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ABSTRACT A traffic monitoring system is an integral part of Intelligent Transportation Systems (ITS).
It is one of the critical transportation infrastructures that transportation agencies invest a huge amount of
money to collect and analyze the traffic data to better utilize the roadway systems, improve the safety
of transportation, and establish future transportation plans. With recent advances in MEMS, machine
learning, and wireless communication technologies, numerous innovative traffic monitoring systems have
been developed. In this article, we present a review of state-of-the-art traffic monitoring systems focusing on
the major functionality–vehicle classification. We organize various vehicle classification systems, examine
research issues and technical challenges, and discuss hardware/software design, deployment experience, and
system performance of vehicle classification systems. Finally, we discuss a number of critical open problems
and future research directions in an aim to provide valuable resources to academia, industry, and government
agencies for selecting appropriate technologies for their traffic monitoring applications.

INDEX TERMS Intelligent transportation systems, traffic monitoring systems, vehicle classification.

I. INTRODUCTION
As the number of vehicles has increased significantly,
the capacity of existing transportation networks is almost
at its maximum, causing severe traffic congestion in many
countries [1]. Constructing additional highway infrastructure,
however, is not a feasible option because of the high cost and
limited space. For example, constructing a high occupancy
vehicle (HOV) lane in the city of Los Angeles costs up to
$750,000 per lane and per mile [2]. In particular, the expenses
increase prohibitively to provide safety to construction work-
ers and build extra facilities to maintain traffic flow during
construction.

A traffic monitoring system is an effective alternative to
mitigate traffic congestion. It is an integral component of
Intelligent Transportation Systems (ITS) that is used to col-
lect traffic data such as the number of vehicles, types of
vehicles, and vehicle speed. Based on the collected data,
it performs traffic analysis to better utilize the roadway sys-
tems, predict future transportation needs, and improve the
safety of transportation [3]. Transportation agencies in many
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countries spend huge amounts of money to develop, deploy,
and maintain traffic monitoring systems [4].

One of the main functionalities of a traffic monitoring
system is vehicle classification. Especially, due to signifi-
cant technical challenges, various research issues have been
investigated regarding vehicle classification leading to devel-
opment of numerous vehicle classification systems. Classi-
fying vehicles into different types accurately is of crucial
importance for effective traffic operation and transportation
planning. For example, the information about the number
of large trucks on a highway section is used to estimate
the capacity of the highway section and plan for pavement
maintenance work. Identifying the vehicle types especially
the number of multi-unit vehicles is of a great interest to
the safety community. Even the geometric roadway design
is dictated by the vehicle types that frequently utilize the
roadway.

Numerous vehicle classification systems have been devel-
oped. Especially, recent advances in sensing, machine
learning, and wireless communication technologies gave
rise to numerous innovative vehicle classification systems.
Although these new classification systems enable vehicle
classification with higher accuracy, they have significantly
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different characteristics and requirements such as types
of sensors used, hardware settings, configuration process,
parameter settings, operating environment, and even the cost,
making it extremely challenging for transportation agencies,
engineers, and scientists to select the most appropriate solu-
tion for their vehicle classification applications. The needs
and demands for a comprehensive review of these latest
vehicle classification techniques are ever higher.

In this article, we present a survey on state-of-the-art
vehicle classification technologies to address the significant
demand and provide guidelines for selecting an appropri-
ate technology for vehicle classification. We systematically
organize ideas, research issues, and technical solutions that
are developed to achieve high vehicle classification accuracy.
Specifically, we classify largely the vehicle classification
systems into three categories, i.e., in-road-based, over-road-
based, and side-road-based approaches. The vehicle classi-
fication schemes in each category is further classified into
subcategories based on types of sensors used, methodologies
for utilizing the sensors, andmechanisms for classifying vehi-
cles. We provide in-depth description, analysis, and compari-
son of numerous innovative vehicle classification schemes in
each subcategory.We also present a number of open problems
and several future research directions.

There are a few surveys on traffic monitoring systems
with a focus on vehicle classification. The federal high-
way administration (FHWA) provides general guidelines for
selecting traffic monitoring systems. However, it is limited
to industry solutions without discussing on-going research
issues and emerging trafficmonitoring systems [2], [5]. Some
papers discuss only traditional traffic monitoring systems
such as the loop detectors [6]. Interestingly, we find that
most survey works are focused on vision-based vehicle clas-
sification techniques [7]–[12] overlooking numerous other
emerging vehicle classification solutions. Although there are
some works that provide a review of vehicle classification
systems based on different types of sensors, these papers
discuss only a particular type of vehicle classification system
such as UAVs [13], [14]. A comprehensive review on traf-
fic monitoring systems have been performed recently [15].
However, the paper is concentrated on vehicle detection tech-
nologies rather than vehicle classification schemes, which is
technically more challenging and has a large body of litera-
ture based on emerging technologies. In contrast to existing
works, this article provides a comprehensive survey on vir-
tually all vehicle classification technologies developed in the
past decade with in-depth analysis of research issues, tech-
nical challenges, and novel approaches. The contributions of
this article are summarized as follows.

• To the best of our knowledge, this article presents
the first comprehensive review of latest traffic mon-
itoring systems specifically concentrating on vehicle
classification.

• This article is specifically focused on discussing var-
ious research issues on vehicle classification based
on emerging technologies such as machine learning,

low-power sensing, networking, and novel image pro-
cessing algorithms.

• This article introduces new breeds of traffic monitoring
systems that are significantly different from traditional
ones such as RF and Wi-Fi-based traffic monitoring
systems.

• This article presents open research problems and a num-
ber of future research directions.

This article is organized as follows. In Section II, the taxon-
omy of vehicle classification schemes is introduced, followed
by detailed descriptions of vehicle classification systems in
each category, i.e., in-roadway based systems (Section III),
over-roadway based systems (Section IV), and side-roadway
based systems (section V). We then present open problems
and future research directions in Section VI and conclude in
Section VII.

II. TAXONOMY OF VEHICLE CLASSIFICATION
TECHNOLOGIES
This section presents the taxonomy of vehicle classification
systems. The details of each vehicle classification system
are described in subsequent sections. Vehicle classification
systems are largely categorized into three classes depending
on where the system is deployed: in-roadway-based, over-
roadway-based, and side-roadway-based systems (Fig. 1).
We then further classify the vehicle classification systems
based on sensor types and how sensor data are analyzed and
utilized for vehicle classification.

The in-roadway-based vehicle classification systems
install sensors on or under the pavement of a roadway.
Different types of sensors are used for the in-roadway-based
vehicle classification systems such as piezoelectric sen-
sors [16], magnetometers [17], [18], vibration sensors [19],
loop detectors [20]. Various kinds of information is extracted
from the sensor data including the vehicle length, axle
count, and unique features of the signal/waveform. The in-
roadway-based systems boast the high vehicle classification
accuracy because the sensors maintain close contact with
passing vehicles, effectively capturing the body and motion
signature of the vehicles. A major downside is, however,
the high cost for installation and maintenance because the
pavement of a roadway needs to be sawcut to install the
sensors under the roadway. The cost increases significantly
due to traffic disruption and lane closure to provide safety to
road workers.

The side-roadway-based systems addresses the cost issue
of the in-roadway-based vehicle classification schemes
since the sensors are installed on a roadside, obviating
the needs for lane closure and construction. Similar to
the in-roadway-based systems, different types of sensors
are adopted for vehicle classification. Some of the most
widely used sensors include magnetometers [21], [22],
accelerometers [23], and acoustic sensors [24]. Recently,
advanced sensors such as Laser Infrared Detection and Rang-
ing (LIDAR) [25], [4], infrared sensors [26], and Wi-Fi
transceivers [27] have been employed. Despite the benefits of
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FIGURE 1. The taxonomy of vehicle classification systems.

easier installation and reduced cost, the side-roadway-based
systems require extra efforts for adjusting precisely the direc-
tions and placement of the sensors [26]. A more critical
problem is that most systems fail to classify overlapped vehi-
cles accurately. Additionally, an algorithm for calibrating the
sensor data is needed to mitigate the impact of the noise and
increase the classification accuracy.

