
Received March 26, 2020, accepted April 7, 2020, date of publication April 13, 2020, date of current version May 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987607

Charging Strategy Unifying Spatial-Temporal
Coordination of Electric Vehicles
JIALEI ZHANG 1,2, (Member, IEEE), YUNQING PEI2, (Member, IEEE),
JIAMING SHEN2, (Student Member, IEEE), LAILI WANG 2, (Senior Member, IEEE),
TAO DING 2, (Senior Member, IEEE), AND SEN WANG2, (Graduate Student Member, IEEE)
1Department of electric power engineering, Shanxi University, Taiyuan 030006, China
2School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Corresponding author: Laili Wang (llwang@mail.xjtu.edu.cn)

ABSTRACT This paper focuses on how to make a charging guidance for urgent charging electric vehi-
cles (EVs) to fast charging stations. To avoid charging overload in the spatial-temporal scale and excessive
waiting time for EV users, a charging guidance strategy based on the virtual service range is proposed.
Considering the mutual influence among EVs’ charging selections, the proposed strategy can unify the
temporal shift and spatial shift of the charging load into the same time scale to control rather than other works
only do the temporal shift. Specifically, the proposed strategy has two stages: the charging arrangement and
the spatial-temporal shift. The charging arrangement stage is to determine whether an EV can be allowed to
charge at a certain time and a given charging station while the spatial-temporal shift stage is to regulate the
charging time or charging location. Besides, a bucketsort-based algorithm is proposed to solve the formulated
problem in the charging arrangement stage. Finally, three scenarios have been designed to demonstrate the
feasibility of the proposed strategy and the performance of the presented algorithm is compared with the
other decentralized algorithms.

INDEX TERMS Charging load, driving time, electric vehicle, spatial-temporal, waiting time.

I. INTRODUCTION
The widespread adoption of electric vehicles (EVs) can help
to reduce air pollution, greenhouse gas emissions, and health
risks [1]. However, the uncoordinated charging of EVs may
jeopardize the security and reliability of the power grid,
especially in terms of peak load. Taking Guangdong province
in China as an example, due to the lack of charging manage-
ment, its peak load will increase by at least 1.64% in 2020 [2].
Therefore, charging management technologies are needed.

A. RESEARCH PROBLEM
Generally, EV users have two charging cases: destination
charging and urgent charging [3], [4]. For destination charg-
ing EVs, charging location is definite, e.g., home, workplace,
and public parking lots etc., and parking duration is relatively
long. Therefore, the charging rate or charging start time can
be regulated to shift the collective charging load peak in the
time domain [5]–[7]. For the urgent charging EVs, when
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and where to charge are indeterminate. They need to be
decided by EV users. However, EV users’ charging decisions
can be affected by various factors. Typically, if too many
EVs coincidentally gather at the same charging station, some
EVs may need to wait a long time to charge and the local
overload of the feeder connected by the charging station may
become more serious. In other words, there exists the mutual
influence among EVs’ charging selections. These decisions
may collectively affect the spatial-temporal distribution of
the total charging load and bring a part of EVs undesired
time cost without suitable coordination. As shown in Fig. 1,
the users of EV A, EV B, and EV C may most possibly select
the closer charging station CS1 instead of CS2. When the
surplus charging durations of the charging EV1, EV2, EV3,
and EV4 are 30 min and that of the charging EV5 is 10 min,
EV A does not need to wait, EV B waits for 4 min and EV C
waits for 22min to charge at CS1. Therefore, the better choice
for EV C should be CS2 under the consideration of the other
two EVs’ selections. Although it may cause more driving
time, the total time cost can be saved. In this work, we focus
on the two questions about urgent charging EVs.
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FIGURE 1. Example of the mutual influence among EVs charging
selections: the driving time to CS1 for EV A,EV B, and EV C is 5 min, 6 min,
and 8 min, and the driving time to CS2 for EV A,EV B, and EV C is 12 min,
13 min, and 15 min.

• For a fleet of EVs, how to avoid charging overload in the
spatial-temporal scale?

• For an EV, how to guide it to a fast charging station
without undesired waiting time?

B. RELATED WORKS
1) SPATIAL-TEMPORAL MODEL FOR EV CHARGING LOAD
In order to model the spatial-temporal characteristics of
EV charging load, some approaches have been presented,
e.g., the origin-destination (OD) approach [8], [15], trip
chain [9], [10], agent-based approach [11], Markov chain
approach [12], [13], stochastic approach [14], queuing the-
ory [15], multiple agents approach [16], and mobile crowd-
sensing data approach [17]–[19]. In [8], the OD analysis was
used to model the EV mobility, i.e., the travel distance of
each EV within a day and the time (or the location) that
EVs start charging. The trip chain method was developed
based on the national household trip survey (NHTS) data [9]
or the Naive Bayes model [10]. According to the prediction
of EV users’ day-ahead driving behavior, [11] proposed an
agent-based centralized spatial-temporal coordination charg-
ing strategy. However, the accuracy of the prediction will
significantly affect the charging decision. The Markov chain
model was developed by using geospatial maps [12] or
real-time closed-circuit television data [13]. In addition, [14]
proposed a two-stage stochastic model, which considers cus-
tomers’ satisfaction, driving patterns, real-timemarket prices,
and network operation indices. In [15], the OD analysis was
developed to obtain all the EV charging points, and a capacity
determination model based on the queuing theory was pro-
posed to determine the capacity of each EV charging station.

