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ABSTRACT A technique named Learning from Demonstration allows robots to learn actions in a human
living environment from the demonstrations directly. In a learning method from demonstrations directly,
however, teaching actions cannot be reused between situations with different restrictions. In this study,
we propose a method for training a success judgment model based on Learning from Demonstration and
use this as a differentiable loss function of tasks. By formulating the constraints of the action in a manner in
mathematical optimization and combining these constraints with the learned success judgment model into a
loss function, an action generation model can be trained by the gradient method. This system was verified
with the action of scooping up a pancake.

INDEX TERMS Force control, learning from demonstration, motion planning, robot learning.

I. INTRODUCTION
Advances in robotics are expanding the range of robot appli-
cations, from factories to human living spaces. In human
living spaces, the conditions of the environment often vary.
Therefore, it is important for robots to autonomously generate
actions in response to these variations.

It is difficult to program such autonomous action gener-
ation; thus, Learning from Demonstration (LfD) has been
introduced as an effective technique to learn from human
actions [1], [2]. Recently, neural networks (NNs) are often
used for learning due to their high representation ability. In
many techniques using LfD, teaching data are collected by
humans operating robots indirectly [3]–[5]. Yang et al. have
demonstrated the use of LfD to generate actions to perform
a folding task [3]. In that study, a human operates the robot
using a head mont display and mouse, and the system collects
human movement data from the action of folding a piece
of cloth. Rahmatizadeh et al. have achieved generation of
motion for multiple object manipulation tasks with a single
NN using LfD [4]. These methods use position information
as demonstration data.
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LfD has also been applied to operations using force infor-
mation [6]–[9]. By performing tasks using force information
adeptly as a human would, robots can flexibly respond to
changes in the environment. For example, previous studies
have involved the achievement of tasks such as erasing words
on a whiteboard [6], scooping barley from a bowl [7], and
drawing lines and arcs with a ruler and a protractor [8].

By teaching actions from humans through operating
robots, such actions implicitly satisfy the constraints of the
robot (e.g. velocity limitation and range of motion). In other
words, the teaching action is tailored to the robot used for
learning. Furthermore, by using remote control technology
such as bilateral control, the characteristics of the control
systems and actuators can also be considered [8]. These
methods enable tasks in which constraints and success con-
ditions are difficult to define; however, it is difficult to apply
them directly to a different situation that will have different
restrictions from those when data collection. For example,
when robots aremoving near humans, the robots should take a
low velocity limit for safety; while, when robots should finish
tasks rapidly, the robots are desired to act as high velocity as
possible within a velocity limit.

It is relatively easy to formulate constraints such as veloc-
ity limitations and range of motion for a robot through
mathematical optimization. Action generationmethods based
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on mathematical optimization include model predictive
control (MPC) [10]–[12] and rapidly-exploring random
tree [13], [14]. It is also possible to add these restrictions in
machine learning methods, such as NNs [15]. In the meth-
ods mentioned above, the robot can autonomously generate
actions suited for the environment, considering constraints
by treating them mathematically expressions. The conditions
for success in a task, such as the target end position, can
also be treated as mathematical formulae in the same way.
Hirose et al. used MPC with constraints to stabilize the trans-
port of luggage by a robot and achieved a luggage transporta-
tion task [11]. Kutsuzawa et al. achieved the task of flipping
over a pancake by getting a robot to learn the conditions to
prevent slipping as a loss function in NNs, based on a friction
cone [15].

The above methods enable adaptation to changes in the
robot or environmental conditions easily by giving con-
straints explicitly. However, for actions involving contact
with the environment, it is difficult to model the environment
and formulate success conditions. Thus, treating such tasks
mathematically is challenging, making it difficult to formu-
late success conditions for many tasks performed in human
living spaces.

One candidate approach is to combine machine learning
and the use of mathematical formulae. One common way
is to imitate the environment with machine learning and
use the trained models for optimization methods [16]–[18].
Imitating the environment, however, is hard; the models
that learned time development of the environment often
behave incorrectly due to prediction errors accumulated by
auto-regression [19]–[21]. There also exist ways that apply
backpropagation to trained NNs for optimization [22]–[25].
In these methods, NNs are regarded as differentiable func-
tions used for optimizing their input values. This approach
seems to be effective to combine machine learning for com-
plicated tasks and explicit expressions of restrictions into a
loss function.