The over-roadway-based systems utilize sensors installed
over the roadway thus being capable of covering multiple
lanes simultaneously. For example, unmanned aerial vehi-
cles (UAVs) and satellites are used in these systems [28].
The most prevalent technology under this category is the
camera-based systems [29], [30]. While the camera-based
systems have high classification accuracy, the performance is
affected by weather and lighting conditions. Another impor-
tant problem is the driver privacy concerns as there are many
people who do not feel comfortable to be exposed to cameras.
Some over-roadway-based systems address the privacy con-
cerns by adopting different types of sensors such as infrared
sensors [26] and laser scanner [31].

Having presented the taxonomy of the vehicle classifi-
cation systems which provides a big picture of our vehicle
classification schemes, in the following sections, we discuss
the details on research issues, technical challenges, hard-
ware/software design, deployment experience, and compar-
ison of various vehicle classification systems.

III. IN-ROADWAY-BASED VEHICLE CLASSIFICATION
In this section, we discuss various in-road-way-based vehi-
cle classification systems. In reviewing each vehicle clas-
sification system, we present the basic theory, specific
research problems addressed by the system, and main ideas
for vehicle classification. We also discuss vehicle types
used for classification and the average vehicle classification
accuracy.

Starting with the loop detectors which are the most
widely used in-roadway-based vehicle classification systems,
we review other in-road-way-based vehicle classification sys-
tems built with different types of sensors. The characteristics

of the in-roadway-based vehicle classification systems cov-
ered in this section are summarized in Table 1.

A. LOOP DETECTORS
An inductive loop detector is one of the most commonly
used traffic monitoring systems for vehicle detection and
classification [49]. It is a coil of wire that is embedded under
the road surface (Fig. 2). It captures the change of inductance
and generates a time-variable signal when a vehicle passes
over. The characteristics of the signal such as the amplitude,
phase, and frequency spectrum are varied depending on the
classes of vehicles. These unique characteristics of the signal
are known as the magnetic profile [50], which is used to
perform vehicle classification.

FIGURE 2. Types of loop detectors: (a) saw-cut loop [20]; (b) preformed
loop [48].

There are largely two types of loop detectors depending
on the installation method: saw-cut and preformed loops.
The saw-cut method requires to saw-cut the pavement, lay
the loop wire, and protect the wire by filling the pavement
(Fig. 2(a)). The preformed loop detectors do not embed the
loopwire under the pavement; instead it encases the loopwire
in a PVC pipe and attach the pipe on the pavement (Fig. 2(b)).
The loop detectors can also be categorized into the single loop
detectors and dual loop detectors depending on the number of
loop detectors used for vehicle classification. The dual loop
detectors consist of a pair of loop detectors in a lane. A key
strength of the dual loop detectors compared with the single
loop detectors is that the dual loop detectors can measure the
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TABLE 1. In-roadway-based vehicle classification systems.

vehicle speed and vehicle length based on the predetermined
longitudinal distance between the two loop detectors.

Numerous research works have been conducted to enhance
the performance of loop detectors for vehicle classification.
In particular, recent development of machine learning tech-
nologies sparked the emergence of advanced loop detectors
that apply machine learning techniques to analyze the mag-
netic signature of passing cars. Meta and Cinsdikici adopt
the backpropagation neural network (BPNN) for vehicle

classification [20]. Specifically, based on the observation that
the low classification accuracy of existing loop detectors
is attributed to simple data sampling of noisy raw signals,
an algorithm based on Discrete Fourier transform (DFT) is
designed to clear the noise. The principal Component Anal-
ysis (PCA) is then applied to reduce the dimensionality of
the noiseless data. The PCA features are expanded to empha-
size the undercarriage height variation of a passing vehi-
cle. Finally, the output of PCA is fed into the three-layered
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BPNN to classify the vehicles into five classes: car/jeep,
minibus/van, pickup/truck, bus, and motorcycle. The average
classification accuracy of 94.2% was achieved.

A significant technical challenge for classifying vehicles
using loop detectors is that vehicles with similar axle config-
urations are difficult to classify accurately. Tok and Ritchie
address this challenge by developing a vehicle classifica-
tion system that effectively combines the axle-based vehicle
classification method with the vehicle body signature-based
classification method [39]. More specifically, vehicles are
first classified into three high-level types based on the number
of axle clusters. And then, the vehicle body signature (i.e., the
magnetic profile of the passing vehicle) is used to further clas-
sify the vehicles based on the multi-layer feedforward neural
network (MLF) [51]. The proposed system achieved 80.8%
vehicle classification accuracy for a total of 1,029 vehi-
cles with 27 different axle configurations, 9 drive unit body
classes, and 10 trailer unit body classes. It can be noted that
the seemingly low classification accuracy of 80.8% is actually
high considering the large number of vehicles with similar
axle configurations as well as the large number of vehicle
types used for performance evaluation.

Jeng et al. develop a similar vehicle classification system
based on the analysis of the magnetic signature of a passing
car [40]. Their contribution is that the Haar wavelet transfor-
mation technique [52] is adopted to compress the waveform
data, thereby removing the salient characteristics of vehi-
cle signatures and to maintain more distinctive features in
the compressed data. After compressing the waveform data,
the k-nearest neighbor (kNN) method is used as a classifier
to classify vehicles into 13 FHWA vehicle types [41]. A data
set collected from the I-405 of the city of Irvine, CA, as well
as the data set obtained from the city of San Onofre, CA were
used for evaluating the performance of the classification sys-
tem. The average classification accuracy was 93.8%.

The vehicle classification systems discussed thus far are
based on a single loop detector. However, a limitation of the
single loop detector is that it does not allow to measure the
vehicle speed which can be used to derive the vehicle body
length, as apposed to the dual loop detector. Specifically,
the dual loop detector consists of a pair of loop detectors in a
lane [53] and measures the traversal time of a passing vehicle,
which is used to calculate the vehicle speed by dividing the
traversal time by the known distance between the pair of the
two loop detectors. The body length of a passing vehicle can
then be calculated by multiplying the speed with the dwell
time over a loop detector.

Taking the advantage of dual loop detectors, numerous
vehicle classification systems are developed. A notable aspect
of these systems is that the vehicle length is used as a
key feature for vehicle classification [53]. In particular,
Wu et al. note that small changes in acceleration may influ-
ence the precision of estimating the vehicle length, conse-
quently degrading the classification accuracy significantly
especially under congested conditions [44], [45]. To address
this challenge, they develop a new method that takes into

account the possibility of the non-zero acceleration of a pass-
ing vehicle. The new approach was evaluated using the Next
Generation Simulation (NGSIM) datasets [54]. Specifically,
vehicles were classified based on their lengths, i.e., with
boundaries at 28 ft and 46 ft. The average classification
accuracy was over 98%. While dual loop detectors may yield
better results by using the vehicle length as an additional
feature for vehicle classification, classifying vehicles with
similar body lengths (e.g., pick-up trucks and minivans) still
remains as a challenge.

Despite the better classification results that dual loop
detectors provide, amajor disadvantage of these classification
systems is the high cost compared to single loop detectors.
Fortunately, researchers recently develop advanced schemes
that perform vehicle classification accurately even with a
single loop detector. For example, Lamas-Seco et al. identify
that certain spectral features extracted from the magnetic
signal collected from a signal loop detector have no depen-
dency with the vehicle speed [42]. Specifically, they argue
that based on these features, an effective classification system
can be developedwithout relying on dual loop detectors. They
classified vehicles into three types: car, truck, and van. The
average classification accuracy was about 96%.

Liu and Sun also address the limitation of single loop
detectors, successfully measuring the vehicle length with
a single loop detector and using it as a key feature for
vehicle classification [43]. Newell’s simplified car follow-
ing model [55] is adopted to understand the relationships
among vehicles in a platoon and estimate the vehicle occu-
pation time. The classification is performed by comparing
the anticipated vehicle occupation time with the measured
vehicle occupation time, where the discrepancy indicates a
long vehicle. Field data collected from a highway with a total
of 2,547 samples were used for the experiments. The average
classification accuracy was 99.4%.