Unlike the aforementioned works, some studies only focus
on the spatial-temporal distribution of the charging load of
plug-in electric taxis (PETs) rather than that of all types of
EVs. In [16], a multiple-agent framework was proposed to
simulate the operation of related players. Reference [17] pre-
sented a mobile crowdsensing system to forecast the charging

behavior of PET based on both the historical and real-time
data of PET, rather than the historical data of PET (e.g., from
the global positioning system (GPS) [18], [19]) or the histor-
ical data of the inner-combustion-engine vehicles (e.g., from
NHTS).

2) CHARGING GUIDANCE FOR AN EV TO A FAST CHARGING
STATION
Existing literature on a charging guidance for an EV to a
fast charging station can be divided into two categories:
pricing [20]–[23] and non-pricing [24]–[29].

Pricing methods consider a pricing competition among fast
charging stations to attract EVs indirectly, so pricing methods
emphasis on how to make a price and build a response-to-
price model of EV users. In [21], a non-cooperative game was
presented to set the price for charging station, while multiple
evolutionary games were formulated to guide EVs to choose
fast charging stations based on the price from the upper stage.
Reference [22] presented a multileader-multifollower Stack-
elberg game model, in which leaders (i.e., charging stations)
announce their prices in stage I and followers (i.e., EVs)make
their charging selections in stage II. In [23], a super modular
game model was developed to analyze the competitive price
of multiple fast charging stations with renewable power gen-
erators. In comparison, [23] pointed out the charging choices
of EVs were dependent on each other, which was ignored
by [21] and [22].

Non-pricing approaches directly offer charging selections
for EV users based on the knowable information, so non-
pricing approaches emphasis on how to integrate the data
from different sources. Reference [24] introduced a charg-
ing navigation system that revised the traffic distance to an
electrical distance to consider the power system operation
information. In [25], both the traffic system and the power
system were united into a time term by the charging guidance
system. According to the predictions, including traffic flow,
average speed, travel time and charging time, [26] proposed
a navigation system to discover the shortest route. In [27],
a hierarchical navigation strategy based on dynamic traffic
and temperature data was proposed. The upper layer was the
charging time selection while the lower layer was the charg-
ing route selection. Reference [28] formulated an interdisci-
plinary second order cone programmingmodel that optimizes
PEVs’ driving paths and charging locations. Reference [29]
made a charging recommendation based on both the fast
charging stations’ conditions and a global knowledge of EV
users’ charging selections. Unlike [24]–[28], [29] considered
the mutual influence among multiple EVs’ charging selec-
tions. However, [29] can only make the coordination of mul-
tiple EVs’ charging selections in a single charging station and
cannot conduct the coordination among charging stations.

C. SUMMARY
Our main contributions are summarized as follows. (1) To
unify the spatial shift and temporal shift of EVs into the
same time scale, a virtual service range (VSR) concept is
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proposed. Based on the VSR principle, a charging guidance
strategy is designed. The proposed strategy can complete the
temporal shift of EVs for a single charging station and spatial
shift of EVs among multiple charging stations, in contrast
to similar works that do not consider the mutual influence
among multiple EVs’ charging selections. (2) The VSR-
based charging strategy has two stages: the charging arrange-
ment and the spatial-temporal shift. To solve the formulated
problem in the charging arrangement stage, a decentralized
bucketsort-based algorithm is proposed. (3) The VSR-based
charging strategy can save time cost for EV users and avoid
local overload for power grid. Compared with the other
decentralized algorithms, the bucketsort-based algorithm can
guarantee a high optimality rate under a lower data size of
communication.

The rest of this paper is organized as follows. In Section II,
the charging guidance strategy for urgent charging EVs to a
fast charging station is formulated based on the VSR princi-
ple. In Section III, a bucketsort-based algorithm is proposed.
In Section IV, various simulations are carried out. Finally,
conclusions are drawn in Section V.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
The charging guidance system is designed for the two prob-
lems in Section I-A. When a moving EV needs to recharge
urgently, the EV user will beforehand send a charging require-
ment to the desired charging station. Then, the selected charg-
ing station determines the charging time that the EV can be
allowed to charge. If the waiting time exceeds the acceptable
limit of EV user, the EVwill be regulated to charge at another
charging station.

As illustrated in Fig. 2, the charging guidance system
comprises three parts: EV terminals, the charging station
operators (COs), and the distribution system operator (DO).
In this architecture, the communications between an EV and
its corresponding CO, between the COs and DO, and among
the COs are required. The first two are needed by a decentral-
ized algorithm in Section III while the third is for the charging
location regulation.

FIGURE 2. Communication structure of the VSR-based charging strategy.

FIGURE 3. Schematic diagram of the time-power transform based on the
VSR.

