
Received March 13, 2020, accepted April 7, 2020, date of publication April 13, 2020, date of current version May 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987617

Quick Boot of Trusted Execution Environment
With Hardware Accelerators
TRONG-THUC HOANG 1,2, (Graduate Student Member, IEEE),
CKRISTIAN DURAN1, (Student Member, IEEE),
DUC-THINH NGUYEN-HOANG1, (Student Member, IEEE),
DUC-HUNG LE 1, (Member, IEEE), AKIRA TSUKAMOTO2,
KUNIYASU SUZAKI2,3, AND CONG-KHA PHAM 1, (Member, IEEE)
1Department of Information and Network Engineering, The University of Electro-Communications (UEC), Tokyo 182-8585, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
3Technology Research Association of Secure IoT Edge Application based on RISC-V Open Architecture (TRASIO), Tokyo 101-0022, Japan

Corresponding author: Trong-Thuc Hoang (thuc@vlsilab.ee.uec.ac.jp)

This work was supported by the project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

ABSTRACT The Trusted Execution Environment (TEE) offers a software platform for secure applications.
The TEE offers a memory isolation scheme and software authentication from a high privilege mode.
The procedure uses different algorithms such as hashes and signatures, to authenticate the application
to secure. Although the TEE hardware has been defined for memory isolation, the security algorithms
often are executed using software implementations. In this paper, a RISC-V system compatible with TEEs
featuring security algorithm accelerators is presented. The hardware accelerators are the SHA-3 hash and
the Ed25519 elliptic curve algorithms. TileLink is used for the communications between the processor and
the register of the accelerators. For the TEE boot, the software procedures are switched with the accelerated
counterpart. Comparing to the software approach, a 2.5-decade increment is observed in the throughput of
the signature procedure using the SHA-3 acceleration for big chunks of data. The Ed25519 performs 90%
better compared to the software counterpart in execution times.

INDEX TERMS TEE, SHA-3, Ed25519, RISC-V.

I. INTRODUCTION
A Trusted Execution Environment (TEE) prevents
unauthenticated code from running by using hashing, cer-
tificate signing, and cryptography. A clear example of these
environments is the TEE boot, which authenticates a boot-
loader by using manufacturer-given keys to sign the payload
from an untrusted device such as external flash memories.
The security data is often protected over address regions
by scaling the privilege level in a processor. In the RISC-V
Instruction Set Architecture (ISA) specification, a machine
mode runs first when the processor is in a reset machine state.
The processor then escalates to the user mode, protecting the
access of previously configured memory regions using the
Physical Memory Protection (PMP) scheme [1]. In ARM,
exists a security extension named TrustZone, which can be
configured to protect memory addresses through a barrier [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

The implementation of different TEEs can be described in
various aspects. The execution environment is only generated
once in ARM TrustZone, and Intel SGX and Keystone can
be generated dynamically, making them Enclaves. TrustZone
and Keystone have two different memorymodels named Nor-
mal and Secure World, which can be configured at startup.
The trusted boot depends on the implementation of the system
and the initial ROM, usually being authenticated by external
cryptographic modules. Intel SGX is the only CPU with
a clear point of trust, which in comparison, can be omit-
ted in ARM TrustZone. Keystone implements the Sanctum
method but is still in the early implementation stages [3].
Beside this status, the Keystone enclave offers novelty due
to be implemented in RISC-V processors, the security algo-
rithms are quantum-resistant, and there is open-source which
allows further modifications in the root of trust. Some stud-
ies have been demonstrated the security of hardware-based
TEEs like ARM TrustZone and Intel SGX. Ning et al. study
the hardware-assisted TEEs of the ARM TrustZone and the
Intel SGX, showing that the deployment can improve the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 74015

https://orcid.org/0000-0002-4078-0836
https://orcid.org/0000-0003-3227-9117
https://orcid.org/0000-0001-5255-4919
https://orcid.org/0000-0002-2703-0213


T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

security with low-performance overhead [4]. Mukhtar et al.
present a comparative analysis between Intel SGX and ARM
TrustZone, indicating a failure to protect data against soft-
ware side-channel attacks [5]. Benhani et al. evaluate the
security of ARM TrustZone in Field-Programmable Gate
Array (FPGA) System-on-Chip (SoC) inserting malicious
circuits in the buses [6].