FIGURE 3. Magnetic field changes by a vehicle [17].

B. MAGNETIC SENSORS
A large amount of ferrous metals in a vehicle frame induces
disturbance to the Earth’s magnetic field [56]. Fig. 3 illus-
trates the distortion of the magnetic field caused by a passing
vehicle. Magnetic sensors are used to classify vehicles by
capturing the distinctive changes in the magnetic field which
depend on different vehicle body types. Compared to loop

73344 VOLUME 8, 2020



M. Won: Intelligent Traffic Monitoring Systems for Vehicle Classification: Survey

detectors, magnetic sensor-based vehicle classification sys-
tems have advantages in terms of the size, weight, cost, and
energy efficiency. In this section, we review recent research
works for developing vehicle classification systems based on
magnetic sensors.

We categorizemagnetic sensor-based vehicle classification
systems into three types: (1) a system consisting of multiple
magnetic sensors networked through a wireless sensor net-
work – a primary classification for such systems is the vehicle
length; (2) a system based on a single magnetic sensor – these
systems rely on themagnetic waveform analysis mostly using
machine learning techniques; (3) a hybrid system that exploits
both the magnetic waveform analysis and the vehicle length
information obtained through a wireless sensor network of
magnetic sensors.

Bottero et al. create a wireless sensor network (WSN) con-
sisting of two magnetic sensors to perform vehicle classifi-
cation [17]. Specifically, two pavement-mounted magnetic
sensors are aligned to the lane axis to measure the vehicle
speed. Given the distance between the two sensors, the vehi-
cle length can be calculated. Vehicle classification is then
performed using the vehicle length as a key feature, which
is similar to the vehicle classification method of dual loop
detectors [53]. In this classification system, vehicles are clas-
sified into three different types, namely cars, vans, and trucks
and the average classification accuracy of 88% was achieved.

Balid et al. propose a similar approach as Bottero et al. [17]
that uses the vehicle length as a key feature for performing
vehicle classification [34]. In particular, the main feature is
called the vehicle magnetic length which is defined as the
product of the vehicle speed and the period of time that the
vehicle was on a magnetic sensor. Specifically, the vehicle
speed is measured by calculating the travel time between
two longitudinally located magnetic sensors with known
distance between them. Using the vehicle magnetic length
as the main feature, different machine learning classifiers
are adopted for vehicle classification such as Decision Tree
(DT), support vector machine (SVM), k-Nearest Neighbor
(kNN), and Naive Bayes Classifier (NBC). The classification
accuracy was over 97% for classifying vehicles into pas-
senger vehicles, single-unit trucks, combination trucks, and
multi-trailer trucks.

Li and Lv propose another wireless sensor network con-
sisting of magnetic sensors for vehicle classification [33].
Similar to [17], two magnetic sensors are deployed on the
same lane that are 80m apart from each other. Unlike other
works, the proposed vehicle classification system utilizes
magnetic sensors not only for deriving the vehicle length
but also for obtaining magnetic waveforms to perform data
analysis to enhance the classification accuracy. Specifically,
the main contributions of their work compared with other
solutions based on a wireless sensor network of magnetic
sensors are two fold. First, a novel data segmentation tech-
nique is developed to separate the magnetic waveform effec-
tively from the overall waveform of magnetic sensor data.
Second, a sensor fusion algorithm is developed to correlate

the feature waveforms from the two magnetic sensors to
improve the classification accuracy. Consequently, the aver-
age classification accuracy was 96.4% in classifying vehicles
into four types: passenger vehicles, SUVs, busses, and vans.

Different types of sensors have been integrated with mag-
netic sensors to enhance the effectiveness of vehicle classifi-
cation. For example, Ma et al. propose a WSN consisting of
magnetic sensors and accelerometers [23]. Specifically, mag-
netic waveforms collected from deployed magnetic sensors
are used to estimate the vehicle speed, and the accelerometer
is used to count the number of axles and estimate the axle
spacing between each pair of axles by using the vehicle speed
information. Vehicles are classified according to the FHWA
13-category [57]. The proposed system classifies vehicles
with the accuracy of 99%. While the resulting classification
accuracy seems very high, it is challenging to sustain such
high accuracy for vehicles with the same axle count and
similar axle spacing.

Recent research shows that it is possible to achieve high
classification accuracy using only a single magnetic sensor
with the help of advanced machine learning techniques. The
idea is to leverage machine learning techniques to auto-
matically extract useful features from magnetic waveforms
rather than relying on simple features such as the peaks
of waveforms and to build a vehicle classification model
effectively for vehicle classification [18]. Various machine
learning techniques are used for vehicle classification such
as the k-nearest neighbor (kNN) [58], support vector machine
(SVM) [59], back-propagation neural network (BPNN) [60],
and convolutional neural network (CNN) [61].

Li et al. identifies eight speed-independent features
(i.e., number of peaks, the maximum peak time ratio, the min-
imum trough time ratio, the mean value, the standard devi-
ation, the maximum peak amplitude, the minimum trough
amplitude, and the maximum peak/trough amplitude ratio)
from a magnetic waveform [32]. These features are then
used to build a vehicle classification model based on the
optimal Minimum Number of Split-sample (MNS)-based
Classification and Regression Tree (CART) algorithm [62].
They achieve the classification accuracy of 88.9%, and 94.4%
for cars and busses, respectively. Especially, Xu et al. focus on
the problem of the unbalanced magnetic sensor dataset [18].
They note that the number of vehicles in each vehicle class is
significantly different from each other in many open datasets
which often leads to degraded classification performance.
The proposed work thus aims to minimize the imbalance
effect and applies the k-nearest neighbor (kNN) for vehicle
classification.

Dong et al. also show that a single magnetic sensor can
be a powerful tool for vehicle classification [35]. Three
types of features are extracted from the Z-axis of a magnetic
signal including statistical, energy, and short-term features.
In particular, the energy features are used because it is highly
correlated with the vehicle size. These features are provided
as input to a classifier, XGBoost [63] to perform vehicle
classification into four categories: class 1 (sedans and SUVs),
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class 2 (vans and seven-seat cars), class 3 (light and medium
trucks), and class 4 (heavy trucks and semi trailers). The aver-
age classification accuracy was 80.5% with 1,797 vehicles
being successfully classified out of 2,231 vehicles.

C. VIBRATION SENSORS
Using highway pavement itself as a transducer, vibration
sensors capture the unique vibration patterns induced by pass-
ing vehicles due to the low elasticity of road pavement that
makes vibrations well localized in time and space [36]. Fig. 4
shows an example of a vibration sensor and the installation
process. Researchers address numerous challenges of vibra-
tion sensor-based classification systems such as the effect
of the underlying geology on the propagation of the seis-
mic wave, and the complex nature of seismic waveforms
in terms of the forms, directions, and speeds, which make
vehicle classification based on vibration sensor data very
difficult.

FIGURE 4. An example of a vibration sensor [36].

Various vibration sensor-based vehicle classification sys-
tems are developed to address the aforementioned challenges.
These systems can be divided largely into two types: the
classification systems that utilize vibrations to count the
number of axles and measure the spacing between axles and
use the axle count and spacing as main features for vehicle
classification [36], and the systems based on the analysis of
seismic waveforms induced by passing vehicles for vehicle
classification [19], [38], i.e., the characteristic features of the
seismic waves are extracted to model a classifier to perform
classification; Since the seismic waves are very complex,
machine learning techniques are often adopted to extract
features effectively.

Bajwa et al. propose a vehicle classification system based
on the axle count and spacing between axles [36]. The pro-
posed system consists of magnetic sensors and vibration
sensors. Themagnetic sensors are used for detecting a vehicle
and reporting the arrival and departure times of the passing
vehicles. The vibration sensors are utilized for calculating the
number of axles and spacing between axles which are the two
key features for vehicle classification.

