slot and that always happens in the
beginning of each time slot. s(t) represents the system state
at time slot t . In each time slot t ∈ {1, 2, 3, . . .}, ESi can be
observed for its CPU idle time CPti , as well as its occupancy
on each channel connected to other servers L ti,j. i and j mark
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the number of ES. We use a three tuple to describe the system
state:

s(t) = {CPti ,L
t
i,j,RTt }i,j∈N (7)

where {CPit }i∈N can be expressed as a 1 × N matrix and
each element represents an ES’s processor free time point.
{Li,j}t , i, j ∈ N is an N × N matrix where the row and
column number corresponding to an element of the matrix
represents the idle time of the network transmission between
the corresponding two edge servers.

The third part RTt = {SubTask
Readyt
m }m∈M represents

the set of subtasks that can be executed at the current
time slot. According to equation (2), due to the impact of
request structure and temporal dependencies between sub-
tasks, the execution of a request’s subtasks have sequential
relationships, which usually happens within multiple time
slots. The observed executable subtasks often belong to sev-
eral different user requests or applications. {Dtn}n∈N in a
SubTaskReadytm can be expressed as an 1×N matrix where each
element represents the size of data package from a specific
edge servers. A SubTaskReadytm also means that its preorder
tasks have been done and their results are existing in specific
ESs. For all {TCw}w∈Wi belonging to this task, the key is to
find the link with most pressing time constraint. At the same
time, it is clear at which ES the starting SubTask of this link is
executed. So an array of two variables can be used to represent
the state of a task. A SubTaskReadytm can be expressed as a 1×2
matrix. Since the maximum value ofM isN , we represent the
RTt as a 2 × N matrix. If M is less then N , we use zero to
represent the remaining. The system state s(t) at time slot t
can be expressed as an N + (N ×N )+2×N matrix. A visual
image of s(t) is shown in Figure 3.

FIGURE 3. System state s(t).

B. ACTION SET
In each time slot, the system would take action to allocate a
set of subtasks RTt to corresponding edge servers. ES can

accept a task or not. That can be expressed as a binary
sequence of lengthN . But that description could not show the
specific assignment of corresponding edge servers. Further,
we have defined the maximum length of the tasks queue
MaxR, if MaxR > N , maybe one or more ES would be
assigned to more than one subtasks. It is natural that if an
assigned task cannot be executed immediately, it is best to
reassign it at the next available time. According to this, we set
the maximum length of the queue MaxR = N . It means that
each ES would be assigned with at most one tasks or not.
Action token at time slot t is a(t) = {ESi}, i ∈ N and it is
a permutation of all active ESs. As an example, we assume
that there are 6 ES in networks, that means the maximum
length of the queue is 6. If there are four subtasks available at
a time, thenwewill assign them to fourESs. An assignment of
the four tasks {5, 3, 2, 1, 4, 6}means that only ESs numbered
{5, 3, 2, 1} are assigned with tasks while {4, 6} are free at this
time slot. If there are eight or more tasks can be executed at
a time slot, except the first six tasks, redundant tasks will be
handled in the next time slot.

C. TRANSITION
The transition function is determined by current system
state s(t) and action a(t). When we take an action at time t , its
essence is that CPt and L t are partly or completely updated
while RTt is completely updated. The ES assigned to a task
will access the corresponding data and then process them
locally and its CPU idle time will change accordingly, as well
as the channel idle time for data transmission. The CPU idle
time of a ES without assigned any tasks is automatically
updated to the next moment. For RTt part, the tasks repre-
sented by all rows are zeroed out by assignment, and at the
beginning of the next moment, new available tasks that can
be done is observed and their parameters are filled in RTt+1.
The transition function can be expressed as follow:

Pas(t)s(t+1)(t) = P[St+1 = s(t + 1)|St = s(t),At = a(t)]

(8)