The use of TEE is increasing in different applications
where utilize the memory isolation and authentication of the
framework. Abdi et al. utilize TEEs to guarantee a baseline
physical safety against cyber-attacks who can compromise
the controller unit [7]. Guan et al. shield applications over
compromised operative systems and physical attacks using a
lightweight run-time system based on ARM TrustZone [8].
Staffa et al. present a study of the security treats over
humanoid robots and the first hardware-based solution using
TEEs [9]. Fan et al. implement TEEs on mobile devices [10].
IBBE-SGX construct an encryption scheme for group access
control over the cloud secured by TEEs [11]. Jang et al.
construct a TEE defense framework using a partially privi-
leged process that can communicate with the hypervisor and
TrustZone without depending on the kernel [12]. SPEED pro-
poses a secure and generic deduplication system in Intel SGX,
improving performance by reusing computation results by
identifying redundant computation [13]. HyperMI presents
virtual machine protection, featuring security against com-
promised hypervisors by isolating guests in a secure exe-
cution environment [14]. MicroTEE designs a TEE on a
microkernel software architecture with the necessary services
for the application layer [15]. Ladjel et al. evaluate the use
of TEE-based computing for personal data in a large number
of participants [16]. Gollamudi et al. present a core calculus
for secure decentralized distributed applications using stan-
dard cryptographic mechanisms and the TEE platforms [17].
DER-TEE presents a smart inverter using a TEE-based archi-
tecture [18]. Finally, TEE-Perf offers performance measure-
ment tools for TEEs, injecting profiling code, and tracing the
program execution [19].

The TEE can be performed in several ways, and each
one composes a framework that communicates the lim-
ited with the trusted privileges. An enclave framework
uses memory protection in user mode to store sensitive
data in selected areas of the address space. Sanctum is
an enclave that isolates on software level over memory
pages utilizing a memory translation modification in hard-
ware [3]. Mi6 protects cache coherence attacks by using
speculative out-of-order multi-core processors and sanc-
tums [20]. Keystone is a framework for RISC-V proces-
sors that takes advantage of the physical memory protection
standard to authenticate the execution of programs in a safe
environment [21]. TIMBER-V is also an isolation scheme
for RISC-V processors that provides security with low
overhead [22].

TEEs offer a strategy in software and hardware to
offer isolation and trusted execution for applications. The
actual encryption and security algorithms are offered by

external cores. In the case of Intel SGX and ARM
TrustZone, the system can implement a Trusted Platform
Module (TPM). This TPM implements standard security
algorithms and crypto-primitives like SHA-1, SHA-256,
RSA, ECC, AES-128, HMAC, and MGF1 for trusted
computing [23], [24]. The TPM can be implemented in
software or hardware, as long as the access to the TPM
is isolated by the trusted environment. Most of the new
computer assets with an Intel architecture processor con-
tains an isolated TPM in hardware, but ARM architectures
rarely contain a hardware implementation. In Keystone and
other RISC-V trusted environments, such specification is
not defined clearly. Novel papers have specified a group of
cryptographic primitives and endorsement algorithms. In the
case of Keystone, SHA-3 and Ed25519 are necessary to
implement a secure environment [21]. TIMBER-V performs
authentication with SHA256 and HMAC algorithms [22].

Although hardware architectures have been proposed for
the development of the TEEs in RISC-V, there is a reduced
number of applications where the framework combines hard-
ware cryptographic accelerators with the environment. In this
paper, we present a RISC-V system for TEEs that includes
hardware acceleration on the SHA-3 secure hash algorithm
and the Ed25519 elliptic curve algorithm. The SHA-3 and
Ed25519 were chosen because of their reasonably recent
specification publications, the low overhead in their execu-
tion, and they are part of the current Keystone implementa-
tion [21]. Currently, SHA-3 is the latest secure hash standard,
and its efficiency has been proven to be quantum-resistant
due to the sponge function in Keccak-1600 [25]. On the other
hand, the Ed25519, according to its authors [26], has the
security level equivalent to that of a 3000-bit Rivest-Shamir-
Adleman (RSA) key-strength, while its implementation cost
is much cheaper than an equivalent RSA implementation.
To conclude, combining the SHA-3 and Ed25519 with the
customizable open-source processor of RISC-V makes a
significant improvement for the TEE framework, especially
for the TEE boot procedure. For the processor implemen-
tation, the Rocket chip generator is used to integrate the
system and to bind the accelerators on the memory map [27].
The SHA-3 and Ed25519 hardware accelerators are wrapped
using CHISEL Hardware Description Language (HDL) [28].
The TileLink buses are used for the processor to regis-
ter communications [29]. The SHA-3 accelerator works by
pushing 64-bit chunks of data over the input register. The
Ed25519 accelerator is divided into two parts: the base-point
multiplier, and the signature calculator. The base-point multi-
plier calculates a scalar multiplication over the base-point of
the curve25519, useful for the key-pair generation and part of
the signature calculation. The signature procedure performs
the signature equation of the Ed25519, wrapping it also auto-
matically over the large prime [26]. These accelerators are
used in the TEE boot procedure, which utilizing the Keystone
framework as the base environment [21]. The software cal-
culations of the Keystone are implemented using hardware
accelerators.