B. PROBLEM FORMULATION
By the given system, the collective coordination of EV charg-
ing time reflects the temporal shift of the charging load for
each charging station, while the aggregate coordination of
EV charging location exhibits the spatial shift of the charging
load among the charging stations. During the coordinating
progress, a part of EVs may need to be temporally regulated
while another portion may need to be spatially transferred.
Therefore, the charging guidance strategy should be able to
address spatial shift and temporal shift at the same time,
i.e., how to unify the temporal shift and spatial shift of the
charging load into the same time scale to control. In order to
handle the challenge, we propose a VSR concept.

1) VIRTUAL SERVICE RANGE
We denote the EV that sends a charging requirement to a
fast charging station as the unscheduled EV (USEV). Let
i = 1, 2, . . . ,Nk and k = 1, 2, . . . ,K denote USEVs
and charging stations, respectively. We consider coordinating
USEVs charging in terms of their driving time, which can be
obtained from some applications or equipment, e.g., Google
map, Baidu map, and Gaode map, or EV build-in energy
management system. How to calculate the driving time by
combing with the related factors, e.g., travel distance, driving
pattern, driving speed, traffic flow, and weather, is not within
the scope of this paper.

Let T drivi,k denote the time that USEV i drives to the charging
station k . Assume that USEVs near the charging station k
form a VSR, which is a circle scope with the center of the
charging station’s geographical position and with the radius
of the maximum USEVs driving time. The service radius for
the charging station k is defined as

Rk = max{T driv1,k ,T
driv
2,k , · · · ,T

driv
i,k , · · · },

i = 1, 2, · · ·Nk , k = 1, 2, · · ·K . (1)

As displayed in Fig. 3, the service radius Rk is discretized
into a number NR of equal radius intervals1R, which further
makes the service range divided into a number NR of annular
bands Gk,r . Annular band Gk,r for the charging station k is
defined as

Gk,r = [(r − 1)1R, r1R], r = 1, 2, · · · ,NR. (2)
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Then, the USEVs within the annular bandGk,r can be judged
by

(r − 1)1R<T drivi,k ≤r1R, ∀i ∈ USk,r , i=1, 2, · · ·Nk,r .

(3)

Let USk,r denote the set of USEVs within the annular band
Gk,r . The number of USk,r is denoted as Nk,r =

∣∣USk,r ∣∣ and
the total number of USEVs is

∑NR
r=1 Nk,r = Nk . The lower

subscript of the specification of USEVs in USk,r is marked
as (i,k,r).
As indicated in Fig. 3, 1R is set to be equal to the control

interval1T . This setting is a key of the proposed VSR princi-
ple. It can bring three advantages: (i) USEVs among different
annular bands of the same charging station can be supplied the
reasonable charging time, which can ensure USEVs arrive at
the designated charging station on time; (ii) USEVs among
the same annular band of different charging stations can be
coordinated at the same time; (iii) The charging load for
USEVs at the annular band can be transformed and reflected
in the time-power coordinate, which is a link of traffic system
and power system.

2) THE PROPOSED CHARGING GUIDANCE STRATEGY
The VSR-based charging strategy is formulated into two
stages: the charging arrangement and the spatial-temporal
shift. The charging arrangement stage is to decide whether
an EV can be allowed to charge at a certain time and a
given charging station. The spatial-temporal shift stage is to
regulate the charging time or charging station.

a: STAGE ONE: CHARGING ARRANGEMENT
On a first-come-first-served basis, the COs will supply the
charging service for the USEVs that arrive earlier, which is
quantified as the charging priority Hi,k,r

Hi,k,r =
1

T drivi,k,r

. (4)

For a single charging station, the number of USEVs that can
be accommodated by the selected charging station should be
limited by the available charging power, which is expressed
as

Nk,r∑
i=1

Pchari,k,r · x
char
i,k,r ≤ Pk−

Mk∑
j=1

Pj,k , ∀i ∈ USk,r , ∀j ∈ OPk .

(5)

where Pchari,k,r represents the charging power required by
USEV i. xchari,k,r is a binary decision variable for USEV i.
Pk is the amount of electrical energy supplied by the charging
station k . j = 1, 2, . . . ,Mk represents the occupied charg-
ing piles. Pj,k represents the output power of the occupied
charging piles. OPk represents the set of the occupied charg-
ing piles. For K charging stations, the total charging load
of USEVs cannot form the undesired peak load, which is

expressed as

K∑
k=1

Nk,r∑
i=1

Pchari,k,r · x
char
i,k,r ≤ Pref −

K∑
k=1

Mk∑
j=1

Pj,k ,

∀i ∈ USk,r , ∀j ∈ OPk . (6)

where Pref reflects the power instruction from economic opti-
mization or operation constraints of distribution system, e.g.,
the active power of the optimal power flow, or the stochastic
renewable generation, e.g., photovoltaic generation.
Hence, the objective of the charging arrangement problem

is to maximize the cumulative charging priority while fulfill-
ing two power constraints, which is formulated as

max
K∑
k=1

Nk,r∑
i=1

H char
i,k,r · x

char
i,k,r

s.t. (5), (6), xchari,k,r = {1, 0},

∀i ∈ USk,r , ∀j ∈ OPk , k = 1, 2, · · ·K ,

∀r ∈ [1,NR]. (7)

According to the decision variable xchari,k,r , USEV i may have
two arrangements, which is expressed as{

xchari,k,r = 1, ∀i ∈ CAk,r ,
xchari,k,r = 0, ∀i ∈ TSk,r .