D. REWARD
The proposed edge servers collaboration optimization is a
multi-objective optimization problem, where meeting the
internal time constraint of user requests and minimizing the
long term system costs are two major problems. Quality
of Experience (QoE) often shows that weather a request is
satisfied by edge networks. We use Tm to indicate the QoE of
an user request. If it is satisfied, Tm = 1, else Tm = 10. That
means, if a task is finished before its time constraint, it is a
positive return, otherwise it is a negative return. System cost
mainly contain two parts, time cost and energy cost. For a
long-running system, it is more realistic to focus on average
costs of system over a long period of time than on minimum
costs over a short period of time. First we define the delay of
an ESi after an action a(t) has been taken at time t as:

cd (i, t) = ETP(TP(Qi,t ))− BTP(t) (9)
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where BTP(E) denotes the beginning time of an event E .
ETP(E) denotes the end time of an event E . Qi,t is the size of
the data processed by ESi at time t . In fact, the delay mainly
consists of total transfer time width of data packages, waiting
time after the transfer and processing time of the task.

The energy consumption of an ESi at time t is mainly
generated by process of data transmission and dealing with
a task at processor. ce(i, t) denotes the energy consumption.
We have:

ce(i, t) = ETi{j∈N }(Da)+ EP(Dr) (10)

whereDr denotes sum of the amount of data requested by the
task. Da denotes the amount of data that passes through this
server.

Based on above premises, the long term average weight
sum of delay and energy cost C is given as:

P1 min(C) = min
N∑
i=1

(w1cd (i)+ w2ce(i))

= min
N∑
i=1

1
t
lim
t→∞

[w1

∞∑
t=1

cd (i, t)

+w2

∞∑
t=1

ce(i, t)]

= min lim
t→∞

1
t

∞∑
t=1

N∑
i=1

[w1cd (i, t)+ w2ce(i, t)]

= min lim
t→∞

E
N∑
i=1

[w1cd (i, t)+ w2ce(i, t)]

(11)

where cd (i) =
1
t limt→∞

∑
∞

t=1 cd (i, t), ce(i) =
1
t limt→∞

∑
∞

t=1 ce(i, t) and w1,w2 are the weights. The
optimization target P1 is minimizing expectation of C of the
system in infinite time domain.

V. PROPOSED MECHANISM
A. TD LEARNING WITH APPROXIMATION
Different from Monte-Calo (MC) method, in a TD learning
method, people don’t need to sample from whole sequence
and it can learn directly for raw experience without amodel of
environment’s dynamics [34]. In practice, many MDP prob-
lems are with an infinite state. A lookup table or MC with all
sampling are unsuitable. It is impractical to sample the whole
sequence because there is no ending for a infinite sequence.
In a TD learning model, it only needs information about a few
continuous states instead of true value sample from a whole
sequence to update the value function. It calculates the TD
error in each step which is the estimate made at that time slot.
By minimizing the TD error, we improve the estimating of
value function and get the policy with optimal.

Furthermore, an MDP problem with a large scale of state
set or action set is not handled in a normal TD learning

method. To calculate the action value function or value func-
tion, it needs a lookup table which stores values of all state
action pairs. It’s not practical to store and calculate the value
function for all possible states actions because of the curse
of dimensionality. As an example, the problem proposed
in this paper whose state consists of edge server channel
and processor condition, cannot be enumerated as time is
infinite. In order to get the values, the idea of value function
approximation can effectively solve large-scale problems.
It computes the value function in input state by introducing a
network of value functions described by parameter form. This
network of value function can be described by a linear param-
eter function. In approximation of value function, a state
action pair value can be calculated immediately although it’s
not the actual value. To improve the approximation value it
would use the idea of gradient descent. The gradient function
is same with approximation value function and the purpose is
to find the minimum of the function. That means parameters
should be adjust in direction of gradient descent until it find
one with the minimal mean-squared error between approxi-
mate value function and true value function.