74016 VOLUME 8, 2020



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

FIGURE 1. Hardware architecture of the SoC TEE.

The remainder of this paper is organized as fol-
lows. Section II describes the proposed hardware system.
Section III depicts the software platform that manages the
TEE boot using the hardware accelerators. Section IV shows
the experimental results. Furthermore, Section V concludes
the paper.

II. HARDWARE IMPLEMENTATION
The system for the TEE features RISC-V processors
implementing the RV64IMAFDC instruction sets [1]. The
RV64IMAFDC means 64-bit RISC-V ISA with Integer,
Multiplication, Atomic, Floating-point, Double floating-
point, andCompress extensions. The Rocket chip generator is
used as the hardware platform to integrate the security accel-
erators [27]. The generator and all the security cores utilize
the Chisel hardware description language to generate an inter-
mediate Register Transfer Level (RTL) representation [28].
This RTL representation, named FIRRTL, is converted to
Verilog to a future assembly in FPGA and Very-Large Scale
Integrated-circuit (VLSI) flows [30], [31]. This generator is
a part of a chip platform creation named Chipyard where
includes all sorts of Chisel-based utilities and hardware for
different hardware assemblies [32]. The generator also out-
puts some file artifacts like torture scripts for processor test-
ing and a device tree file for operative systems to detect the
hardware attached to the system. All the additional artifacts
are generated according to the configurations passed to the
generator. All the configuration matches the requirements for
the Keystone TEE to run a security manager from the boot
sequence [21].

Figure 1 presents the computer architecture of the secu-
rity system. This system is compatible with the software
implementation of the Keystone enclave [33]. Two RISC-V
Rocket cores are implemented in the coreplex generator. Each
core integrates a 2KB instruction cache and a shared Layer-
1 data cache of 2KB. The coreplex is connected to the system
bus (SBUS) using the TileLink protocol [29]. The generator
also creates the peripheral bus (PBUS) and the memory bus
(MBUS), interconnecting all the bus nodes together. The
address space for each node is set according to the configu-
rations of each slave connected to any inter-connector. The
system contains several peripherals attached to the PBUS
such as GPIO, MMC controller, UART, and ROM. The data

input and output are memory-mapped using register routers,
converting writes and reads from TileLink to register controls
through the Rocket generator. The new security cores are
located in the PBUS, where data and triggers are pushed to
several memory locations. The system also supports 1GB
RAM using a DDR controller, intended to offer an execution
memory space for an operative system. This controller is
driven by an AXI4 bus, converted from the memory-cached
MBUS [34]. The overall system and the accelerators, along
with the generator integration, are included in a single
repository [35].

The first implemented security accelerator for the
Key-stone boot sequence is an SHA-3 hash calculator. Sev-
eral hardware architectures have been proposed to offer an
SHA-3 acceleration. Eissa et al. [36] proposed an SHA-3
instruction set for the RISC-V ISA by separating each oper-
ation in the keccak algorithm into different instructions.
Ahmed and Farag [37] offered a design with a config-
urable keccak-f function that optimized for Hash Message
Authentication Code (HMAC) and Pseudo-Random Number
Generator (PRNG). Ioannou et al. [38] presented an FPGA
implementation of SHA-3 that capable of handling multiple
messages. Figure 2 shows the peripheral architecture of the
SHA-3 accelerator wrapped to the TileLink bus. This accel-
erator contains a padding module and a Keccak-1600 round
calculator [25]. The padding module retrieves 64-bit data
from the register-router, then is pushed through the 576-bit
buffer using a shifter. When the buffer is full, the accelerator
performs a round calculation. A constant counter keeps track
of the number of rounds and constant non-linearity of the iota
phase of the Keccak round. The first round is calculated from
the first 64-bit data push through the padding module. Every
round state is stored in an 1600-bit status register. When the
final data is pushed through the padding module, the round
calculation performs the final rounds in the status registers,
and then the first 512-bit word can be used for the hash
output of the calculation. The usage of this module consists
of pushing 64-bit data stream segments through the SHA-
3 accelerator. The final stream that does not fit in a 64-bit
sub-stream needs to be pushed with the help of the final size
register, which is ignored for intermediate streams.