(8)

CAk,r represents the set of the USEVs that obtain the charging
allowance. TSk,r represents the set of the USEVs that do
not obtain the charging allowance and need to be spatially
or temporally shifted. For the USEVs in CAk,r , the charging
arrangement is estimated as

Twaiti,k,r = F tempi,k,r ·1T ,
T chari,k,r = t + (r + F tempi,k,r )1T ,
chariging location: CSk.

(9)

where Twaiti,k,r denotes the estimated time that USEV imay wait
for an idle charger after arriving at a fast charging station,
T chari,k,r denotes the estimated time that USEV i is connected
into an idle charger and starts charging, and F tempi,k,r represents
the number of temporal shift USEV i has experienced. As dis-
played in (9), the USEV i inCAk,r is allowed to start charging
at the time interval t+ (r+F tempi,k,r )1T and at the fast charging
station k .

b: STAGE TWO: SPATIAL-TEMPORAL SHIFT
In order to make the USEVs in TSk,r obtain a charging
allowance, they are temporally shifted or spatially shifted
according to the related constraints. The first constraint is that
the estimated waiting time exceeds the longest waiting time,
which is formulated as

(F tempi,k,r + 1) ·1T ≥ T limii,k,r . (10)

where T limii,k,r is the longest waiting time tolerated by USEV
user.
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The second constraint is that the current state of
charge (SOC) of the USEV can support a spatial shift [25],
which is formulated as

Qi,k,r (SOCcurr
i,k,r − SOC

min
i,k,r ) ≥ Di,k∗ · Vi,k,r . (11)

whereQi represents the battery capacity of USEV i. SOCcurr
i,k,r

denotes the current SOC of the battery in USEV i. SOCmin
i,k,r

denotes the minimum SOC to avoid the excessive discharge.
Di,k∗ denotes the route distance from USEV i to the charging
station k∗. Vi,k,r denotes the average consumption electricity
per kilometer. k∗ is the candidate charging station that USEV
i will be spatially shifted from the charging station k .
The third constraint is that the total time cost maintains a

minimum, which is expressed as (12). In other words, the sum
of the driving time and the estimated waiting time when
USEV i recharges at the charging station k is higher than
the driving time T drivi,k∗ that USEV i drives to the candidate
charging station k∗.

T drivi,k,r + (F tempi,k,r + 1) ·1T > T drivi,k∗ + α (12)

α denotes an incentive factor to change charging location for
EV users, which is a tradeoff between electric energy cost and
time cost. The candidate charging station k∗ can be selected
by the requirement that the driving time T drivi,k∗ is the shortest
to the charging stations whose available service capacity is
idle.

k∗ = min{T drivi,1 ,T
driv
i,2 , · · · ,T

driv
i,k∗ , · · · |SVk∗ = 1}. (13)

The available service capacity SVk is denoted as

SVk =



1, if 0 <
Nk

(M total
k −Mk )

< 1,

0, if 1 <
Nk

(M total
k −Mk )

< 1+ β,

−1, if 1+ β <
Nk

(M total
k −Mk )

.

(14)

SVk = 1, 0, or−1 respectively represents that the serviceable
capacity is idle, normal, or busy. β is the dynamic margin
of the serviceable capacity. M total

k is the total number of the
charging piles equipped by the charging station k .
Therefore, for the USEVs in TSk,r , the charging arrange-

ment is formulated as{
F spati,k,r=1,F

temp
i,k,r =0, if (10), (11), and (12) hold,

F spati,k,r=0,F
temp
i,k,r =F

temp
i,k,r +1, otherwise.

(15)

where F spati,k,r = 1 represents the flag that USEV i needs to
be spatially shifted. As displayed in (15), once the three con-
straints in (10)-(12) are satisfied simultaneously, the USEV
will be spatially shifted.

c: IMPLEMENTATION OF STRATEGY
As shown in Fig. 4, the scheduling process of the VSR-based
charging strategy is described as follows.

FIGURE 4. Scheduling process of the VSR-based charging strategy.

(i) At time slot t , each CO receives information from the
DO and USEVs. According to the scheduling sequence
(USk,1,USk,2, . . . ,USk,r ,USk,r+1, . . . ,USk,NR ), the
COs handle USEVs in order.

(ii) For USEVs among the same annular band of different
charging stations, the COs can jointly decide their
charging arrangements, including obtain a charg-
ing allowance (i.e., i ∈ CAk,r ), a temporal shift
(i.e., F tempi,k,r > 0, i ∈ TSk,r ), or a spatial shift
(i.e., F spati,k,r = 1, i ∈ TSk,r ).

(iii) For USEVs with charging allowances, they are merged
into OPk . For the temporal shift USEVs in TSk,r , they
are reformulated into USEVs inUSk,r+1 to further take
participate in the next charging arrangement.

(iv) Repeat the process (ii) and (iii) until all the USEVs are
handled.

(v) If there exists the spatial shift USEVs in the process
(i)-(iv), the spatial shift USEVs in TSk,r are reformu-
lated into USEVs in USk∗,r∗ (where r∗ can be deter-
mined by (3)) and the strategy returns to the process
(i)-(iv) to handle all the USEVs until there are no the
spatial shift USEVs.

