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ABSTRACT In this paper, we propose a novel learning-aided sphere decoding (SD) scheme for large
multiple-input–multiple-output systems, namely, deep path prediction-based sphere decoding (DPP-SD).
In this scheme, we employ a neural network (NN) to predict the minimum metrics of the ‘‘deep’’ paths
in sub-trees before commencing the tree search in SD. To reduce the complexity of the NN, we employ
the input vector with a reduced dimension rather than using the original received signals and full channel
matrix. The outputs of the NN, i.e., the predicted minimum path metrics, are exploited to determine the
search order between the sub-trees, as well as to optimize the initial search radius, which may reduce the
computational complexity of SD. For further complexity reduction, an early termination scheme based on
the predicted minimum path metrics is also proposed. Our simulation results show that the proposed DPP-SD
scheme provides a significant reduction in computational complexity compared with the conventional SD
algorithm, despite achieving near-optimal performance.

INDEX TERMS MIMO, sphere decoding, tree search, machine learning, deep learning, neural network.

I. INTRODUCTION
In multiple-input multiple-output (MIMO) systems, the
sphere decoding (SD) algorithm is known as an effi-
cient signal-detection scheme, which performs close to the
maximum-likelihood detection (MLD) receiver [1]. Recently,
to satisfy the increasing demand of ultra-high data rates
in mobile communication systems, large MIMO systems,
in which a large number of antennas are employed at a
base station for data transmission and reception, have been
of great research interest [2]. To maximize the achievable
data rates in large MIMO systems, the base station needs to
receive as many symbols as possible simultaneously from
multiple terminals, which leads to enhanced multiplexing
gains. In this circumstance, a near-optimal receiver like SD
plays an important role in approaching the channel capacity.
However, the complexity of SD significantly increases with
the number of antennas [3], which makes it difficult to apply
to large MIMO systems.
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Recently, deep-learning (DL) techniques have been
applied in various fields, exhibiting eminent performance.
Motivated by the performance of DL technologies in other
fields, there have been attempts to apply DL to MIMO detec-
tion [4]– [9]. In particular, the DL-based sphere decoding
(DL-SD) [4] and the sphere decoding with neural network
(NNW-SD) [5] algorithms are derived to choose the opti-
mal initial radius. The neural network (NN) of the DL-SD
algorithm learns the multiple decoding radiuses, which are
sequentially employed for tree search if no solution is found
in a sphere, whereas the NN of the NNW-SD algorithm
is used to determine one optimal radius. By exploiting
the information of the predicted radiuses, the DL-SD and
NNW-SD reduce the computational complexity of the tree
search compared with that of the original SD. However,
the additional complexity required for the NN is high; hence,
their total computational complexities can be higher than that
of the original SD for high signal-to-noise ratios (SNRs).
A deep network architecture, called DetNet, is proposed to
estimate the solution of MIMO detection [6]. Furthermore,
the sparsely connected neural network (ScNet) is devel-
oped to simplify the structure of DetNet for massive MIMO
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systems [7]. Even though the DetNet and ScNet leverage effi-
cient NN structures for symbol detection in MIMO systems,
they provide suboptimal solutions with performance being
considerably worse than that of SD-based algorithms. The
application of a deep neural network to reduce the compu-
tational complexity of the conventional belief propagation
detector is proposed in [8], and the orthogonal approximate
message-passing network (OAMP-Net) architecture is pro-
posed to improve the performance of the iterative detection
algorithm with trainable variables [9].

In this paper, a novel learning-aided SD algorithm is
proposed. The main idea of the proposed algorithm is to
predict the minimum path metric among ‘‘deep’’ paths of
each sub-tree in a large tree structure by using a NN. In large
MIMO systems, the required information to estimate the path
metrics can have large dimension, which can significantly
increase the complexity of the NN. To resolve this problem,
the size of the input vector to the NN is optimized based
on the property of large MIMO channels. The predicted
minimum path metrics of sub-trees, which are generated by
the designed NN architecture, are then used to determine
the search order of SD. Furthermore, they are also used for
early termination and optimization of the initial radius of
SD, which can potentially reduce the overall complexity.
In contrast to the DL-SD [4] and NNW-SD [5], the proposed
algorithm requires substantially lower complexity for the NN,
which allows the proposed learning-aided SD algorithm to
be applied to large MIMO systems while requiring lower
complexity than the original SD. Furthermore, similar to the
original SD, the proposed algorithm achieves near-optimal
performance, whereas the DetNet [6] and ScNet [7] yield
suboptimal performance.