In this study, we propose a method that uses success/failure
judgement for training action generation. This method uses
two models—a success judgment model that predicts the suc-
cess rate of action by learning from demonstration data, and
an action generation model. The trained success judgment
model is used as a loss function of the action generation
model along with the constraints of the robot, such as velocity
limitations and range of motion. Then, the action is learned,
such that the success rate predicted by the success judg-
ment model becomes 100%. Here, both the success judgment
model and the action generation model consist of NNs; this
allows learning by backpropagation and the gradient-based
optimization to succeed in the task. Figure 1 shows a concep-
tual diagram of the proposed method. In this method, rather
than learning the human demonstrations directly, they are
used indirectly in the training of the success judgment model.
It allows the action generation model to handle changes in
the constraints without having to re-collect demonstration
data.

FIGURE 1. Conceptual diagram of the proposed method. Details of each
component and symbol are explained later.

The approach of learning human demonstrations indi-
rectly has also been taken in inverse reinforcement learning
(IRL) [26], [27]. The difference from it is that IRL uses only
successful motions to imitate the expert’s policy, while our
method uses both success and failure motions to discriminate
whether planned motions succeed in the task or not. Due
to not imitating the policy, our method can be used even
when constraints are different from that in demonstrations;
note that different behaviors are required when constraints are
different.

To verify the effectiveness of our proposed method,
we used a task involving a scooping action. Scooping is a
task that requires quick and accurate motion, which cannot be
performed without considering the constraints of the robot. It
is also a task requiring contact with the environment, which
complicates the formulation of the success conditions of the
task. These aspects make it a suitable task for verifying the
effectiveness of our proposed method. This effectiveness is
demonstrated through physical simulation and experimental
results.

The structure of this paper is as follows. Section II explains
the success judgment model, and Section III explains the
action generation learning that constitutes our proposed
method. Here, the model structures are to be designed as
generic ones because the main proposal in this study is the
training architecture. To verify the effectiveness of the pro-
posed method, in Section IV, we describe verification by
physical simulation, and in Section V, we describe verifi-
cation by experiments with an actual manipulator. Finally,
in Section VI, we summarize the study and discuss future
prospects.

II. NN TO JUDGE THE SUCCESS OF THE TASK
In this section, we describe the collection of human action
data and the structure of the success judgment model in order
to create an NN model to judge the success of the task.

A. COLLECTION OF TEACHING DATA
In this study, a tool equipped with motion-capture mark-
ers and force sensors [28] is used to obtain data on the
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FIGURE 2. Structure of NNjudge, which judges the success or failure of
the task.

relationship between human action and the success or failure
of the task. By teaching actions that involve using tools
in a manner similar to that actually used by humans, pure
human movements can be recorded without including robot
restrictions. In addition, as the tool is easy to handle, the large
amount of teaching data required for the success judgment
model can be easily collected.

During data collection, trajectories of the tool position qk ,
velocity q̇k , and contact force fk are recorded; here, k indi-
cates the time. We define xk as a combination of these vari-
ables as follows:

xk = [q>k , q̇
>
k , f
>
k ]
>. (1)

Also, a label of success/failure is recorded for each trajectory.
When the environment was changed during data collection,
the environmental condition should also be recorded as a
variable e.

B. STRUCTURE OF THE NN
For success/failure judgement of human actions, we used
long short-term memories (LSTMs) [29], [30]. Previous
studies have already demonstrated LSTMs are effective for
human-action processing [31], [32]. In contrast to other meth-
ods such as sliding window based methods [33], hidden
Markov models [34], and Gaussian mixture models [35],
LSTMs can process long-term sequences without designing
sliding windows and pre-processing.

Figure 2 shows the structure of the NN used to judge
the success or failure of a task from an action. NNjudge
contains a total of four layers: two layers of LSTMs and
two feed-forward layers (FLs) with ReLU activation. This
model receives input regarding environmental conditions,
as well as position, velocity, and force, over time and outputs
the success or failure of the task as binary classification. A
cross-entropy function was used as the loss function dur-
ing training. Besides, dropout with the selection probability
0.3 was applied during training.

III. NN TO GENERATE ACTIONS
A. STRUCTURE OF THE NN
Figure 3 shows an overview of the action generation with
NNtrajectory, two-layers of FLs that is used to generate
actions. This NN takes current position qk and environmental
condition e and generates the next samples of force command

FIGURE 3. Action generation method of NNtrajectory.

value fk+1 and acceleration command value q̈k+1. By inte-
grating the generated acceleration command value, the veloc-
ity q̇k+1 and position qk+1 of the next step can be determined.
By feeding this position qk+1 back into the model at the next
time, an action can be generated autoregressively.