III. DECENTRALIZED ALGORITHM
The formulated problem (7) is a 0-1 linear program
(0-1 LP). Based on the linear-programming relaxation,
a branch-and-bound algorithm is generally applied to solve
the 0-1 LP. However, it is a centralized method, which
requires the information of all USEVs is transmitted to a
central controller (e.g., the DO) to handle.With the increasing
penetration of EVs, the centralized algorithm is not suitable
because of heavy computation and communication. There-
fore, a decentralized algorithm is considered, i.e., the related
data of the USEVs only need to be transmitted to the corre-
sponding COs rather than the DO.

Inspired by the existing consensus-based algorithm [5]
and the alternating direction method of multipliers (ADMM-
based) algorithm [30], we propose a decentralized bucketsort-
based algorithm. The optimality analysis of the proposed
algorithm is given by Appendix.

The following are the detail steps of the proposed algo-
rithm. To express simply, we make the definitions P̃k = Pk−∑Mk

j=1 Pj,k , and P̃ref = Pref −
∑K

k=1
∑Mk

j=1 Pj,k .
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Input: Hi,k,r , Pchari,k,r , P̃k , and P̃ref .
Output: xchari,k,r .
Algorithm: Bucketsort-Based Algorithm
Step 1: In terms of the charging priority per unit power

Ui,k,r=(Hi,k,r
/
Pchari,k,r ), CO k sorts USEVs in USk,r in a

descending order,

Ik = {U1,k,r ,U2,k,r , · · · ,Ui,k,r , · · · ,U(Nk,r ),k,r },

Ui,k,r ≥ U(i+1),k,r (16)

Step 2: In order to satisfy the power constraint in (5), when∑Nk,r
i=1 P

char
i,k,r > P̃k , Ik is truncated as Ĩk .

Ĩk = {U1,k,r ,U2,k,r , · · · ,Ui,k,r , · · · ,U(Ñk,r ),k,r
},

Ñk,r∑
i=1

Pchari,k,r ≤ P̃k ≤
(Ñk,r )+1∑
i=1

Pchari,k,r . (17)

The decision variables of the truncated elements are deter-
mined as xchari,k,r = 0,∀i ∈ [(Ñk,r ) + 1,Nk,r ]. To guarantee
the power constraint in (6), the steps 3-5 decentrally make a
bucket sort, which is a recursive process and needs very little
data exchange between the COs and the DO.
Step 3: In the τ th recursion, CO k classifies USEVs in Ĩk

into M different buckets Bτk,m(m = 1, 2, . . . ,M ) according
to Ui,k,r . If (18) is established, USEV i is assigned into the
bucket m, i.e., i ∈ Bτk,m.

maxτU + m
maxτU − min

τ
U

M
<Ui,k,r

<maxτU + (m− 1)
maxτU − min

τ
U

M
∀i ∈ [1, Ñk,r ], ∀m ∈ [1,M ]

(18)

The total power of USEVs in each bucket is calculated as

sumτk,m =
∑

Pchari,k,r , i ∈ Bτk,m. (19)

Then, the COs transmit sumτk,m (m = 1, 2, . . . ,M) to the DO.
Step 4:TheDOmakes the judgment according to the power

constraint in (6).

(i) If M τ
th fulfills the requirement (20.a), M τ

th = 1.

sum(τ−1)
DO +

1∑
m=1

K∑
k=1

sumτk,m > P̃ref (20a)

(ii) If M τ
th fulfills the condition (20.b), M

τ
th ∈ (1,M ].

sum(o−1)
DO +

Mτ
th∑

m=1

K∑
k=1

sumτk,m > P̃ref > sum(τ−1)
DO

+

Mτ
th−1∑
m=1

K∑
k=1

sumτk,m

(20b)

(iii) M τ
th is returned to the COs. The allowable charging

power for all the charging station sumτDO is updated as

sumτDO = sum(τ−1)
DO +

Mτ
th−1∑
m=1

K∑
k=1

sumτk,m,

∀M τ
th ∈ (1,M ] (21)

Step 5: In terms of the received M τ
th, CO k can make the

following decisions for USEVs in Ĩk .
(i) If M τ

th = 1,

xi,k,r = 0, ∀i ∈ Bτk,m, ∀m ∈ [2,M ] (22a)

(ii) If M τ
th ∈ (1,M ),{
xi,k,r = 1, ∀i ∈ Bτk,m, ∀m ∈ [1,M τ

th − 1]
xi,k,r = 0, ∀i ∈ Bτk,m, ∀m ∈ [M τ

th + 1,M ]

(22b)

(iii) If M τ
th = M ,

xi,k,r = 1, ∀i ∈ Bτk,m, ∀m ∈ [1,M τ
th − 1] (22c)

(iv) Except for the bucket M τ
th, USEVs in other buckets

have acquired the decisions xchari,k,r . When the number of
recursion τ is not larger than the maximum recursion
τmax , we need to return to the Step 3, replace Ĩk by the
bucket M τ

th, and refresh max(τ+1)U and min(τ+1)U as
max(τ+1)U = maxτU − (M τ

th − 1)
maxτU − min

τ
U

M

min(τ+1)U = maxτU −M
τ
th
maxτU − min

τ
U

M
(23)

IV. CASE STUDIES
To verify the feasibility of the VSR-based charging strategy,
we design three scenarios: a charging arrangement with-
out the spatial-temporal shift, a charging arrangement with
the temporal shift, and a charging arrangement with the
spatial-temporal shift.