Reward can reflect the quality of policy taken in system.
There are three kinds of reward in reinforcement learning
method, finite time domain reward, infinite time domain
discount reward and infinite time domain average reward
setting. While the first reward setting is applied for episodic
problem, last two model are suitable for continuing problem.
In a discount reward setting, agent focuses more on recent
rewards while rewards at a distant time have a much smaller
impact on present state. In an average reward setting, it is
equally important to consider the immediate reward of all
moments as it calculate the mean of each rewards.

B. LINEAR VALUE FUNCTION APPROXIMATION-BASED
ONLINE OPTIMIZATION FOR CONCURRENT REQUESTS
As system state is a collection that cannot be enumerated,
we use linear value function approximation-based optimiza-
tion algorithm to address this problem. An average reward
setting in the proposed MDP is applied.

As shown in equation (14), P1 is the target of the proposed
online optimization for concurrent requests allocation based
on collaboration of edge servers. The subitem of P1 is the
weight sum of energy consumption and delay for all ES
within a time slot period. We have set this as an immedi-
ate reward Rt for it reflects the total cost of the system in
current phase. When a task’s temporal constraints are not
met, the system’s immediate return is negative and the system
gains when all tasks meet their temporal constraints. We set
the immediate reward Rt at {s(t), a(t)} as:

Rt = Tm
N∑
i=1

[w1cd (i, t)+ w2ce(i, t)] (12)

Tm =

{
1 QoE is satisfied
10 QoE isn’t satisfied

(13)
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In a TD learning method, it would calculate value func-
tion q(s, a) in each steps while its format is average reward.
In each time slot we have:

R = lim
t→∞

1
t

∞∑
t=1

N∑
i=1

[w1cd (i, t)+ w2ce(i, t)]

= lim
t→∞

E[Rt |s0, a0:t−1, π]

= C (14)

The return G in an average reward system is:

Gt = Rt+1 − R+ Rt+2 − R+ Rt+3 − R+ . . . (15)

According to bellman expectation equation:

q(s, a) = E[Gt |St = s,At = a]

= E[Rt+1 − R+ q(s′, a′)] (16)

To update q value, TD learning method is proposed:

q(s, a) = q(s, a)+ α[Rt+1 − R+ q(s′, a′)− q(s, a)] (17)

TD error is denoted as:

δ = Rt+1 − R+ q(s′, a′)− q(s, a) (18)

R = R+ βδ (19)

where R is average reward which is the same with target C .
Gt is the return under average reward setting. We update
the average reward according to equation (19). In TD error,
q(s′, a) is generated by ε − greedy. In this setting, we would
get the optimal target C if we can find the optimal q value
for each action and state. The proposed MDP problem can be
solved as long as we find the q∗(s, a) in each step.
We havementioned above, the state consists of an (N×1)+

(N ×N )+ (2×N ) matrix. Action set is a 1×N matrix which
direct the tasks allocation in a time slot. As a parameterized
representation of action-value, the combination of two above
matrix Action and State are applied. We also give an param-
eter matrix ω which has the same dimension. We use linear
action value function approximation method for TD learning
and we use Stochastic Gradient Descent (SGD) to update the
networks. Two step size parameters are set as α and β while α
is set to update the TD errors for networks, β is set to update
the average reward. We don’t set a decay factor γ because we
have set average reward in this setting. The explore rate is set
to ε. And in each step, we output the optimalQ value network.
In SGD, the target is to find a parameter ω with the minimal
mean-squared error between approximate value function and
true value function.

In the initialization, a Q value parameters network is set
with arbitrarily, for example we set all parameters as zero.
There is no end in this system and the agent interacts with
the environment continuously. In the beginning of a time
slot, a state is observed by agent and it takes an action from
action set with ε−greedy strategy. The selected action which
represents the allocation of tasks to each ES is executed and
it transfers to a new state s(t+1) and the immediately reward
for state s(t) and action a(t) pair isR. Then under state s(t+1),

it choose a new action a(t+1) according to ε−greedy strategy.
After that we update parameters in the system. TD error is
calculated by δ← R−R+q(s(t), a(t), ω) and we also update
the average reward R← R + βδ. Finally the parameter ω is
updated according toω← ω+αδω(s(t), a(t)). The algorithm
flow is shown in Algorithm 1.