The remaining part of this paper is organized as
follows. In Section II, the system model and conven-
tional Schnorr–Euchner SD (SE-SD) algorithm are explained,
whereas Section III describes the proposed learning-aided
SD algorithm, which employs the NN. Section IV presents
the simulation results to compare the bit-error rate (BER)
performance and computational complexity, and is followed
by the conclusion in Section V.
Notations: Scalars, vectors, and matrices are denoted by

lowercase, bold-face lowercase, and bold-face uppercase let-
ters, respectively. The (i, j)th element of a matrix A is denoted
by ai,j, whereas the ith element of a vector a is denoted by ai.
(·)T and (·)H represent the transpose and conjugate transpose
of a matrix, respectively, whereas I and 0 indicate an identity
matrix and all-zero matrix of appropriate size, respectively.
<(·) and=(·) denote the real and imaginary parts of a complex
matrix, respectively.

II. SYSTEM MODEL
We consider a MIMO system with Nt transmit antennas
and Nr receive antennas. The received signal vector can be
expressed as

y = Hx+ v, (1)

where y represents an Nr × 1 complex received signal vector,
H is an Nr × Nt complex channel matrix, v is an Nr × 1
complex additive white Gaussian noise vector with zeromean
and covariance matrix σ 2

v I, and x is an Nt × 1 complex
transmitted signal vector drawn from a QAM constellation S.
The optimal ML detector searches for the lattice point x̂ML

that has the smallest Euclidean distance to the received signal
vector y over the entire space SNt of the transmitted signal
vector x, yielding

x̂ML = argminx∈SNt ‖y−Hx‖2. (2)

In ML detection, all candidate vectors in SNt need to be
examined, which requires high computational complexity,
especially when Nt is large. To resolve this problem, the SD
algorithm can be employed. To achieve near-MLperformance
with lower complexity, the SD algorithm limits the search
space of the tree search. Specifically, for a search radius d ,
the SD solution can be expressed as

x̂SD = argmin{
x∈SNt

∣∣ ‖y−Hx‖2≤d2
} ‖y−Hx‖2. (3)

To improve the efficiency of the tree search procedure in SD,
the QR decomposition (QRD) of the channel matrix H is
performed, which yields

H = Q
[
R
0

]
, (4)

where R is an Nt × Nt upper triangular matrix,Q = [Q1 Q2]
is an Nr × Nr unitary matrix, and Q1 and Q2 consists of the
firstNt columns and last (Nr−Nt ) columns ofQ, respectively.
Then, the constraint on the search space in (3) can be rewritten
as

‖z− Rx‖2 ≤ d̃2, (5)

where we have z = QH
1 y and d̃2 = d2 − ‖QH

2 y‖
2. Based

on (5), the SD solution can be reformulated as

x̂SD = argmin{
x∈SNt

∣∣ ‖z−Rx‖2≤d̃2} ‖z− Rx‖2. (6)

The SE-SD scheme, known as an improved SD search
strategy, determines search order for nodes at each layer
based on the branch metrics [10]. For a candidate symbol
vector x = [x1, x2, . . . , xNt ]

T , the branch metric at layer l is
written as

B(l) =

∣∣∣∣∣zl −
Nt∑
k=l

rl,kxk

∣∣∣∣∣
2

. (7)

In the SE-SD scheme, the candidate symbols are examined
in ascending order of their branch metrics, which can be
achieved at layer l by following a zigzag search order of
candidate symbols, starting from an initial point:

x̄l =
⌊

1
rl,l

zl − Nt∑
k=l+1

rl,kxk

⌉, (8)

where b·e rounds to the nearest point of its argument in the
constellation S.
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As aforementioned, at each layer of SE-SD, the search
order is determined by the branch metric in (7), which only
considers the metric at the corresponding layer. However,
if we can use the full-path metric, i.e., ‖z− Rx‖2, which
accumulates the branch metrics from the root note to the
leaf node, for ordering, the search can be more efficient.
Furthermore, this full path metric can also be exploited for
early termination and the optimization of the initial radius.
This motivates us to develop a novel NN-based SD scheme,
which utilizes the predicted path metric for the operation
of SD.