The next accelerator is presented in Figure 3. This archi-
tecture contains the base point multiplier, which performs
the operation P = sB in the curve25519 elliptic curve [26].
This multiplier is useful for generating the public and pri-
vate keys and providing part of the calculations in the sig-
nature and verification of the Ed25519 algorithms in the
Keystone TEE. The base point multiplier inputs the data
through a memory-mapped RAM controller with write-only
capabilities, where SHA-3 hashed private key is stored. The
Ed25519 multiplier extracts each one of the bits from mem-
ory for the base point multiplication. Each one of the bits
passes through a microcode finite-state machine, which trig-
gers different states according to the initialization, 0- and
1-bit calculation states from the extraction, rounding logic,
and final calculations. This finite-state machine provides

VOLUME 8, 2020 74017



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

FIGURE 2. SHA-3 hashing datapath based on the algorithm specification in [25].

FIGURE 3. Ed25519 base point multiplier datapath based on the formula in [26].

the starting point to a microcode ROM for executing arbi-
trary instructions. These instructions are decoded and exe-
cuted by a microprocessor containing the necessary mod-
ules for performing the 512-bit operations for the base point

calculation. The microprocessor is composed of an adder,
a subtract module, and a multiplier. All the calculation mod-
ules are provided with a simple module calculator, useful for
wrapping the value to the 2252− 19 prime number, necessary

74018 VOLUME 8, 2020



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

FIGURE 4. Ed25519 half signature datapath based on the formula in [26].

for this algorithm to perform the operations. The results for
any operation can be stored in a 2KB memory bank, which
acts as a register file, or the final output memory-mapped
memory for the final output. The memory bank also con-
tains useful constants mapped to specific addresses. The
microcode contains instructions for performing vector-based
operations according to the curve25519 definition.

The last accelerator is an Ed25519 signing datapath which
performs the result of the operation S = r +H (R,A,M )× s,
which is half of the signature for any message M [26]. The
other half of the signature can be calculated using the base
point multiplier previously described. It is also noted that the
number in each operation of the Ed25519’s signing datapath
is wrapped into the large prime l. This signature is used in
the Keystone bootloader for signing the bootloader software
to prevent tampering. Figure 4 shows the datapath for the
signature calculation. The main three inputs of the signature
are the hashed message with the public key and the half
signature H (R,A,M ), the hashed message with the private
key H (S,M ), and the public key A. This information is taken
for the calculation of the other half of the signature triggering
a begin enable from a memory-mapped register. The overall
operation is directed by a simple state machine, which per-
forms each one of the necessary operations of the signature
equation. When the state machine is ready, the enable signal
triggers further states for calculating each one of the steps of
the equation. The datapath is composed by a 256-bit adder
and multiplier, and a module calculator for wrapping value
through the large prime l. The logic contains a 256-bit register
for holding the sum results and a 512-bit register for the
multiplication results. The state machine first reduces R from

theH (S,M ) value and stores it inside the 256-bit register. The
reduction of H (R,A,M ) and subsequent multiplications and
reductions with A are stored in the 512-bit register. The final
sum and reduction are calculated from both the registers and
stored in the final 512-bit register output.

III. TEE BOOT PROCEDURE
The TEE boot process is based on the Keystone platform [21].
The platform creates public and private keys from the keys of
the manufacturer. This platform uses these keys to generate
a signature of the bootloader to authenticate. The Keystone
procedure is stored in a boot ROM on a fixed memory
range where the multiple processors point the reset vectors,
often named the Zero-State BootLoader (ZSBL). After the
ZSBL stage, another bootloader usually utilized called the
First-Stage BootLoader (FSBL). Then after the FSBL stage,
the program to boot is a Linux bootloader like the Berkeley
BootLoader (BBL) or OpenSBI, together with the Linux
kernel and the initial ram filesystem. This program can be
stored in any external media as a payload to authenticate.
In this case, the payload is located in an external SD-card
driven by an SPI controller.

Figure 5 describes the TEE boot process using the previous
hardware architecture. First, the ZSBL in boot ROM locates
and copies the FSBL from the external media (SD-card) to
the main memory. Then, it jumps to the FSBL and executes
there. After that, the FSBL locates and copies the BBL from
the SD-card to the main memory. It also creates the Secure
Monitor (SM) in the memory. The SM then extracts the initial
seed for the key pair by hashing the copied BBL payload.
The hash calculation is performed via the memory-mapped

VOLUME 8, 2020 74019



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

FIGURE 5. The TEE boot and root of trust procedure.

SHA-3 previously described in Figure 2 by pushing 64-bit
chunks of data through the input register. The result of the
hash is pushed to the Ed25519 base point multiplier for
generating the public and secret pair of keys. With the help
of the SHA-3 accelerator and the newly created keys, the SM
performs the signature of the BBL payload then stores the
result in a secure memory address for further use. At this
point, the Linux kernel can be boot by executing the BBL.
Finally, after booted, the BBL authentication can be done
by the attestation function provided by the SM via signature
verification.