Zhao et al. develop a novel vibration sensing system for
vehicle classification called the distributed optical vibration
sensing system (DOVS) [37]. While DOVS is similar to [36]
in that the axle count and the spacing between axles are used
as main features, the main contribution is that DOVS achieves
higher resistance to damage and electromagnetic interfer-
ence, making DOVS more reliable in severe environments.
Furthermore, it is easy to deploy and the cost for installation
is low compared with other vibration sensor-based systems.

Another notable feature of DOVS is the support for classifica-
tion of the vehicleswith similar axle configurations especially
2-axle vehicles such as vans, two-axle buses, and two-axle
trucks by developing a multi-parameter classifier incorpo-
rating additional features in the frequency domain and the
vehicle speed. DOVS classifies vehicles into 10 vehicle types
and achieves the average classification accuracy of 89.4%.

Other vibration sensor-based vehicle classification sys-
tems exploit the unique characteristics of the seismic signals
induced by passing vehicles. Stocker et al. [19] propose a dig-
ital signal processing algorithm to process vibration sensor
data to identify unique vibration patterns for passing vehicles.
In particular, a machine learning technique is applied to col-
lected vibration sensor data to perform vehicle classification.
Specifically, the multilayer perceptron (MLP) feedforward
artificial neural networks [64] is adopted to classify vehicles
into light (mini-cleaner, mini-lifter, personal-car, van, ambu-
lance, fire-van, and pickup-truck) and heavy vehicles (truck,
fire-truck, and bucket-digger). The classification accuracy
obtained was 83%.

A similar work based on the analysis of seismic waveforms
is performed by Jin et al. [38]. The authors focus on the com-
plexity of the seismic signals which is nonstationary and non-
linear. The seismic signal comprises a number of signals gen-
erated by a passing vehicle (e.g., the engine and propulsion
system of a passing car). It is not only highly dependent on
underlying geology, but its propagation speed and direction
vary significantly [65]. To achieve high classification accu-
racy under the complexity of the seismic signal, the authors
apply a convolutional neural nework (CNN). Specifically,
they develop a seismic signal-based deep CNN architecture
for classifying vehicles. The proposed CNN framework takes
the log-scaled frequency cepstral coefficient (LFCC) matrix
as a key feature. Vehicle classification was performed with
the vibration sensor data collected from the DARPA’s SensIt
project for two vehicle classes, i.e., Assault Amphibian Vehi-
cle (AAV) and dragon wagon (DW). The best classification
accuracy achieved was 92%.

D. OTHER TECHNOLOGIES
Various kinds of sensors such as weigh-in-motion
sensors [46], peizoelectric sensors [16], and fiber-optic sen-
sors [47] are used to develop in-roadway-based vehicle clas-
sification systems. It is interesting to note that while these
sensors are less frequently used for vehicle classification
compared to loop detectors, vibration sensors, and magnetic
sensors, similar features such as the axle count, axle spacing,
and vehicle length are used for vehicle classification.

Hernandez et al. develop an in-road-based vehicle classifi-
cation system that integrates a weigh-in-motion sensor with
a loop detector [46]. Specifically, the vehicle weight data
are combined with the axle spacing data to achieve better
classification accuracy. They propose to utilize multiple clas-
sification models, i.e.,Naive Bayes Classifier, Decision Tree,
SVM, Multilayer Feed forward Neural Network [66], and
Probabilistic Neural Network [67]. In particular, a multiple
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classifier systems (MCS) method [68] is adopted to combine
the results of these classifiers. A huge dataset of 18,967 trucks
was used to classify the trucks into 31 single and semi-trailer
body trucks, and 23 single unit trucks. The accuracy was over
80% for each truck body type.

Rajab et al. develop a multi-element piezoelectric sensor
system which consists of 16 piezoelectric sensors [16]. Three
main features, i.e., the number of tires, vehicle length, and
axle spacing are used for vehicle classification. Specifically,
the proposed system estimates the number of tires by sensing
impact on multiple sensor elements. Additionally, the vehi-
cle speed is estimated based on the time difference between
impacts on two sensors aligned to the lane axis. The vehi-
cle length and the axle spacing are computed based on the
vehicle speed and the dwell time over a sensor. The 13 FHWA
vehicle classes were used for vehicle classification. The aver-
age classification accuracy was 86.9%.

Recent advances in fiber-optic sensors that are small,
lightweight, immune to electro-magnetic interference
gave rise to novel traffic engineering applications [69].
Huang et al. adopt fiber bragg grating (FBG) sensors for
vehicle classification [47]. A sensor network consisting of
two FBG sensors is developed to extract the features of the
number of axles and axle spacing. Specifically, the FBG
sensors capture the strain signals generated from the pave-
ment when vehicles pass on the road, so that an individual
peak is used to identify the features. With the two aligned
sensors, the vehicle speed can be measured, and the axle
spacing is measured based on the vehicle speed. The classi-
fication accuracy was high as 98.5% partly due to the simple
vehicle classification scheme, i.e., small, medium, and large
vehicles.

IV. OVER-ROADWAY-BASED VEHICLE CLASSIFICATION
The over-roadway-based vehicle classification systems
install sensors over the roadway, offering non-intrusive solu-
tions that do not require physical changes in the roadway,
greatly reducing the cost for construction and maintenance.
Furthermore, these classification systems are capable of
covering multiple lanes and in some cases an entire road
segment (e.g., aerial platforms [83]). Since cameras are most
widely used sensors for these vehicle classification sys-
tems [29] [30], the majority part of this section is dedicated to
describing the camera-based vehicle classification systems.
In this section, we also discuss camera-based classification
systems using aerial platforms such as unmanned aerial vehi-
cles (UAVs) and satellites. Although the vehicle classification
systems based on cameras have numerous advantages such as
the high classification accuracy and the capability of covering
multiple lanes, a major downside is the privacy concerns.
As such, we discuss a number of privacy-preserving solutions
such as the ones based on infrared sensors [26], and laser
scanners [87]. Table 2 summarizes the characteristics of the
over-roadway-based vehicle classification systems discussed
in this section.

A. CAMERAS
A most widely adopted sensor for over-roadway-based vehi-
cle classification systems is a camera [29], [30]. A camera
provides rich information for vehicle classification such as
the visual features and geometry of passing vehicles [88].
In comparison with in-road-based vehicle classification sys-
tems where multiple sensors are required to cover multiple
lanes (i.e., at least a sensor for each lane), a single camera is
sufficient for classifying vehicles in multiple lanes (Fig. 5).
Advanced image processing technologies supported by suffi-
cient processing power allow for classifyingmultiple vehicles
very quickly and accurately.

FIGURE 5. A camera-based traffic monitoring system [71].

The general working of a camera-based vehicle classifica-
tion system is to capture an image of a passing car, extract
features from the image, and run an algorithm to perform
vehicle classification. As such, the camera-based systems can
be categorized based on how the vehicle image is captured
(e.g., methods for reducing the impact of the background
image), types of features extracted from the vehicle image,
and the mechanisms for performing classification based on
the extracted features. A recent trend is that more and more
machine learning techniques are applied to extracting features
automatically and effectively, and processing the features to
build classification models. While earlier systems use simple
classification models based on SVM, kNN, and decision tree,
more advanced machine learning algorithms such as the deep
learning are increasingly adopted.

Chen et al. focus on effectively capturing a car image from
video footage [29]. The authors adopt the background Gaus-
sian Mixture Model (GMM) [89] and the shadow removal
algorithm [90] to reduce the negative impacts on vehicle clas-
sification caused by shadow, camera vibration, illumination
changes, etc. The Kalman filter is used for vehicle tracking
and SVM is used to perform vehicle classification. Experi-
ments were performed with real video footage obtained from
cameras deployed in Kingston upon Thames, UK. Vehicles
were classified into five categories, i.e., motorcycles, cars,
vans, buses, and unknown vehicles. The classification accu-
racy for these vehicle types was 94.6%.