A. PARAMETER SETTINGS AND ASSUMPTIONS
We assume that there are 5 fast charging stations. For each fast
charging station, the number of annular bands NR, the radius
interval1R, dynamic margin δ, the total number of charging
piles M total

k are set as 8, 5 min, 0.5 and 120, respectively.
The power instruction from the distribution system Pref is
uniformly distributed between 5000 kW and 12000 kW. The
supplied power of charging stationPk is uniformly distributed
between 1300 kW and 2500 kW. The output power of charg-
ing piles is 20 kW. The number of USEVs uniformly varies
over 0 to 120. For USEVs, the driving time T drivi,k,r and the
current SOC SOCcurr

i,k,r are picked uniformly at random from
[5(r − 1), 5r] (r = 1, 2, . . . , 8) and [0.2, 0.5], respec-
tively. The charging power Pchari,k,r , the battery capacity Qi,
the average energy consumptionVi,k,r and theminimumSOC
SOCmin

i,k,r are 20 kW, 60 kWh, 0.18 kWh/km and 0.15 [25].
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B. SIMULATION SCENARIOS
1) SCENARIO I: A CHARGING ARRANGEMENT WITHOUT THE
SPATIAL-TEMPORAL SHIFT
The aggregate load curve of 5 fast charging stations and the
corresponding situation of the fast charging station 1 (CS1)
are displayed in Fig. 5. It can be observed that there are two
cases: the total required power is lower than the total available

power, i.e.,
∑K

k=1
∑Nk,r

i=1 P
char
i,k,r ≤ Pref −

∑K
k=1

∑Mk
i=1 Pj,k , and

the total required power is higher than the total available

power, i.e.,
∑K

k=1
∑Nk,r

i=1 P
char
i,k,r > Pref −

∑K
k=1

∑Mk
i=1 Pj,k .

FIGURE 5. Aggregate charging load and the number of EVs in Scenario I.

As the case 1 occurs, the total allowed power, i.e.,∑K
k=1

∑Nk,r
i=1 P

char
i,k,rx

char
i,k,r , x

char
i,k,r = 1, is equal to the total

required power, e.g., time interval 1, 2, 3, 5, 9, and 10 in
Fig. 5(a). It means that the charging demand of all USEVs at
the corresponding time interval can be satisfied, e.g., at time
interval 1 of Fig. 5(b), all the 90 USEVs are allowed to charge
at CS1. When the case 2 arises, the total allowed power
closely tracks the total available power to acquire available
power as much as possible, e.g., time interval 4, 6, 7, 8,
11, and 12 in Fig. 5(a). Overall, for the two cases, the total
allowed power never exceeds the total available power,
i.e., the undesired peak load can be effectively avoided.
Therefore, the charging arrangement part of the VSR-based
charging strategy can determine the charging permission of
USEVs as well as restrict the aggregate charging overload.
However, some problems cannot be handled by the charging
arrangement part. In the case 1, the available power is not
fully utilized, e.g., at the time interval 5, 1503 kW active
power may be curtailed in Fig. 5(a). In the case 2, a part of

USEVs cannot obtain the charging permissions, e.g., at time
interval 11 of Fig. 5(b), 33 USEVs for CS1 do not obtain the
charging permission.

2) SCENARIO II: A CHARGING ARRANGEMENT WITH THE
TEMPORAL SHIFT
As illustrated in Fig. 3, the charging load for USEVs at the
corresponding annular band can be transformed and reflected
in the time-power coordinate. Thus, the annular band r in
Scenario II and Scenario III is equivalent to the time inter-
val r1T . Based on Scenario I, the temporal shift of the
charging load for CS1 is simulated by two cases. In the
case 1, we simulate the service capacity of CS1 is normal, i.e.,
SV 1 = 1. As shown in Fig. 6(a), at time interval 5, 780 kW of
2320 kW required power, i.e.,

∑Nk,r
i=1 P

char
i,k,r , k = 1, is limited

by 1540 kW available power, i.e., Pk −
∑Mk

j=1 Pj,k , k = 1.

FIGURE 6. Charging load and the number of EVs for the case 1 of
Scenario II.

However, by temporal shift, 400 kW of 780 kW
shifted power, i.e.,

∑Nk,r
i=1 P

char
i,k,r − (Pk −

∑Mk
j=1 Pj,k ), k = 1,

is transmitted from time interval 5 to 6, and 380 kW
of 780 kW shifted power is shifted from time inter-
val 5 to 7. It is observed by that the allowable power
(i.e.,

∑Nk,r
i=1 P

char
i,k,rx

char
i,k,r , x

char
i,k,r = 1, k = 1) adds 400 kW

and 380 kW on the required power at time interval 6 and
7, respectively. It is indicated that temporal shift of charging
load can improve the utilization of the available power.