As described before, most of the calculations for hash-
ing and key-pair generation are done by pushing the data
to certain data registers. The peripheral hardware reads the
data from the registers and performs the desired output. The
signature procedure follows a different way to accelerate the
result. According to Figure 4, the signature receives calcu-
lated parts of the signature equation [26]. The algorithm 1
presents the procedure in software to calculate a full signature
from the original data using the signature accelerator. This
procedure uses the hardware SHA-3 and the Ed25519 base-
point multiplier to obtain the two halves of the signature
P and Q. The message and the secret key most-significant
bits are first hashed using the hardware-accelerated SHA-3
and stored in r . To calculate R, the previous value is passed

Algorithm 1 Ed25519 Signature in Hardware Using
SHA-3 and the Base Point Multiplier
1: procedure HW Ed25519sign(message,Pk ,Sk )
2: r ← HW SHA3(Sk [high],message)
3: R← HW Ed25519mult (r) F R = rB
4: RAM ← HW SHA3(R,Pk ,message)
5: (In HW) H (S,M )← r
6: (In HW) H (R,A,M )← RAM
7: (In HW) SK ← SK
8: (In HW) TriggerAndWait()
9: return [P,Q]
10: end procedure

to the hardware Ed25519 base point multiplier. Again, the
SHA-3 is used with the message, the public key, and the result
of R. The next steps involve pushing the previously calculated
data into the registers. The hardware procedure performs the
operations to calculate the P and Q halves of the message
signature.

IV. RESULTS
The proposed system is implemented in the Altera
DE4 Development and Education board with the FPGA chip
of Stratix-IV GX EP4SGX230. Table 1 shows the results

74020 VOLUME 8, 2020



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

FIGURE 6. Comparison between software and hardware implementations of the TEE boot
including SHA-3 and Ed25519 calculations using the Keystone bootloader.

TABLE 1. Synthesis results for a Stratix-IV GX Altera FPGA.

of the implementation. Most of the logic utilization in the
FPGA is occupied by the Rocket tiles, which occupies 12.4%,
followed by the SHA-3 accelerator with 3.4%. The logic
utilization in the Ed25519 signature and base-point multiplier
are roughly the same around 2.3% and 2.6%. Although the
logic increases between the Ed25519 accelerators, there is
a significant increase in the usage of Digital Signal Proces-
sors (DSP) from 3.7% to 10% caused by bigger calculation
units in the rounding machine. The Rocket tiles contain
floating-point logic, integer multipliers, and dividers that syn-
thesizes 2.4% of the DSP resources. The Ed25519 multiplier
requires 8KB memory for the memory register bank for the
temporal calculations, which occupies 3.8% of the total RAM
utilization. The caches for the Rocket tiles contain 4KB of
RAM, utilizing 1% of the RAM resources.

The FSBL was tested on this system with pure-software
and hardware-accelerated algorithms for comparison. The
SHA-3 and the Ed25519 hardware previously explained are
used in the hardware-accelerated version, pushing the data
of the payload for hashing, keypair generation, and sign-
ing. We run this environment with several payload sizes
to measure time on authenticating the bootloader and the
Linux kernel. Figure 6 presents the overall execution time
for the Keystone bootloader to perform the root of trust in
the TEE boot for several payload sizes. The payload includes

TABLE 2. Execution results for the Ed25519 key and signature process.

the Linux bootloader and the Linux kernel, along with the
initial filesystem. This payload was increased on the initial
filesystem by putting random data on a file in several sizes.
For both software and hardware implementations, the time
increments exponentially. For any stream size, the execu-
tion time on the hardware-accelerated implementation of the
Keystone framework decrements 2.5 decades compared to
pure-software.

The algorithm presented in Figure 5 to authenticate
the payload mostly uses the SHA-3 hashing, leaving the
Ed25519 key-pair and signing as a new calculation process.
Table 2 is presented to offer a broader perspective on the
individual calculation execution of each one of the acceler-
ators over a 2MB bootloader. A software-based implemen-
tation of both SHA-3 and Ed25519 presents an exponential
increase of time compared to a hardware-only SHA-3 in
the signature procedure, as the payload needs to be hashed
twice. A hardware solution for the SHA-3 does not impact the
execution time profoundly in the key-pair generation, as the
hash to calculate is performed over a 256-bit stream. For
key-pair calculation and signature process, there is a decrease
of the execution time around 90% from the software to
the hardware Ed25519 implementations, both with hardware
SHA-3 hashing.