Unzueta et al. also focus on effectively capturing the car
image [71]. Specifically, the authors address the problem
of dynamic changes of the background in challenging envi-
ronments such as illumination changes and headlight reflec-
tions to improve the classification accuracy. A multicue
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TABLE 2. Over-roadway-based vehicle classification systems.

background subtraction method is developed that the seg-
mentation thresholds are dynamically adjusted to account for
dynamic changes of the background, and supplementing with
extra features extracted from gradient differences to enhance
the segmentation [71]. A two-step approach is proposed to

derive spatial and temporal features of a vehicle for classi-
fication, i.e., by first generating 2-D estimations of a vehicle
silhouette, and then augmenting them to 3-D vehicle volumes
for more accurate vehicle classification. Three vehicle types
are considered for classification, namely two wheels, light
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vehicles, and heavy vehicles. The classification accuracy
was 92.6%.

FIGURE 6. An example of the virtual detection lines (VDL) [70].

Mithun et al. propose a multiple virtual detection lines
(MVDLs)-based vehicle classification system [70]. The VDL
is a set of line indices of a frame for which the position is
perpendicular to the moving direction of a vehicle (Fig. 6).
The pixel strips on a VDL in chronological frames cre-
ate a time spatial image (TSI). Multiple TSIs are used for
vehicle detection and classification to reduce misdetection
mostly due to occlusion. Specifically, a two-step process is
proposed for classification. Vehicles are first classified into
four general types based on the shape-based features. After
that, another classification scheme based on the texture-based
and shape-invariant features is applied to classify a vehicle
into more specific types including motorbikes, rickshaws,
autorickshaws, cars, jeeps, covered vans, and busses. The
classification accuracy was between 88% and 91%

Identifying effective features from the car images is
another important challenge for camera-based vehicle clas-
sification systems. Karaimer et al. combine the shape-based
classification and the Histogram of Oriented Gradient (HOG)
feature-based classification methods in order to improve the
classification performance [73]. Specifically, kNN is used for
the shape-based features including convexity, rectangularity,
and elongation, and SVM is used with the HOG features.
The two methods are combined using different combination
schemes, i.e., the sum rules and the product rules. The sum
rule determines the vehicle class such that the sum of the
two probabilities for the two classifiers is maximized, and the
product rule determines based on the product of the two prob-
abilities. Three vehicle classes were used for experiments,
namely, cars, vans, and motorcycles. The classification accu-
racy was 96.5%.

Machine learning algorithms are used to extract effective
features automatically. Huttunen et al. design a deep neural
network (DNN) that extracts features from a car image with
background, removing the preprocessing steps of detecting
a car from an image and aligning a bounding box around
the car [74]. The hyper-parameters of the neural network are
selected based on a random search that finds a good com-
bination of the parameters [91]. The proposed system was
evaluated with a database consisting of 6,555 images with
four different vehicle types, i.e., small cars, busses, trucks,
and vans. The classification accuracy was 97%.

Dong et al. applies the semisupervised convolutional neu-
ral network (CNN) for feature extraction [72]. In this work,
vehicle front view images are used for classification. Specif-
ically, the proposed CNN consists of two stages. In the
first stage, the authors design an unsupervised learning

mechanism to obtain the effective filter bank of CNN to
capture discriminative features of vehicles. In the second
stage, the Softmax classifier is trained based on the multi-task
learning [92] to provide the probability for each vehi-
cle type. Experiments were conducted with two data sets,
i.e., the BIT-Vehicle data set [93], and the data set used by
Peng et al. [94]. The former data set consists of 9,850 vehicle
images with six types: bus, microbus, minivan, sedan, SUV,
and truck; the latter includes 3,618 daylight and 1,306 night-
time images with truck, minivan, bus, passenger car, and
sedan. The classification accuracy for the two data sets were
88.1%, and 89.4%, respectively.

In line of the research based on advanced machine
learning techniques, Adu-Gyamfi et al. develop a vehicle
classification system using the deep convolutional neural
network (DCNN) that is designed to extract vehicular features
quickly and accurately [75]. Compared to other approaches,
the DCNNmodel is pretrained with an auxiliary data set [95]
and then is fine-tuned with the domain specific data collected
from the Virginia and Iowa DOT CCTV camera database.
The vehicles were classified into FHWA’s 13 vehicle types.
The results show that the classification accuracy was greater
than 89%.

Although machine learning techniques make the feature
extraction process more effective and consequently improve
the vehicle classification accuracy, numerous challenges still
remain to be addressed. One of those challenges is to clas-
sify visually similar vehicles. Javadi et al. propose to apply
the fuzzy c-means (FCM) clustering [96] based on vehicle
speed as an additional feature to address this challenge [76].
Specifically, they exploit the prior knowledge about varying
traffic regulations and vehicle speeds to enhance the classi-
fication accuracy for the vehicles with similar dimensions.
The proposed classification approach was evaluated with the
vehicle images collected for 10 hours from a real highway,
classifying the vehicles into four types, namely private cars,
light trailers, buses, and heavy trailers. The classification
accuracy of 96.5% was achieved.

Another challenge for applying machine learning tech-
niques for automating background processing and feature
extraction is that different parts of an image of a passing
car are treated without distinctions, degrading the perfor-
mance [61], [97]. Zhao et al. focus on this problem that
potentially misses the key part of a car image [77]. Their
work is motivated by the human vision system that distin-
guishes the key parts of an image from the background,
which is called the multiglimpse and visual attention mech-
anism [98]. This remarkable capability of focusing on only
the relevant part of the image allows the human to classify
images very accurately. The key idea of their work is thus to
exploit the visual attention mechanism to generate a focused
image first and provide the image as input to CNN for
more accurate vehicle classification. They performed exper-
iments to classify a vehicle into five types, sedans, vans,
trucks, SUVs, and coaches, and achieved the classification
accuracy of 97.9%.
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Theagarajan et al. observe that machine learning algo-
rithms work only effectively with an extremely large amount
of image data [78]. The authors also find that most
camera-based classification systems are built upon small
traffic data sets that do not take into account sufficiently
the variability in weather conditions, camera perspectives,
and roadway configurations. To address this problem, they
develop a deep network-based vehicle classification mecha-
nism utilizing the largest data set that is ever known to the
research community. The data set contains 786,702 vehicle
images from cameras at 8,000 different locations in USA and
Canada. With the huge amount of data, they classified vehi-
cles into 11 types including articulated trucks, background,
busses, bicycles, cars, motorcycles, nonmotorized vehicles,
pedestrians, pickup trucks, single unit trucks, and work vans.
They obtained high classification accuracy of 97.8%.

The same dataset [78] was used by Kim and Lim [79].
Different from other works based on CNN, the authors apply
a data augmentation technique to enhance the performance
under different sample sizes for different types of cars. The
authors also apply a weighing mechanism that associates a
weight depending on different vehicle types. The classifica-
tion accuracy was 97.8%. The imbalanced dataset problem
was also addressed by Liu et al. [80]. Specifically, to increase
the number of samples for certain vehicle types, they apply
various data augmentation techniques such as random rota-
tion, cropping, flips, and shifts and created an ensemble of
CNN models based on the parameters obtained from the
augmented dataset. The proposed work was tested with the
MIO-TCD classification challenge dataset which classifies
the vehicles into 11 types. They achieved the classification
accuracy of 97.7%.

The vehicle occlusion problem is another challenge
for applying machine learning algorithms to camera-based
vehicle classification. Chang et al. propose an effective
model based on the Recursive Segmentation and Convex
Hull (RSCH) to address this problem [81]. Specifically, vehi-
cles are assumed as convex regions, and a decomposition
optimization model is derived in order to separate vehi-
cles from a multi-vehicle occlusion. After addressing the
occlusion problem, vehicle classification is performed with
a regular CNN. Experiments were conducted with the Com-
pCars dataset [99] which consists of 136,726 vehicle images
with five types: sedans, SUVs, vans, busses, and trucks. For
this dataset, the authors achieved the classification accuracy
of 97.6%.