B. TRAINING NN FOR ACTION GENERATION
The goal of the action generation model NNtrajectory is to
generate an action that 1) satisfies the constraints in the
situation and 2) successfully performs the task. The former
can be learned by defining a differentiable penalty function
for mathematical optimization. The latter can be achieved
by using the success judgment model, NNjudge, explained
above; thanks to NNjudge differentiable, it is possible to find
the gradient direction such that the action is classified as
successful.

Therefore, the action generation model should be trained
using the following loss functions:

L = L1 + L2, (2)

where

L1 = −P log yjudge (3)

and

L2 = Q
N∑
k=1

[
‖max(q̇k − q̇

max, 0)‖2

+‖max(−(q̇k − q̇
min), 0)‖2

+‖max(qk − q
max, 0)‖2

+‖max(−(qk ,−q
min), 0)‖2

+‖max(fk − f
max, 0)‖2

+‖max(−(fk − f
min), 0)‖2

]
+R(‖qN − q

end
‖
2
+ ‖q̇N − q̇

end
‖
2), (4)

where max takes maximum values for each element of given
vectors. Here, (3) represents the loss term that discriminates
whether the trajectories succeeded or failed the task by using
NNjudge. L1 guides learning so that the generated action
achieves the task successfully. Here, P is a weighting factor,
and yjudge is the success rate of the generated action predicted
by NNjudge. (4) is the loss term that gives mathematical penal-
ties when the generated action did not satisfy the restrictions
and constraints given by the user. By this term, the model
learns in order that the generated actions satisfy the con-
straints of the robot. Here, Q is a weighting factor, and q̇min,
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FIGURE 4. Manipulator in simulation.

q̇max, qmin, qmax, fmin, and fmax indicate the minimum and
maximumvalues of velocity, position, and force, respectively.
The final term in L2 evaluates whether the generated action
finishes at the desired terminal position qend and velocity q̇end.
Here, R is a weighting factor. Backpropagation is performed
based on these loss functions, and finally, the desired action
generation model is obtained by updating the parameters
of NNtrajectory. Note that during the training of NNtrajectory,
the parameters of NNjudge are no longer updated.

In this way, our proposed method allows learning with loss
functions to succeed in the task such that the loss functions
simultaneously satisfy the constraints in the situation. There-
fore, for a task in which the success condition is difficult to
formulate, our proposed method enables the generation of
actions that can achieve the task, taking into consideration
the constraints of different situations.

IV. SIMULATION
We verified the generation of a scooping motion in a simula-
tion environment considering the initial position of the object
and the change in the coefficient of friction. In this simulation,
we aim to verify the effectiveness of the proposed training
method that uses the success/failure judgement of motions
and environmental conditions.

A. SET-UP OF MANIPULATOR
For this verification, we used the physical simulator Open
Dynamics Engine [36] to reproduce the six-axis robot manip-
ulator shown in Fig. 4.
The block diagram in Fig. 5 shows the hybrid posi-

tion/force control system [37], [38] used. In the control
system, Kp, Kv, and Kf indicate the position, velocity, and
force control gains, respectively. Also, 3 and M indicate
the mass matrices in the Cartesian coordinate system and
joint coordinate system, respectively. S indicates the selection
matrix between position and force control, and g indicates
the cutoff frequency of pseudo-differentiators. Table 1 shows
the parameters of the control system. This control system
applies force control in the z-axis direction to press the spatula
against the base, while performing position control in the y-
axis direction to scoop up the object. Position control was
applied in the other axial directions to maintain the position
and orientation constant. The starting point of the motion
was set as (x, y, z) = (0.3 m, 0 m, 0 m). The control interval
was 1 ms.

FIGURE 5. Block diagram of control system.

TABLE 1. Control system parameters used in physical simulation.

For safety reasons, the experiment was performed with
a slight position control added in the force control direc-
tion. However, as long as the contact is maintained properly,
the deviation of the position control would be sufficiently
small that the effect of adding this position control would be
considered to be negligible.

B. COLLECTION OF TEACHING DATA
In this simulation, instead of actions performed by humans,
actions performed randomly on the simulator were used as
teaching actions. Random points were plotted in the space
spanned by the position in the y-axis direction and the force
in the z-axis direction, and a random scooping trajectory was
generated by spline curves generated from these points. The
success or failure of the scooping action was labeled based
on the final position of the object when this trajectory was
reproduced.

During the collection of teaching data, the position of
the object on the y-axis, yobj, and the friction coefficient
between the spatula and the object, µ, were varied. As train-
ing data, three points of yobj (0.1 m, 0.19 m, and 0.28 m)
and three points of µ (1.0, 2.0, and 3.0) were combined,
with 1000 actions obtained for each combination. As test
data, 1000 actions were obtained at random positions and
friction coefficients within the range 0.1m ≤ yobj ≤ 0.28m
and 1.0 ≤ µ ≤ 3.0. The success/failure result of the final
collected data was 25.6% success, 74.4% failure.