Algorithm 1 TD Learning for OODRP-MDP
Require:

A differentiable action-value function parameterization
q(S,A, ω) ∈ N × (1+ N + 2)
Algorithm parameters: step sizes α, β
Initialize value-function weights ω ∈ N × (1 + N + 2)
arbitrarily (e.g., ω = 0)
Initialize average reward estimate R arbitrarily (e.g.,
ω = 0)
Initialize state s(0), and action a(0)
LOOP for each time slot

1: In state s(t), take action a(t)
2: Obvious reward R, s(t + 1)
3: Choose a(t + 1)(ε − greedy)
4: Update TD error δ← R− R+ q(s(t), a(t), ω)
5: Update average reward R← R+ βδ
6: ω← ω + αδω(s(t), a(t))
7: s(t)← s(t + 1), a(t)← a(t + 1)

VI. IMPLEMENTATION AND EVALUATION
In this section, we investigate the performance of the pro-
posed online optimization mechanism for edge servers work-
load allocation and compare it with other mechanisms.

A. EXPERIMENTAL SETTINGS
A prototype of the mechanism was implemented in a Java
program. For these experiments, we conducted a numerical
simulation to implement concurrent user requests arrival,
communication among edge servers and costs under the pro-
posed workload allocation mechanism. Some of the evalua-
tion parameters are listed in Table 2.

TABLE 2. Parameter settings.

In this paper, there are 6 edge servers located in the edge
networks. They communicate and exchange data through
nearby base stations. To simulate a real-world scenario,
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edge servers are divided into three types with different data
processing capabilities. F which represents the frequency of
server processor is set to 3000, 4000 and 5000 per time unit,
correspondingly. Energy costs when CPU is free and busy are
set to 0.1 to 0.25 and 0.9 to 2.5 J per time unit. The energy
cost of data transmission over channels is set to 1 J per time
unit. The channel data transmission capacity among servers
is set to 4000 bytes per time unit. We also set the length of
time slot is a time unit. In order to verify the performance of
the proposed mechanism in different scenarios, we apply dif-
ferent user request arrival rate in each time slot from 0.2 to 1.
This means that a user task must arrive at the beginning of the
time slot when Prob is set to 1.
In this setting, we explore the influence of different system

parameters on proposedmechanism’s efficiency by observing
the system’s long-term average return, delay, energy con-
sumption and whether user requests are completed within
their time constraints. These system parameters include fre-
quency of incoming user requests, weights of energy con-
sumption and delay and immediately reward parameter Tm.

B. EVALUATION RESULTS
1) IMPACT OF DIFFERENT TASKS ARRIVAL RATE
In first set of experimental results from Figure 4 to Figure 7,
we compare the effects of different user request arrival rates
on eachmetric. The value ofK1 andK2 are equal to 0.5. Prob
is set to 0.2, 0.4, 0.6, 0.8 and 1.

FIGURE 4. Runtime average reward composition.

Figure 4 shows the average system reward under different
Prob. Since the reward directly reflects the decision value
at each decision stage, according to the discussion in this
paper, the immediate reward represents the weight sum of
delay and energy consumption generated by the system when
processing tasks at each time slot. So the smaller Prob is,
the more efficient the system is. As time goes on, the curve
changes significantly when Prob is greater than 0.6. This
means that the longer the system runs, the more efficient
the system will be in making decisions, which is also in line
with the expectation of the mechanism proposed in this paper.

As Prob gets smaller and smaller, the curve floats less and
less over time. This is because the system is faced with less
and less tasks in each time slot, so that the system can calmly
deal with the arrival of tasks. The number of tasks processed
by each edge server is small, so the cumulative delay of the
system has little impact on subsequent tasks. Only when the
task comes more and more frequently can the continuous
optimization of the mechanism in this paper become more
obvious.