Some vehicle classification systems integrate a camera
with a different type of sensor. Hasnat et al. significantly
improve the classification accuracy by integrating a camera
with optical sensors [82]. They call it a hybrid classifier
system. Specifically, the system consists of both the optical
sensor-based classifier and the CNN-based classifier. And
then, they apply the Gradient Boosting technique [100] to
combine the decisions from these classifiers, constructing a
stronger predictor based on the base predictors. Five vehicle
classes are defined for classification: light vehicles (height

less than 2m), intermediate vehicles (height between 2m
and 3m), heavy vehicles (height greater than 3m), heavy
vehicles with more than 2 axles, and motorbikes. The clas-
sification accuracy was 99.0%.

B. AERIAL PLATFORMS
Cameras are mounted on aerial platforms such as UAVs
and satellites in order to cover wide areas (e.g., an entire
roadway segment) for vehicle classification (Fig. 7). Despite
the advantage of wide coverage, vehicle classification based
on aerial platforms is a non-trivial task due to the low image
resolution. In fact, even detecting a vehicle is not an easy task
for aerial platform-based systems. For example, Cao et al.
develop a method for vehicle detection based on an airborne
platform [83]. Their main idea to enhance the vehicle detec-
tion accuracy is to exploit a new feature called the boost-
ing HOG and perform classification using the linear SVM.
Videos were captured in an urban traffic environment to eval-
uate the proposed system. While most ground-based traffic
monitoring systems achieve near 99% accuracy for vehicle
detection (note that this is not for vehicle classification), their
system achieved the vehicle detection accuracy of 90%.

FIGURE 7. An example of an aerial image and vehicle detection using
SVM [83].

Due to the low image resolution, many aerial platform-
based vehicle classification systems aim to classify only for
a limited number of vehicle types that are relatively easily
distinguishable such as cars and trucks. Liu and Mattyus
develop a vehicle classification system based on an aerial
platform especially focusing on reducing the computation
speed for vehicle classification [84]. A binary sliding window
detector is applied to detect a vehicle from an aerial image.
Once a vehicle is detected, the HOG features are extracted
from the image of the detected vehicle [101] using a neural
network with a single hidden layer [102]. Vehicles are then
classified into two types, i.e., cars and trucks. The classifi-
cation accuracy was 98.2% which is relatively high due to
the small number of easily distinguishable vehicle types for
classification.

With the help of advanced machine learning techniques,
the classification accuracy of some aerial platform-based
vehicle classification systems is improved. However, the
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FIGURE 8. Vehicle classification based on infrared and ultrasonic sensors [26].

results are not yet comparable to ground sensor-based vehicle
classification systems. Tan et al. develop a two-step vehicle
classification method using aerial images [86]. A change
detection scheme is applied to detect vehicles based on
pixel-level changes represented as a heat map. And then,
a standard CNN is used for classification. In particular, they
adopt the fully connected layer of the AlexNet model [61],
and the final classification layer of the Inception model [103].
Experiments were performed with the images collected from
a manned aircraft. The vehicles were classified into four
classes: sedans, vans, pickups, and trucks. The classification
average accuracy was 80.3%.

Audebert et al. also apply a standard CNN to aerial
images for vehicle classification [85]. Various CNN mod-
els are adopted such as LeNet [104], AlexNet [61], and
VGG-16 [105] pre-trained with existing training datasets.
To overcome the discrepancy between the training datasets
and testing datasets, the authors utilize data normalization
and augmentation techniques based on the geometric oper-
ations including translations, zooms, rotations of images.
The experiments were performed with the NZAM/ONERA
Christchurch dataset classifying the vehicles into cars, vans,
pickups, trucks. The highest classification accuracy of 80%
was achieved with the VGG-16 model.

C. PRIVACY PRESERVING SOLUTIONS
A major downside of camera-based vehicle classification
systems including aerial platform-based systems is the pri-
vacy concerns. Various privacy preserving solutions have
been developed using different kinds of sensors. Odat et al.
propose a system based on the combination of infrared and
ultrasonic sensors [26] (Fig. 8) The Bayesian network and
neural network are used to fuse extracted features from sensor
data collected from both sensors. Specifically, the heights
of different parts of a passing vehicle measured based on
the ultrasonic sensor are used as key features. Also, other
features extracted from the infrared sensors, i.e., the inverse
of the estimated delay and the estimated duration are used
for classification. Vehicles were classified into sedan, pickup
truck, SUV, bus, and two wheeler. The highest classification
accuracy was 99%.

Sandhawalia et al. develop a privacy preserving solution
using the laser scanners [87]. The laser scanners perform 3D

scan of the vehicle surface allowing for accurate estimation of
the width, height, and length of a passing vehicle. It is noted
that although the laser scanners address the privacy concerns,
they are sensitive to extreme weather conditions and the cost
for installation is higher than cameras. The authors represent
a laser scanner profile as an image to perform image classifi-
cation. Specifically, an image presentation technique, i.e., the
Fisher vector [106] is applied to extract effective features
from a laser scanner image. In this work, vehicles were clas-
sified into six types: passenger vehicles, passenger vehicles
with one trailer, trucks, trucks with one trailer, trucks with
two trailers, and motorcycles. The classification accuracy
was 82.5%.

Another laser scanner-based approach is developed by
Chidlovskii et al. [31]. The key contribution of this vehi-
cle classification system in comparison with [87] is to uti-
lize the specific domain knowledge, i.e., the vehicle shapes
to enhance the classification accuracy. Specifically, vehicle
shapes are extracted from the laser scans to analyze a vehicle
as a multi-dimensional object. To address the space shift and
scaling problem, the dynamic time warping (DTW) [107] and
the global alignment kernel (GA) [108] are used. The same
six vehicle types as [87] were used for experiments. The best
classification accuracy achieved was 86.8%.

V. SIDE-ROADWAY-BASED VEHICLE CLASSIFICATION
Side-roadway-based vehicle classification systems deploy
sensors on a roadside. Similar to over-roadway-based clas-
sification systems, a key advantage of side-roadway-based
systems is the capability of covering multiple lanes simulta-
neously. Additionally, side-roadway-based systems are easier
to install quickly at a reduced cost as no traffic disturbance
and lane closure is needed at all, which makes these sys-
tems especially appropriate for ad-hoc monitoring purposes.
However, a critical challenge lies in detecting and classifying
overlapping vehicles because it is extremely challenging to
collect sensor data corresponding to occluded vehicles, and
even the sensor data collected for front vehicles are eas-
ily distorted due to the occluded vehicles. Various kinds of
sensors are used to implement side-roadway-based systems
such as the magnetic sensors [109], acoustic sensors [110],
LIDAR [111], radar [112], radio tranceivers [113], andWi-Fi
transceivers [27]. Table 3 summarizes the characteristics of
these side-road-based vehicle classification systems.
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TABLE 3. Side-roadway-based vehicle classification systems.

A. MAGNETIC SENSORS
As we discussed in Section III, magnetic sensors have been
widely adopted in in-road-based vehicle classification sys-
tems. These magnetic sensors are also frequently adopted
in side-road-based vehicle classification systems especially
to overcome one of the critical limitations for in-road-based
systems, that is the high cost for installation andmaintenance.
While the basic mechanism for these side-roadway-based
classification systems is similar to the in-road-based systems
in that vehicle classification is performed based on the mag-
netic profile of a passing car, numerous research challenges
are addressed such as classifying vehicles with similar body
sizes (e.g., SUVs and pickup trucks), and classifying overlap-
ping vehicles effectively.

Taghvaeeyan et al. develop a vehicle classification sys-
tem based on three-axis magnetic sensors (Fig. 9) deployed
roadside focusing on addressing the problem of classifying
vehicles with similar body sizes [109]. The key idea is to
utilize both the vehicle length and height as the main features

FIGURE 9. The three-axis AMR sensor used by [109].

for vehicle classification. More precisely, while existing in-
road-based systems based on magnetic sensors measure only
the vehicle length, their system is capable of obtaining the
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vehicle height information by placing another magnetic sen-
sor above a magnetic sensor roadside and measuring the
ratio of the sensor readings from the two sensors. Vehi-
cles were classified into five categories: Class I (sedans),
Class II (SUVs, pickups, and vans), Class III (buses, two-
and three-axle trucks). Class IV (articulated buses and four-
to six-axle trucks). The classification accuracy was 83%.