1) TRAINING OF NNS
The collected data (trajectories of position and force, envi-
ronmental conditions, and success/failure label) were used
for learning in the success judgment NN NNjudge, as shown
in Fig. 2. Table 2 shows the parameters.

The NN for action generation, NNtrajectory, used the struc-
ture shown in Fig. 3; the parameters are shown in Table 3.
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TABLE 2. Parameters of NNjudge used for simulation.

TABLE 3. Variables and structural parameters of NNtrajectory used for
simulation.

FIGURE 6. Accuracy rate per epoch of NNjudge training data and test data
used in simulation.

Throughout this paper, Adam [39] was used for parameter
updates.

2) VERIFICATION RESULTS
The success judgment NN, NNjudge, was trained to determine
the success or failure of the teaching data. Consequently,
we obtained amodel with amaximum accuracy rate of 96.5%.
The progress of accuracy rate is shown in Fig. 6. Note that
the model did not over-fit to the training dataset because the
accuracy with the test dataset did not decrease. We confirmed
that the model could determine success or failure with a high
accuracy rate, even for values of yobj and µ not used for
training. In other words, the model demonstrated that could
maintain high generalization and discrimination performance
could be achieved, even with changes in the environmental
conditions.

Next, we trained the action generation NN, NNtrajectory,
using the resulting NNjudge and then verified whether the
corresponding action could be generated, even if the environ-
mental conditions (yobj and µ) changed. First, we compared

TABLE 4. Results of task success rate between different methods in
simulation.

TABLE 5. Results of task success rate between different ranges of
environmental conditions in simulation.

the task success rates between the following four meth-
ods: 1) the proposed method that uses success/failure judge-
ment and all environmental conditions, 2) training only with
changes in yobj, 3) training where success/failure labels were
inverted (i.e., training NNtrajectory toward failure), and 4)
randomly-generated actions. Table 4 shows the results. The
success rates were low for all cases except for the proposed
method. This shows that the use of success/failure judgement
and environmental conditions is essential to ensuring success
in the task. Second, we verified the proposed method with
different ranges of friction parameters. Table 5 shows the
results. The model resulted in high success rates even though
the environmental conditions were outside the trained range.
However, the success rate decreased when the environmental
conditions were far away from the training.

V. EXPERIMENTS
A. SET-UP OF MANIPULATOR
For this experiment, we used a six-axis manipulator
MOTOMAN-MH3F supplied by Yaskawa Electric. Figure 7
shows the appearance of this manipulator. A force sensor
for measuring the contact force is attached to the tip of the
manipulator, and a metal spatula is attached to the force
sensor. The force sensor was a six-axis force sensor WDF-
6M200-3 supplied by WACOH-TECH Inc. A thin rubber
block with 1.3 cm height, 6.2 cm length, and 7.0 cm width
was used as the object to be scooped up; and a carpet on a
mat was used for the floor.

We used the same control system described in Section IV-A
to control the robot, but the control parameters were changed,
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FIGURE 7. Appearance of six-axis manipulator.

TABLE 6. Control system parameters used in experiments.

FIGURE 8. Device with force sensor on spatula.

as shown in Table 6. The starting point of motion was set as
(x, y, z) = (0.35 m, 0 m, 0 m).

B. COLLECTION OF TEACHING DATA
To record demonstration data from a human performing a
scooping action, we used a spatula equipped with a force
sensor and a motion-capture marker. Figure 8 shows the
appearance of this device. The human instructor performs
the action holding this spatula, and the position and force
over time is recorded during the action. A label of success
or failure is added to each action. We used a six-axis force
sensor FFS055YA101U6S manufactured by Leptrino Inc.
and four Prime41 motion-capture systems manufactured by
NaturalPoint, Inc. Figure 10 shows snapshots of an succeeded
action during data collection. The success or failure of the
action was determined visually. As a guideline, it was judged
as success if 90% or more of the object was scooped onto the
spatula.

This device enables an average of 700 scooping move-
ments per hour to be obtained. The device is easy to handle,
allowing a lot of data to be recorded in a short period of
time.

C. TRAINING OF SUCCESS JUDGMENT NN
Success and failure data for the scooping task was collected
as described in SectionV-B. The total data collected consisted
of 1115 actions, which required approximately 1 hour and
15 minutes to collect. Of these actions, 1000 were used

FIGURE 9. Collection of human action data.