V. CONCLUSION
In this paper, we presented a system for TEEs featuring
SHA-3 and Ed25519 accelerators. The system integrates two
RISC-V cores with RV64IMAFDC ISA extensions using the

VOLUME 8, 2020 74021



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

Rocket chip generator, including memory protection for the
Keystone framework. The SHA-3 accelerator hashes data
using a 64-bit register as input. The Ed25519 is divided into
two main parts named the base-point multiplier for key-pair
generation, and the signature accelerator. The software is
composed of a root of trust to authenticate a Linux boot-
loader using Keystone for TEE boot. This software utilizes
the accelerators by pushing the data over memory-mapped
registers and triggers to obtain calculation results for the
authentication signature. The system implementation is built
in a high-end Altera Stratix-IV FPGA. The Rocket tiles
occupy 12.4% of the total logic in the system. The included
crypto-cores occupy a total of 8.3% combined in logic, but
the Ed25519 utilizes up to 13.7% of the total FPGA DSPs to
calculate multiplications and rounding. The total RAM used
in the whole system is 4.7% distributed in the 4KB of cache
included in a Rocket tile, and the 8KB of RAM used in the
Ed25519 base-point multiplier to store temporal calculations.
The calculation process for any bootloader payload to authen-
ticate is reduced 2.5-decade milliseconds comparing the soft-
ware and hardware implementations of the TEE boot. The
SHA-3 acceleration decreases the execution time for message
signature significantly, but not too much for the key-pair
generation. The time of the key-pair and signature procedures
are decreased from 90% using the Ed25519 acceleration.

ACKNOWLEDGMENT
This article is based on the results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES
[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanoviä, ‘‘The

RISC-V instruction set manual, volume I: User-level ISA, version
2.0,’’ EECS Dept., Univ. California, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2014-54, May 2014. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[2] TrustZone Technology for the ARMv8-M Architecture, ARM,
Cambridg, U.K., 2017. [Online]. Available: https://developer.arm.com/
docs/100690/0200

[3] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware
extensions for strong software isolation,’’ in Proc. 25th USENIX Secur.
Symp., Aug. 2016, pp. 857–874.

[4] Z. Ning, J. Liao, F. Zhang, andW. Shi, ‘‘Preliminary study of trusted execu-
tion environments on heterogeneous edge platforms,’’ in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Oct. 2018, pp. 421–426.

[5] M. A. Mukhtar, M. K. Bhatti, and G. Gogniat, ‘‘Architectures for security:
A comparative analysis of hardware security features in intel SGX and
ARM TrustZone,’’ in Proc. 2nd Int. Conf. Commun., Comput. Digit. Syst.
(C-CODE), Mar. 2019, pp. 299–304.

[6] E. M. Benhani, L. Bossuet, and A. Aubert, ‘‘The security of ARM
TrustZone in a FPGA-based SoC,’’ IEEE Trans. Comput., vol. 68, no. 8,
pp. 1238–1248, Aug. 2019.

[7] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
‘‘Preserving physical safety under cyber attacks,’’ IEEE Internet Things
J., vol. 6, no. 4, pp. 6285–6300, Aug. 2019.

[8] L. Guan, C. Cao, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
‘‘Building a trustworthy execution environment to defeat exploits from
both cyber space and physical space for ARM,’’ IEEE Trans. Dependable
Secure Comput., vol. 16, no. 3, pp. 438–453, May 2019.

[9] M. Staffa, G. Mazzeo, and L. Sgaglione, ‘‘Hardening ROS via hardware-
assisted trusted execution environment,’’ in Proc. 27th IEEE Int. Symp.
Robot Hum. Interact. Commun. (RO-MAN), Aug. 2018, pp. 491–494.

[10] Y. Fan, S. Liu, G. Tan, X. Lin, G. Zhao, and J. Bai, ‘‘One secure access
scheme based on trusted execution environment,’’ in Proc. 17th IEEE Int.
Conf. Trust, Secur. Privacy Comput. Communications/ 12th IEEE Int. Conf.
Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2018, pp. 16–21.

[11] S. Contiu, R. Pires, S. Vaucher, M. Pasin, P. Felber, and L. Réveillère,
‘‘IBBE-SGX: Cryptographic group access control using trusted execution
environments,’’ in Proc. Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2018, pp. 207–218.

[12] J. Jang and B. B. Kang, ‘‘Retrofitting the partially privileged mode for
TEE communication channel protection,’’ IEEE Trans. Dependable Secure
Comput., Aug. 2018, p. 1.

[13] H. Cui, H. Duan, Z. Qin, C. Wang, and Y. Zhou, ‘‘SPEED: Accelerating
enclave applications via secure deduplication,’’ in Proc. IEEE 39th Int.
Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 1072–1082.