Yang and Lei focus on another interesting problem
for magnetic sensor-based vehicle classification systems,
i.e., classifying vehicles that are very close to each other,
which typically happens under low-speed congested traffic
conditions [22]. When vehicles are too close, the mag-
netic signals are significantly distorted making the vehi-
cle classification process extremely challenging. To address
this problem, the authors propose a hierarchical tree-based
approach [116]. The key idea is to identify and extract effec-
tive features from the magnetic signal that are immune to
signal distortions caused by the small inter-vehicle distance.
Specifically, five features including the signal duration, signal
energy, average energy, and ratios of the positive and negative
energy are extracted. A hierarchical tree is constructed by
comparing the values of these features, which is then used
to classify vehicles into five categories: motorcycle, two-box,
saloon, bus and sport utility vehicle (SUV). The classification
accuracy was 93.6%.

In some cases, magnetic sensors are used for collabora-
tive sensing. EasiSee is basically a camera-based vehicle
classification system [21]. A key motivation for integrating
a magnetic sensor with the system is to reduce the power
consumption of the system. Specifically, the magnetic sensor
is used to detect a passing vehicle, and only when a vehicle
is detected, the camera is activated, thereby being able to put
the camera in the sleep mode, reducing power consumption.
They also develop an efficient image processing algorithm
focusing on reducing the computational complexity. Vehi-
cles were classified into bicycles (including bicycles, elec-
tric bicycles and motorcycles), cars (including family cars,
taxis, and SUVs), and minibuses. The classification accuracy
was 93%.

B. ACOUSTIC SENSORS
The acoustic sensor-based vehicle classification systems cap-
ture the audio signal induced by a passing vehicle using
microphone sensors. The success of these types of solutions
depends largely on effective feature extraction from acoustic
signals. However, since the performance of the acoustic sen-
sors are easily affected by ambient noise, it is very challeng-
ing to identify such effective features. As a result, the acoustic
sensors are typically used to support operation of other types
of sensors such as cameras [114]. Additionally, a group of
acoustic sensors are deployed to mitigate the impact of ambi-
ent noise and increase the classification accuracy [110].

Bischof et al. adopt an acoustic sensor to support the self
learning process of a camera-based vehicle classification
system [114]. The proposed system consists of audio-based
and video-based classification systems. The audio-based

system acts as a supervisor to enable autonomous training
of the video-based system, obviating the needs for manu-
ally labeling the huge amount of video data. Specifically,
the audio sensor-based system performs a priori classification
for a passing car and forwards the classification results with
a confidence level to the video-based system. And then,
the video-based system uses the results for autonomously
training the classification model. The proposed system was
evaluated with different kinds of classifiers such as kNN,
SVM, and ANN. Vehicles were classified into two types
trucks and cars. The classification accuracy was 85% for
trucks and 71% for cars.

Ntalampiras [110] develop a wireless acoustic sensor net-
work (WASN) that consists of multiple wireless microphone
nodes to make the system resilient to environmental noise.
An interesting aspect of their work is that the sensor specific
classification models are created at the sensor level, and then
the decisions are combined at the higher level using the
correlation-based dependence graph. In addition, a stationary
checking algorithm is proposed to detect sensor faults, taking
advantage of multiple acoustic sensors. Experiments were
conducted with the DARPA/IXOs SensIT dataset which con-
sists of two vehicle types, Assault Amphibian Vehicle (AAV)
and Dragon Wagon (DW) [117]. The average classification
accuracy was 96.3%.

C. LIDAR
A light detection and ranging (LIDAR) sensor sends eye-safe
laser lights and record the reflections to calculate the points
of the environment such as the road, passing vehicles, and
vegetation, etc. Based on the collected data, effective features
are extracted such as the size and shape of a passing car to per-
form vehicle classification. LIDAR is especially powerful in
identifying the shape of a passing car due to its high precision
sensing. However, the vehicle occlusion problem remains as
a critical challenge for LIDAR-based vehicle classification
systems.

FIGURE 10. An example of a LIDAR-based vehicle classification
system [25].

Lee and Coifman develop a LIDAR-based vehicle clas-
sification system [25], [4]. Two LIDAR sensors that are
mounted on the driver side of a car are deployed road-
side to scan the body of a passing car vertically (Fig. 10).
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Specifically, six features are identified and extracted from
the LIDAR data which include the vehicle height, vehicle
length, middle drop, height at middle drop, front vehicle
height, front vehicle length, rear vehicle height, and rear
vehicle length. Especially, the middle drop feature is used
to classify vehicles pulling trailers; The different height at
the middle drop is used to differentiate between passenger
vehicles with trailers and trucks with trailers. A classification
tree is built by comparing the values of those features. Six
vehicle classes were used for classification, i.e., the motor-
cycle, passenger vehicle, passenger vehicle pulling a trailer,
single-unit truck or bus, single-unit truck or bus pulling a
trailer, and multi-unit truck. They achieved the classification
accuracy of 99.5%.

Asborno et al. focus on classification of truck body
types [111]. Two LIDAR units are deployed roadside. Two
key features are defined, i.e., the duration and array of the
vehicle body points. The duration means the elapsed time
while a passing vehicle was in front of the LIDAR unit, and
the vehicle body points capture the shape of the truck body.
Based on these two key features as input to several classifiers
such as Decision Tree (DT), artificial neural network (ANN),
support vector machine (SVM), and Naive Bayes (NB), vehi-
cle classification was performed. The proposed system was
deployed at an interstate location to classify vehicles into five
different truck body types, i.e., five-axle tractor-trailers (van
and container, platform, low-profile trailer, tank, and hopper
and end dump). They obtained the classification accuracy
up to 96%.

D. RADAR
The basic mechanism of radar-based vehicle classification
systems are similar to LIDAR-based systems in that the
radar-based systems exploit the reflections of radio signals
from the vehicle body to perform classification. The dif-
ference is that while the LIDAR sensors use laser beams,
the radar sensors use radio waves. The radar sensors are less
vulnerable to weather and light conditions than LIDAR, but
the LIDAR sensors provide more accurate representation of
the vehicle body.

Raja et al. use the passive forward scattering radar (FSR)
for vehicle classification [112]. The radar cross section infor-
mation is analyzed in the time domain for de-noising and
normalization. And then, the power spectral density (PSD)
of the time-domain signal is calculated using the Welch algo-
rithm [118]. The power spectral density estimates the power
of the signal at different frequencies, which is used as input
to a classifier. The large data size of the spectral signature
of PSD is reduced using the Principle Components Analysis
(PCA). After that, kNN is applied to classify vehicles into
three types: compact, saloon and small sport utility vehicle
(SUV). The results indicate that the classification accuracy is
significantly influenced by the distance between the receiver
and the car, i.e., the classification accuracy was 99% for 5m,
and 82.1% for 20m.

E. RF TRANSCEIVERS
The propagation of radio frequency (RF) signals is disturbed
by a passing vehicle. Specifically, a RF transmitter and a
receiver are deployed on the opposite sides of a road. When
a car passes, the line of sight between the transmitter and the
receiver is interrupted resulting in attenuation and reflection
of the RF signals. Consequently, distinctive patterns of the
received RF signals depending on the shape and size of
the passing car are captured by the receiver. These unique
patterns are used to classify the vehicles.

Haferkamp et al. focus on the attenuation of the RF signal
due to a passing car and uses it as a key feature for vehicle
classification [115]. The signal attenuation is represented by
the received signal strength indicator (RSSI). The RSSI traces
corresponding to the passing vehicle are provided as input to
classifiers, i.e., kNN and SVM. A five-fold cross validation
is used to perform classification. The vehicles were classified
into passenger cars and trucks. The classification accuracy
was 99% which is quite high due to the small number of
vehicle types.