According to Figure 5 and Figure 6, we can analyze the
specific reasons that influence the trend of average return
shown in Figure 4. It is clear that with the same weighting
of delay and energy consumption, the system average delay
directly affects the long-term average return. In Figure 6
different curves change little over time. However, the change
trend of curves in Figure 5 is similar to that in Figure 4. Under
a certain Prob, delay of the system processing task decreases
continuously as time goes by. These two figures also show
that the curve corresponding to a larger Prob is generally
higher than the curve with a smaller Prob value, which means
that when the system burden increases, results of decisions

FIGURE 5. Runtime average delay composition.

FIGURE 6. Runtime average energy cost composition.
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made by the system are always worse, compared with a
smaller system burden.

Figure 7 shows the proportion of user tasks completed
within their time constraints. For this rate, it directly reflects
users’ satisfaction with the system, which is an extremely
important indicator. For a user, request does not return within
his expected time constraint means user’s request is invalid,
which is intolerable inmany scenarios. On each curve, as time
goes by, the rate of satisfaction of user requests increases sig-
nificantly. Especially when Prob is small, at almost all times,
user requests are satisfied. As Prob gets larger, satisfaction
goes up as the system continues to make decisions, and all of
curves reach over 98% after a certain period of time.

FIGURE 7. Tasks completion rate.

Through the above simulation results it can be seen that
in the proposed reinforcement learning-based mechanism,
with the growing of time, decision-making efficiency of the
system is higher and higher. Average delay of the system
is decreasing, especially after a certain time slot, almost all
decisions made by system can make a task meet its time
constraint.

2) IMPACT OF WEIGHTS AND TM
We then evaluate impact of weights and Tm. The weights of
delay and energy cost in reward may cause the system to have
different effects on the two factors when making decisions.
For setting parameter Tm, we want to avoid poor decisions
to the greatest extent. The difference between setting Tm to
1 and 10 mean that when Tm is equal to 10, reward value
for decisions that might result in task timeouts increases
significantly and is effectively eliminated. We also set K1 as
0.1, 0.5 and 0.9.

Figure 8 shows curves of average reward in different
parameter combinations. Almost all curves show a downward
trend as time slot increases. This trend is even more pro-
nounced in all curves where Tm is equal to 10. Part of the
reason is that there are fewer timeout decisions with larger
rewards value, resulting in significant changes in average
rewards. At the same time, the greater the weight of delay,

FIGURE 8. Runtime average reward composition.

the smaller the average reward of the system. It also indicates
that the system decision has a greater impact on delay.

In Figure 9, when Tm = 10, all curves are below the
corresponding curve when Tm = 1, indicating that setting
a large Tm does affect average delay of the system and
significantly reduces delay caused by decisions. By observing
the same curve group of Tm, we can know that the increase
of the weight of delay makes the system more in the direction
of decreasing delay when making decisions.

FIGURE 9. Runtime average delay composition.

In Figure 10, the curves of two groups of different Tm
showed different trends. When Tm = 1, the change trend of
curves basically conforms to that it rises first, then becomes
stable and some curves even decline. When the weight of
energy consumption becomes larger and larger, the average
energy consumption curve of is lower than the other two
curves and it decreases with the increase of time slot. When
Tm = 10, curves show a relatively consistent downward
trend. Meanwhile, as the weight of energy consumption
increases, the corresponding curve does not show a gradually
decreasing trend, but the overall error is within 0.3 J.
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FIGURE 10. Runtime average energy cost composition.

As a factor that may directly affect user’s request comple-
tion rate, in Figure 11, the curves group with larger Tm is
significantly higher than the curves group with smaller Tm.
In addition, in the set of curves with Tm = 10, the weight
has little influence on task completion rate. In the other set of
curves, different weights have a relatively large influence on
completion rate, among which, when the weight of delay is
larger, the completion rate of the curve is larger. At the same
time, the commonality of these two groups of curves is that
when K1 = 0.9, the completion rate is higher than the other
two curves, while when K1 = 0.5 and 0.1, the completion
rate of two curve is quite close.