[14] K. Lin, W. Liu, K. Zhang, and B. Tu, ‘‘HyperMI: A privilege-level VM
protection approach against compromised hypervisor,’’ in Proc. 18th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Communications/13th IEEE Int.
Conf. Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2019, pp. 58–65.

[15] D. Ji, Q. Zhang, S. Zhao, Z. Shi, and Y. Guan, ‘‘MicroTEE: Designing TEE
OS based on the microkernel architecture,’’ in Proc. 18th IEEE Int. Conf.
Trust, Secur. Privacy Comput. Communications/13th IEEE Int. Conf. Big
Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2019, pp. 26–33.

[16] R. Ladjel, N. Anciaux, P. Pucheral, and G. Scerri, ‘‘Trustworthy distributed
computations on personal data using trusted execution environments,’’ in
Proc. 18th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun./13th
IEEE Int. Conf. Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2019,
pp. 381–388.

[17] A. Gollamudi, S. Chong, and O. Arden, ‘‘Information flow control for
distributed trusted execution environments,’’ in Proc. IEEE 32nd Comput.
Secur. Found. Symp. (CSF), Jun. 2019, p. 304.

[18] D. J. Sebastian, U. Agrawal, A. Tamimi, and A. Hahn, ‘‘DER-TEE: Secure
distributed energy resource operations through trusted execution environ-
ments,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 6476–6486, Aug. 2019.

[19] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer, ‘‘TEE-perf: A profiler
for trusted execution environments,’’ in Proc. 49th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2019, pp. 414–421.

[20] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
‘‘MI6: Secure enclaves in a speculative Out-of-Order processor,’’ in
Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2019,
pp. 42–56.

[21] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovi, ‘‘Keystone:
An open framework for architecting TEEs,’’ 2019, arXiv:1907.10119.
[Online]. Available: http://arxiv.org/abs/1907.10119

[22] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A.-R. Sadeghi, ‘‘TIMBER-V: Tag-isolated memory bringing fine-grained
enclaves to RISC-V,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., Feb. 2019,
pp. 1–15.

[23] Trusted Platform Module 1.2 Main Specification, Trusted Comput.
Group, Beaverton, IR, USA, 2011. [Online]. Available: https://trustedcom
putinggroup.org/resource/tpm-main-specification/

[24] Trusted Platform Module 2.0 Library Specification, Trusted Comput.
Group, Beaverton, IR, USA, 2016. [Online]. Available: https://trustedc
omputinggroup.org/resource/tpm-library-specification/

[25] J. M. Dworkin. (Aug. 2015). SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. [Online]. Available:
https://www.nist.gov/publications/sha-3-standard-permutation-based-
hash-and-extendable-output-functions

[26] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, ‘‘High-
speed high-security Signatures,’’ J. Cryptograph. Eng., vol. 2, no. 2,
pp. 77–89, Sep. 2012.

[27] RISC-V Foundation. (2019). Rocket Chip Generator. [Online]. Available:
https://github.com/chipsalliance/rocket-chip

[28] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanovi, ‘‘Chisel: Constructing hardware in a scala
embedded language,’’ in Proc. 49th Annu. Design Autom. Conf., Jun. 2012,
pp. 1212–1221.

[29] SiFive. (Aug. 2019). SiFive TileLink Specication. [Online]. Available:
https://www.sifive.com/documentation/tilelink/tilelink-spec/

[30] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, ‘‘Reusability is FIR-
RTL ground: Hardware construction languages, compiler frameworks, and
transformations,’’ in Proc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), Nov. 2017, pp. 209–216.

74022 VOLUME 8, 2020



T.-Thuc Hoang et al.: Quick Boot of TEE With Hardware Accelerators

[31] P. S. Li, A. M. Izraelevitz, and J. Bachrach, ‘‘Specification for the
FIRRTL Language,’’ EECS Dept., Univ. California, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2016-9, Feb. 2016. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html

[32] University of California at Berkeley. (2020). Chipyard: An Agile RISC-
V SoC Design Framework With in-Order Cores, Out-of-Order Cores,
Accelerators, and More. [Online]. Available: https://github.com/ucb-
bar/chipyard

[33] K. Enclave. (2020).Keystone: AnOpen-Source Secure Enclave Framework
for RISC-V Processors. [Online]. Available: https://github.com/keystone-
enclave/keystone

[34] ARM Company, ‘‘AMBA AXI and ACE protocol specification,’’ ARM,
Cambridge, U.K., Tech. Rep. ARM IHI 0022D, 2011. [Online]. Avail-
able: http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/
AXI4_specification.pdf

[35] C. Duran, T.-T. Hoang, D.-T. Nguyen-Hoang, D.-H. Le, A. Tsukamoto,
K. Susaki, and C.-K. Pham. (2020). Keystone hardware. [Online]. Avail-
able: https://github.com/ckdur/keystone-hardware

[36] A. S. Eissa, M. A. Elmohr, M. A. Saleh, K. E. Ahmed, and M. M. Farag,
‘‘SHA-3 instruction set extension for a 32-bit RISC processor architec-
ture,’’ in Proc. IEEE 27th Int. Conf. Appl.-Specific Syst., Architectures
Processors (ASAP), Jul. 2016, pp. 233–234.