FIGURE 10. Snapshots during collection of scooping action data
(success).

FIGURE 11. Example of motion (success) when performing scooping task.

as training data and 115 as test data. The success/failure
result of the collected data was 65.4% success, 34.6% fail-
ure. Figure 11 and 12 show examples of the trajectory of
each motion. Figure 13 shows the distribution of the maxi-
mum velocity and maximum force in each trajectory of the
1115 actions obtained. As seen from the figure, success or
failure cannot be determined from simple indicators such as
maximum velocity and maximum force.

The collected data were used to train the NN NNjudge,
whose structure is shown in Fig. 2. The parameters of the
model are shown in Table 7. The initial position of the object
on the y-axis, yobj, was used as the environmental condition e;
in the experiments, however, the initial position of the object
was set to a fixed value: yobj = 0.246m.

D. TRAINING OF ACTION GENERATION NN
The action generation NN, NNtrajectory, was trained with the
structure shown in Fig. 1. In this experiment, two NNtrajectory
models with different velocity restrictions were trained:
q̇max

= 1.0 m/s and q̇max
= 0.4 m/s. The other parameters

are shown in Table 8. This evaluation with the two restrictions
confirms that the proposed method allows models to learn
actions satisfying different restrictions by using the same
demonstration data.
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FIGURE 12. Example of motion (failure) when performing scooping task.

FIGURE 13. Distribution of maximum velocity and maximum force in
human action data.

TABLE 7. Parameters of NNjudge.

TABLE 8. Parameters of NNtrajectory in experiments.

E. EXPERIMENTAL RESULTS
First, we evaluated the performance of the success judgment
NN, NNjudge. Figure 14 shows the progress in the accuracy
rate during training. Although a slight decrease was observed
in the test-dataset accuracy, it is negligible for the perfor-
mance. We eventually obtained a model with a maximum
accuracy rate of 96.52% with the test data, indicating that
NNjudge maintains a high discrimination performance.

FIGURE 14. Accuracy rate for each epoch of training data and test data of
NNjudge used in the experiment.

FIGURE 15. Motion trajectory of NNtrajectory(q̇max = 1.0 m/s).

FIGURE 16. Motion trajectory of NNtrajectory(q̇max = 0.4 m/s).

Next, we trained two NNtrajectory models with differ-
ent velocity restrictions. One was NNtrajectory(q̇max

=

1.0 m/s), while the other was NNtrajectory(q̇max
= 0.4 m/s).

Figures 15 and 16 show the trajectories generated by each
model. The light blue area in these figures indicates that
it is within the velocity constraint of the robot. The results
showed that actions could be generated that satisfied the
constraints given by the action generation model. We also
confirmed that the pressing force increased when the velocity
limitation q̇max was small. Qualitatively, this is thought to be
because a stronger downward pressing force was required to
successfully perform the task at the lower velocity.

Next, we provided these motion trajectories to the robot,
and attempted the scooping task 10 times. It succeeded
10 times out of 10 with both of the actions. Figures 17 and 18
show the command values and response values. In these
figures, the parts shaded in light green indicate the region of
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FIGURE 17. Example of control response values (q̇max = 1.0 m/s).

FIGURE 18. Example of control response values (q̇max = 0.4 m/s).

FIGURE 19. Example of snapshots of scooping task during experiment
(q̇max = 0.4 m/s).

y ≥ 0.215m where the spatula and the object were believed
to be in contact. The results show that the scooping task
was achieved successfully with both actions. The graphs also
show that position and velocity followed the command values
accurately; besides, in the second half of the motion, which
is important for the scooping action, force followed the com-
mand value, even though some errors remained. Also, Fig. 19
shows snapshots of the action byNNtrajectory(q̇max

= 0.4 m/s.
These results show that with our proposed method, actions
can be generated to successfully achieve the task, even when
the constraints are changed.

VI. CONCLUSION
The purpose of this studywas to develop amethod to generate
actions to achieve a task for which the success conditions are
difficult to formulate mathematically, taking into consider-
ation the constraints of different situations. To achieve this,

we proposed an action generation method using a success
judgment model. By using the success judgment model as
a differentiable loss function, motion generation under dif-
ferent constraints can be learned without having to re-collect
teaching actions. We verified the effectiveness of this pro-
posed method through simulation and experiments.

In this paper, only kinematic constraints such as velocity
limits were considered; however, being able to specify such
constraints explicitly for tasks that are not easy to model is
expected to be beneficial. Besides, although further verifica-
tions are necessary, it is expected that the proposed method
can also be extended to reuse human demonstrations between
robots with different constraints.
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