Silwa et al. utilize the the low-rate wireless personal area
networks (LR-WPANs), i.e., the IEEE 802.15.4 standard to
capture the radio fingerprint of a passing vehicle for vehicle
classification [113]. Similar to [115], RSSI is used as themain
feature, while the proposed system is designed to achieve
more accurate and reliable vehicle classification. Specifically,
three transmitters and three receivers are deployed on each
side of the street with the fixed longitudinal distances. Three
different classifiers are adopted, i.e., SVM [119], CNN [120],
and Random Forests (RF) [121]. The system classifies vehi-
cles into 9 different types: passenger cars, passenger cars
with trailer, SUVs, minivans, vans, trucks, truck with trailers,
buses, and transporters. The average classification accuracy
was 89.1%.

F. Wi-Fi TRANSCEIVERS
Recently, Wi-Fi-based traffic monitoring systems have been
developed specifically targeting the endemic cost issue for
deploying a large number of traffic monitoring systems to
cover hugemiles of rural highways. The idea is to leverage the
unique Wi-Fi channel state information (CSI) patterns [122]
induced by passing vehicles to perform vehicle classification.
Specifically, the spatial and temporal correlations of CSI
phase and amplitude enable effective vehicle classification.
Especially the significantly low cost of off-the-shelf Wi-Fi
transceivers enable large-scale deployment of traffic moni-
toring systems. Won et al. develop the first prototype system
and demonstrate the average vehicle classification accuracy
of 96% [27]. However, the prototype classifies vehicles only
into passenger cars and trucks. The authors, in their extended
version of the work, applies an advanced machine learning
technique, i.e., a convolutional neural network (CNN) to
extract the effective features of the CSI data automatically
and enables classification for more vehicle types including
motorcycles, passenger cars, SUVs, pickup trucks, and large
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trucks [3]. They achieved the average classification accuracy
of 91.1%.

Specifically, a convolutional neural network (CNN) is
designed to capture the optimal features of CSI data auto-
matically and train the vehicle classification model based
on effectively preprocessed CSI data as input. Numerous
techniques are applied to address challenges of improving the
classification accuracy.

VI. CHALLENGES FOR FUTURE RESEARCH
We have witnessed significant development of vehicle classi-
fication systems in the past decade. Thanks to recent advances
in sensing, machine learning, and wireless communica-
tion technologies, the classification accuracy has improved
greatly at a significantly reduced cost. However, these emerg-
ing vehicle classification systems have left a number of open
questions. In this section, we discuss these challenges and
several future research directions.

First of all, we need to define a standard that defines a
list of vehicle types for classification to allow various vehicle
classification systems to be evaluated based on the same set of
vehicle types, so that the system developers and researchers
will be able to evaluate the performance of their systems
more effectively and fairly. Additionally, the standard will
enable the users such as the government agencies to make
more informed decision on selectingmost appropriate vehicle
classification systems. Unfortunately, however, various vehi-
cle classification systems have been evaluated with extremely
different vehicle types. Fig. 11 displays the classification
accuracy for different numbers of vehicle types of the vehicle
classification systems that we review in this article. The fitted
curve in this figure indicates that the vehicle classification
systems that are evaluated with a smaller number of vehicle
types tend to show higher classification accuracy, although
such high classification accuracy is not guaranteed when the
system is applied to a larger number of vehicle types.

FIGURE 11. The classification accuracy for different numbers of vehicle
types.

Another important issue that makes fair comparison
of vehicle classification systems difficult is the varying
experimental conditions used for evaluating the vehicle

classification systems. There are numerous factors that
should be controlled to allow for fair comparison of the per-
formance such as the number of lanes, obstacles, and weather
conditions. For example, weather conditions affect the perfor-
mance of certain types of sensors such as the camera, LIDAR,
radio, andWi-Fi. Side-firing sensors are significantly affected
by the number of lanes due to overlapped vehicles. Some sen-
sors such as the acoustic sensors are exceptionally vulnerable
to ambient noise. To address this challenge, an universally
accepted standard for experimental configurations can be
developed.

Vehicle classification systems should conform to a com-
mon set of performance metrics. However, numerous vehicle
classification systems focus only on measuring the classi-
fication accuracy while ignoring other performance metrics
such as the cost for maintenanace/installation, the capability
of classifying overlapped vehicles, sustainability (duration of
operation), and resiliency to weather conditions/noise. For
example, while camera-based classification systems achieve
high classification accuracy, these systems suffer from the
privacy concerns. Similarly, many in-road-based classifica-
tion systems have high classification accuracy due to close
contact with passing cars, but these systems are very costly
to install and maintain.

One of the critical challenges especially for side-
roadway-based classification systems is the vehicle occlusion
problem. The operation of numerous kinds of sensors such
as the magnetic sensors, LIDAR, Radar, RF, and Wi-Fi is
disturbed by occluding vehicles, making it nearly impossible
to accurately classify the overlapped vehicles. A possible
approach to address this challenge is to take advantages of the
over-roadway-based systems to develop amore efficient side-
roadway-based systems. Specifically, the side-firing sensors
can be placed at different heights so that each sensor can
cover each lane explicitly without being interrupted by the
vehicles in other lanes. For example, a LIDAR sensor can
be configured to record reflections from a targeted lane only.
To the best of our knowledge, there is no side-roadway-based
vehicle classification systems that consider the better strat-
egy of placing sensors to overcome the vehicle occlusion
problem.

More and more vehicle classification systems depend on
machine learning techniques. To achieve high classification
accuracy, however, a huge amount of data should be col-
lected to train and create an effective classification model.
Especially, the manual labeling process for training the clas-
sification model requires a significant amount of time and
efforts. It also requires extra efforts for obtaining the ground
truth data. A possible future research direction is to develop
a ‘‘closed loop self-learning’’ vehicle classification system.
Once deployed, these systems will train the classification
models that will autonomously and continuously evolve
based on trial and error.

Although we have seen that many classification systems
achieve very high classification accuracy, achieving near
100% classification accuracy especially for a large number
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of vehicle types is still a very challenging task. One possible
reason for the difficulty lies in the fact that most solutions
rely on a single type of sensor for vehicle classification. There
are few works that utilize the hybrid approach of combining
the advantages of different types of sensors, and even the
different types of deployment methods, e.g., combination
of the side-roadway-based and over-roadway-based systems.
These heterogeneous sensor systems will communicate and
exchange various kinds of information to offset their weak-
nesses and capitalize their strengths to achieve higher clas-
sification accuracy. For example, the camera-based system
may be adaptively controlled based on the presence of a
vehicle that is detected with a low-power sensor in order to
reduce the power consumption. Similarly, the camera-based
systems may be activated only when the light condition
is met in coordination with the light sensor, and different
kinds of monitoring systems such as the infrared sensor
based system can be activated at night. To the best of our
knowledge, no research has been performed that identifies the
optimal method for integrating various classification systems
together. We envision that this review paper will be useful
resources for development of such collaborative systems.

With rapid development of vehicle-to-everything (V2X)
technology, we will see a mix of vehicles equipped with
V2X devices and traditional ones on highways in the very
near future. Traffic monitoring systems will have to pro-
vide support for classifying these V2X-equipped vehicles.
Fortunately, classifying V2X-equipped vehicles will be very
easy by allowing these vehicles to send vehicle class infor-
mation via a V2X message to the classification system.
Therefore, the classification accuracy will be significantly
enhanced. However, numerous technical challenges for cre-
ating an effective protocol that enables seamless communi-
cation between passing cars and traffic monitoring systems
will have to be addressed, such as reliable and secure data
transmission, dynamic range adjustment, interference reduc-
tion, support for both DSRC and cellular network-based V2V,
message formats, etc.

VII. CONCLUSION
We presented a review of traffic monitoring systems focusing
on the key functionality of vehicle classification. By cate-
gorizing the vehicle classification systems according to how
sensors are installed into three types, i.e., in-roadway, over-
roadway, and side-roadway based systems, we discussed var-
ious research issues, methodologies, hardware design, and
limitations. We also discussed a number of research chal-
lenges and future research directions. We expect that the
rich contents about virtually all vehicle classification systems
developed in the past decade will be useful resources for
academia, industry, and government agencies in selecting
appropriate vehicle classification solutions for their traffic
monitoring applications.
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