III. DEEP PATH PREDICTION FOR SPHERE DECODING
In this section, the proposed DPP-SD is presented. As dis-
cussed in the last paragraph of Section II, knowledge of the
full path metric can improve the efficiency of search ordering,
which can potentially reduce the computational complexity.
Hence, we consider the prediction of the path metric based
on the NN. However, the prediction of the full path metric for
every candidate vector requires the same complexity order
as the ML detection, which implies that it is not an efficient
strategy to exploit the NN to reduce the complexity of SD.
Instead, in the proposed DPP-SD scheme, the NN is designed
to predict the minimum path metric of the sub-tree rooted by
each node at layer Nt . In other words, before beginning the
tree search, the DPP-SD scheme predicts the minimum path
metric of the ‘‘deep path’’ ranging from each child node of the
root to a leaf node in each sub-tree, and we use it for sub-tree
ordering, early termination, and radius determination.

Fig. 1 illustrates a tree structure for SD when quadrature
phase shift keying (QPSK) modulation is employed, where
we have |S| = 4 sub-trees, each of which are rooted by one of
|S| nodes at layer Nt . In the next subsection, we will describe
the NN that predicts the minimum path metrics of the sub-
trees.

FIGURE 1. Tree structure for Nt × Nr MIMO systems with QPSK.

A. DESIGN OF THE NN FOR PATH METRIC PREDICTION
Let g = [g1, g2, · · · , g|S|]T be the target vector of the
proposed NN, where g2q means the minimum path metric of
the sub-tree rooted by the qth node at layer Nt , which can be
formulated as

g2q = |zNt − rNt ,Nt s
(Nt )
q |

2
+ min

x1:Nt−1∈SNt−1

(Nt−1∑
k=1

B(k)
)
. (9)

Here, {s(Nt )1 , s(Nt )2 , · · · , s(Nt )
|S| } are the candidate symbols at

layer Nt , and x1:Nt−1 represents the vector consisting of the
firstNt−1 symbols in x, i.e., x1:Nt−1 = [x1, x2, . . . , xNt−1]

T .
Because the path metric depends on the received signal

vector and the channel matrix, the input to the NN for path
metric prediction should include information of the received
signals and channel coefficients. However, if all compo-
nents of the received signals and channel state information,
i.e., {y, H} or {z, R}, are employed for the input, the com-
plexity of the NN can be significantly large in large MIMO
systems. Furthermore, a large number of input elements can
require a large training set and lower the prediction accuracy.

To reduce the number of input elements, we rewrite the
path metric as

‖z− Rx‖2 = (z− Rx)H (z− Rx)

= zHz− xHRHz− (RHz)Hx

+ xHRHRx, (10)

which implies that the path metric can be computed based
on knowledge of zHz, RHz, and RHR. It also means that
they can be used as the inputs to the NN to predict the
path metrics, instead of the received signals and channel
matrix. However, RHR contains many more elements than
zHz and RHz, whereas it can be approximated as a diagonal
matrix RHR ≈ Nrσ 2

h I in large MIMO systems due to the
asymptotically favorable propagation and channel-hardening
effect [11], where σ 2

h = E(|hi,j|2). By assuming σ 2
h = 1,

RHR can be approximated as a fixed matrix, which is inde-
pendent of either of the received signal or the channel infor-
mation. In practical systems, σ 2

h = 1 can be achieved by
properly normalizing the received signal and channel matrix
in (1). Hence, we exclude RHR from the set of inputs to
the NN. We note that the distribution of the path metric
depends on the noise variance σ 2

v , which implies that the noise
variance can help improve the accuracy of estimating the
minimum path metric in the NN. Considering these aspects,
we set the input vector in the form of

e = [zHz, <{(RHz)T }, ={(RHz)T }, σ 2
v ]
T , (11)

where the size of e becomes 2Nt + 2.
For the NN to predict the minimum path metrics,

we employ a Gaussian radial basis function network
(G-RBFN) [12], [13] consisting of one hidden layer,
as depicted in Fig. 2. The radial basis function is expressed as