[37] K. E. Ahmed andM.M. Farag, ‘‘Hardware/software co-design of a dynam-
ically configurable SHA-3 System-on-Chip (SoC),’’ in Proc. IEEE Int.
Conf. Electron., Circuits, Syst. (ICECS), Dec. 2015, pp. 617–620.

[38] L. Ioannou, H. E. Michail, and A. G. Voyiatzis, ‘‘High performance
pipelined FPGA implementation of the SHA-3 hash algorithm,’’ in Proc.
4th Medit. Conf. Embedded Comput. (MECO), Jun. 2015, pp. 68–71.

TRONG-THUC HOANG (Graduate Student
Member, IEEE) received the B.Sc. degree in
electronics and telecommunications and the M.S.
degree in microelectronics from the University of
Science - Vietnam National University of Ho Chi
Minh City, Vietnam, in 2012 and 2017, respec-
tively. He is currently pursuing the Ph.D. degree
in information and network engineering with The
University of Electro-Communications (UEC),
Tokyo, Japan, and also a Research Assistant with

the National Institute of Advanced Industrial Science and Technology
(AIST), Tokyo, Japan.

CKRISTIAN DURAN (Student Member, IEEE)
received the B.Sc. degree in electronics and the
M.S degree in telecommunications from the Uni-
versidad Industrial de Santander (UIS), Bucara-
manga, Colombia, in 2014 and 2017, respectively.
He is currently pursuing the Ph.D. degree in elec-
tronics engineering with the Universidad Indus-
trial de Santander (UIS), Bucaramanga, and also a
Research Assistant with the University of Electro-
Comunications (UEC), Tokyo, Japan.

DUC-THINH NGUYEN-HOANG (Student Mem-
ber, IEEE) received the B.Sc. degree in electronics
and telecommunications from the University of
Science–Vietnam National University of Ho Chi
Minh City, Vietnam, in 2019. He is currently work-
ing as a Research Assistant at the Department of
Information and Network Engineering, The Uni-
versity of Electro-Communications (UEC), Tokyo,
Japan.

DUC-HUNG LE (Member, IEEE) received the
B.Sc. degree in physics and the M.Sc. degree
in electronic physics from the University of
Science–Vietnam National University of Ho Chi
Minh City, in 2001 and 2005, respectively, and the
Ph.D. degree in advanced science and engineering
from The University of Electro-Communications
(UEC), Tokyo, Japan, in 2013. From Novem-
ber 2019 to March 2020, he was with the Depart-
ment of Information and Network Engineering,

The University of Electro-Communications (UEC), Tokyo. He is currently
with the Faculty of Electronics and Telecommunications, University of
Science - Vietnam National University of Ho Chi Minh City. His research
interests include design of digital systems on FPGA and integrated circuits,
low-power digital IC design, and digital signal processing.

AKIRA TSUKAMOTO received the M.S. degree
in computer science from Columbia University in
the City of New York. He works at the National
Institute of Advanced Industrial Science and Tech-
nology (AIST). His main focusing area is software
engineering on networks, operating systems, and
system security, who enthusiastic on any kind of
technical development and have worked on prod-
ucts based on Cell/B.E. and ARM.

KUNIYASU SUZAKI received the B.E. and M.E.
degrees in computer science from Tokyo Univer-
sity of Agriculture and Technology, and the Ph.D.
degree in computer science from The University
of Tokyo, Tokyo, Japan. He is currently a Senior
Researcher at the National Institute of Advanced
Industrial Science and Technology (AIST) and
a Researcher of the Technology Research Asso-
ciation of Secure IoT Edge Application based
on RISC-V Open Architecture (TRASIO). His

research interests include security on CPU, operating systems, and hyper-
visor.

CONG-KHA PHAM (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electronics
engineering fromSophia University, Tokyo, Japan.
He is currently a Professor with the Department of
Information and Network Engineering, The Uni-
versity of Electro-Communications (UEC), Tokyo.
His research interests include the design of analog
and digital systems using integrated circuits.

VOLUME 8, 2020 74023