Simultaneously, as displayed in Fig. 6(b), for annular
band 5, 77 allowed USEVs do not need to wait to charge at
time interval 5, 20 of 39 temporal shift EVs (TSEVs) need
to wait for 5 min to charge at time interval 6, and the other
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19 of 39 TSEVs need to wait for 10 min to charge at time
interval 7. By temporal shift, all the USEVs can obtain the
charging allowances.

In the case 2, we simulate the service capacity of CS1 is
busy, i.e., SV 1 = −1. As illustrated in Fig. 7(a) and (b),
at time interval 1, because 360 kW available power is far
lower than 2200 kW required power, 28 TSEVs are delayed
5 min to charge, 18 TSEVs are delayed 10 min, 17 TSEVs
are delayed 15 min, 17 TSEVs are delayed 20 min, and the
other 12 TSEVs are delayed 25 min. However, the overlong
waiting time cannot be accepted by EV users.

FIGURE 7. Charging load and the number of EVs for the case 2 of
Scenario II.

3) SCENARIO III: A CHARGING ARRANGEMENT WITH THE
SPATIAL-TEMPORAL SHIFT
We assume that the longest waiting time tolerated by USEV
user T limii,k,r and the incentive factor α are 20 min and 5 min.
The service capacity of 5 charging stations are respectively
SV 1 = −1, SV 2 = 1, SV 3 = 1, SV 4 = 1, SV 5 = 0.
As illustrated in Fig. 8(a), the estimated waiting time of 7
TSEVs in CS1 has exceeded out of 20 min at time interval 5.
As displayed in Table I, for these 7 TSEVs, we assume
the driving time T drivi,5 (i = 1, 2, 3 . . . 7) and the route dis-
tance Di,5 are selected randomly from [10 min, 15 min] and
[5 km, 18 km], respectively. According to the constraints
in (10)-(12), except ‘‘EV3’’, the other 6 TSEVs can be spa-
tially shifted to CS5. Because the current SOC of ‘‘EV3’’
cannot support a spatial shift and has to make a temporal shift
in CS1 continuously. As displayed in Fig. 8(b), at annular

FIGURE 8. The number of EVs in Scenario III.

band 3, there are 27 allowed EVs, which is 6 higher than
21 USEVs. The extra 6 allowed EVs come from CS1.

Besides, for these 7 TSEVs in CS1, the time cost by
only temporal shift (i.e., ‘‘Time cost (TS)’’) and the time
cost by spatial-temporal shift (i.e., ‘‘Time cost (STS)’’) are
summarized in Table 1. It can be seen, for EV1, EV2, EV4,
EV5, EV6, and EV7 users, their time cost can be saved at
least 11 min by spatial shift.

TABLE 1. Time cost of the 7 TSEVs in CS1.

Tomake a general comparison of spatial-temporal shift and
temporal shift, we assume that the longest waiting time T limii,k,r ,
the incentive factor α, and (T drivi,k,r, − T

driv
i,k∗ ) are 5 min, 0 min

and 5 min, and the current SOC of USEVs can support a
spatial shift. The average waiting time of the allowed EVs by
temporal shift and spatial-temporal shift is summarized into
Table 2. As illustrated in Table 2, the average waiting time
of the allowed EVs by temporal shift is constantly Table 1
accumulating and far beyond the limit of the longest waiting
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time T limii,k,r , while the average waiting time of the allowed
EVs by spatial-temporal shift keeps under the limit of the
longest waiting time T limii,k,r . Thus, the overlong waiting time
can be avoided for EV users by spatial shift. In Table 2, (x)t
represents the number of EVs at the time t.

TABLE 2. Comparison of Temporal shift and Spatial-Temporal Shift.

C. ALGORITHM ANALYSIS
Unlike the ADMM-based algorithm, both the bucketsort-
based and the consensus-based algorithms can effectively
guarantee the power constraint in (6). Besides, the bucketsort-
based algorithm needs much less the data size of communica-
tion than the consensus-based algorithm, which is displayed
in Table 3. Taking a 20000 EVs and 10 COs case as an
example, when other conditions are the same, the consensus-
based algorithm needs extra τ con = 70 iterations with the
neighbor COs to reach a consensus.

TABLE 3. Data size of algorithms.

According to the optimality analysis of Appendix, the con-
vergence degree of the bucketsort-based algorithm is also
related to recursion times τ and the number of buckets M .
ε denotes the accuracy of charging priority per unit power.
In our simulation, Ui,k,r is normalized, max1U and min1U
are initialized as 100 and 0. If ε = 0.1, considering a
tradeoff between data size of communication and the con-
vergence degree, we set M = 4. As shown in Fig. 9, con-
sidering the case 2 in Scenario I, when the ratio of total
required power and total available power is 40%, 50%, 60%,
70%, 80%, and 90%, the optimality rate (1 − g) of the
bucketsort-based algorithm becomes approximate to 1 as
recursion times τ increases and can go beyond 0.99 at the
5th recursion.

FIGURE 9. Relationship of optimality rate and recursion times.