FIGURE 11. Tasks completion rate.

According to the results of this set of experiments, setting
different weights and Tm values has a greater impact on
system delay, but less impact on system energy consumption.
At the same time, experimental results also show that by
adjusting these parameters, the system decision can be made
in the desired direction.

C. COMPARISON WITH OTHER MECHANISMS
We compared the proposedmechanismwith Random strategy
and Bottom-up game strategy mentioned in [35], which are
represented by Proposed, Random and Game, respectively.

We set that K1 = 0.5, Tm = 1 and it iterated 20000 times.
In this setting, we explore the influence of different request
arrival rate Prob on those mechanisms by observing the sys-
tem’s long-term average return, delay, energy consumption,
and whether user requests are completed within their time
constraints.

Figure 12 shows the curves of average reward under dif-
ferent task arrival rate. Obviously, Proposed has advantages
over other two mechanisms. With the increase of Prob, aver-
age return growth trend of Proposed slows down.When Prob
reaches 90 percents, its return remains stable. Average returns
of the other two methods are similar. When Prob increases,
change trend of Game exceeds that of the Random method.
When task arrival rate is low, the performance of each mech-
anism is similar, while it increases gradually, which reflects
that the proposed mechanism can effectively adapt to the
situation of heavy workload.

FIGURE 12. Average reward composition.

As an element of average return, Figure 13 and Figure 14
show the variation trend of delay and energy consumption
respectively. Figure 13 shows a similar trend to Figure 12.
The curves ofGame andRandom are close at different Prob,

FIGURE 13. Average delay composition.
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FIGURE 14. Average energy cost composition.

while delay of Proposed is lower as Prob increases. When
Prob = 100, it means that each time slot will receive a new
concurrent user request. While delay of Proposed remains
stable, which indicates that the proposed mechanism can
still make better decisions under long-term operation of the
system with heavy load. In Figure 14, the variation trends
of three curves are relatively similar and their values are
close to each other, while Proposed curve is a little bit lower
when Prob is close to 100 percents. This indicates that the
main reason affecting the change of target function is delay.
Because of many factors that affect delay, the delay caused
by data transmission and processing can vary greatly in any
system state when different actions are taken. Compared wit
delay, the change of energy consumption is mainly affected
by data size. So the performance of those mechanisms is
similar in energy consumption variation. This also shows that
the mechanism proposed in this paper can better adapt to task
scheduling in a multi-factor environment.

Figure 15 shows tasks completion rate under different
Prob. All three curves declined with the increase of task
arrival rate. The decline rate of Proposed is obviously slower

FIGURE 15. Tasks completion rate.

and it keeps slowing down. When Prob is greater than
70 percents, decline rate of curve Game and curve Random
becomes faster and when Prob reaches 90 percents, there is
a trend of slowing down. But they are still far below than
that of Proposed. It can be seen that when workload of
the system increases, the mechanism proposed in this paper
can make better decisions, while other two mechanisms both
show a significant decline, leading to a significant decline
in efficiency after long-term running of the system, which
seriously affects the quality of experience of users.

VII. CONCLUSION
This paper proposed an online task scheduling optimization
mechanism based on reinforcement learning in the frame-
work of edge server collaboration, in order to reduce the
long-term delay and energy consumption of the system while
satisfying internal temporal constraints of requests with com-
plex structure. Specifically, an MDP is adopted to model the
problem and TD learning with an average reward setting was
applied to solve this problem. Due to the dimensionality curse
caused by the large scale of system state and action set, a lin-
ear value function approximation is proposed, whose param-
eters are adjusted by gradient descent method. Extensive
experiments are conducted, and the results show that, with
the increase of the number of iterations, and the return of the
system is increasing. Comparedwith other baseline algorithm
and other optimal mechanism, our technique is promising
in reducing long-term delay and energy consumption while
achieving higher satisfaction rate of complex requests.
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