V. CONCLUSION
In this paper, the VSR-based charging guidance strategy is
proposed to benefit both the power system and the EV users.
With the introduction of VSR, the proposed strategy can
achieve the spatial-temporal shift of EVs rather than only
make the temporal coordination for a single charging station.
Additionally, the decentralized bucketsort-based algorithm
is presented to solve the formulated problem in the charg-
ing arrangement stage. From the simulations, it has been
demonstrated that the proposed charging strategy and the
decentralized algorithm have advantages in terms of saving
time cost, alleviating local overload and reducing data size of
communication.

APPENDIX
Proposition: When there is the only one USEV in

the bucket M τmax

th , the optimality of the bucketsort-based
algorithm is equivalent to that of the centralized algorithm.
Otherwise, there exists an optimality gap.

Proof: Let (·)Buckand (·)Cent mark the variables of
the bucketsort-based algorithm and the centralized algo-
rithm, respectively. According to Step 3-5, sumτDO increases

by
∑Mτ

th−1
m=1

∑K
k=1 sum

τ
k,m recursively and approaches P̃ref

asymptotically. Hence, the power constraint in (6) is rewritten
as

K∑
k=1

Ñkr∑
i=1

Pchari,k,r ·x
char
i,k,r = partBuckcons1 + part

Buck
cons2 < P̃ref , (24a)

partBuckcons1 =

M1
th−1∑
m=1

K∑
k=1,i∈B1k,m

Pchari,k,r

+

M2
th−1∑
m=1

K∑
k=1,i∈B2k,m

Pchari,k,r

· · · +

Mτ
th−1∑
m=1

K∑
k=1,i∈Bτk,m

Pchari,k,r , (24b)

partBuckcons2 =

Mτ
th∑

m=1

K∑
k=1,i∈Bτk,m

Pchari,k,r ·x
char
i,k,r . (24c)
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Based on partBuckcons1 and partBuckcons2, the objective value of
bucketsort-based algorithm is deduced as

maxBuck =
K∑
k=1

Ñkr∑
i=1

H char
i,k,r ·x

char
i,k,r = partBuckobj1 + part

Buck
obj2 ,

(25a)

partBuckobj1 =

M1
th−1∑
m=1

K∑
k=1,i∈B1k,m

H char
i,k,r +

M2
th−1∑
m=1

K∑
k=1,i∈B2k,m

H char
i,k,r

· · · +

Mτ
th−1∑
m=1

K∑
k=1,i∈Bτk,m

H char
i,k,r , (25b)

partBuckobj2 =

Mτ
th∑

m=1

K∑
k=1,i∈Bτk,m

H char
i,k,r ·x

char
i,k,r . (25c)

Assume that bucket sort is also applied in centralized
algorithm. Unlike bucketsort-based algorithm, bucketsort of
centralized algorithm needs to be implemented by a central-
ized method. Hence, the power constraint in (6) is rewritten
as

K∑
k=1

Ñkr∑
i=1

Pchari,k,r ·x
char
i,k,r = partCentcons1 + part

Cent
cons2 < P̃ref , (26a)

partCentcons1 =

M1
th−1∑
m=1

∑
i∈B1m

Pchari,k,r +

M2
th−1∑
m=1

∑
i∈B2m

Pchari,k,r

· · · +

Mτ
th−1∑
m=1

∑
i∈Bτm

Pchari,k,r , (26b)

partCentcons2 =

Mτ
th∑

m=1

∑
i∈Bτm

Pchari,k,r · x
char
i,k,r . (26c)

According to partCentcons1 and partCentcons2, the obtained objective
value of the centralized algorithm is expressed as

maxCent =
K∑
k=1

Ñkr∑
i=1

H char
i,k,r ·x

char
i,k,r = partCentobj1 + part

Cent
obj2 ,

(27a)

partCentobj1 =

M1
th−1∑
m=1

∑
i∈B1m

H char
i,k,r +

M2
th−1∑
m=1

∑
i∈B2m

H char
i,k,r

· · · +

Mτ
th−1∑
m=1

∑
i∈Bτm

H char
i,k,r , (27b)

partCentobj2 =

Mτ
th∑

m=1

∑
i∈Bτm

H char
i,k,r · x

char
i,k,r . (27c)

According to (18), if MBuck
= MCent , (maxτU )

Buck
=

(maxτU )
Cent , and (minτU )

Buck
=(minτU )

Cent , we can obtain

Bτm = Bτ1,m ∪ B
τ
2,m · · · ∪ B

τ
K ,m. (28)

Hence, partBuckcons1 = partCentcons1, part
Buck
obj1 = partCentobj1 .

As the number of recursion τ → τmax , the length of bucket(
maxτU − min

τ
U

) /
M τ
→ ε, the number of USEVs in bucket

N τk,m =
∣∣∣Bτk,m∣∣∣ → 1. If N τMτ

th
=

∣∣∣BτMτ
th

∣∣∣ = ∑
N τk,Mτ

th
= 1,

it reflects that one more USEV cannot be allowed under
power constraint in (6), i.e., P̃ref − sumτ

max

DO < Pchari,k,r . Hence,
partBuckcons2 = partCentcons2. Otherwise, there exists a small opti-
mality gap g, which is defined as

g = (partCentobj2 − part
Buck
obj2 )/maxCent . (29)
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