ϕ(γ ) = exp
(
−
(γ − µ)2

ω2

)
, γ ∈ R. (12)

In the G-RBFN structure employed for the path metric pre-
diction, the Gaussian function with center µ = 0 and width
ω = 1 is used as the activation function in each node of the
hidden layer. The number of nodes in the hidden layer is set
to 2Nt + 2|S|.
To optimize the parameter vector θ of the NN, which

consists of the weights and biases between input and hid-
den layers and between hidden and output layers, the mean
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FIGURE 2. The proposed NN architecture.

squared error (MSE) loss function is used as follows:

min
θ

E

(
1
M

M∑
m=1

‖ĝ(m)(e; θ )− g(m)‖
2
)
, (13)

whereM indicates the number of training examples, whereas
g(m) and ĝ(m)(e; θ ) = [ĝ(m)1 , ĝ(m)2 , · · · , ĝ(m)

|S| ]
T are the desired

target vector and the output vector for the mth example. For
the optimization algorithm in training, the scaled conjugate
gradient (SCG)method [14] is employed and the learning rate
is set to 0.0001.

B. NN-AIDED OPTIMIZATION OF THE INITIAL RADIUS
In the SD algorithm, the initial radius is typically determined
based on the noise variance σ 2

v to meet the constraint on the
probability of the true solution existing inside the sphere [1].
Specifically, the conventional initial radius f1−ε is chosen as

f1−ε =
√
2Nr4(1− ε)σ 2

v , (14)

where4 is the inverse incomplete gamma function, and 1−ε
is the probability of the true solution existing inside the
sphere. In this work, we assume 1− ε = 0.999. If the initial
radius is small, the complexity of SD is reduced; however, its
BER performance can be degraded because the probability of
the true solution being outside the sphere increases. In con-
trast, if the initial radius is large, the BER performance is
improved, but the complexity can increase. Therefore, a better
trade-off between the performance and complexity can be
achieved if we reduce the initial radius while preserving the
near-optimal BER performance.

We note that the NN presented in the prior subsection
generates ĝ(e; θ ) = [ĝ1, ĝ2, · · · , ĝ|S|]T , which are the
predicted smallest path metrics of all the sub-trees orig-
inating from layer Nt . Hence, we can consider g̃1 =

min{ĝ1, ĝ2, · · · , ĝ|S|} as the estimate of the smallest path
metric over all the possible paths in the tree. Inspired by this,
in the proposed DPP-SD scheme, we set the initial radius f̂ to

f̂ = min(λ1g̃1, f0.999), (15)

where λ1 is a design parameter. In the ideal case, where g̃1
is accurately estimated and we have g̃1 ≤ f0.999, the initial

radius f̂ with λ1 = 1 guarantees that there is at least a
single lattice point inside the sphere, which implies that the
proposed DPP-SD achieves the optimal ML performance.
However, in practice, g̃1 contains a prediction error, and
hence λ1 > 1 is empirically chosen to provide near-optimal
performance. From (15), we have f̂ ≤ f0.999, and hence we
can expect that by setting the initial radius to f̂ instead of
f0.999, the computational complexity of tree search can be
reduced, as will be numerically verified in Section V.

C. NN-AIDED ORDERING
The output of the proposed NN can also be exploited for
ordering in tree search. Specifically, the proposed NN-aided
ordering scheme rearranges the predictedminimum pathmet-
rics in the output vector ĝ(e; θ ) in ascending order to generate
g̃ = [g̃1, g̃2, · · · , g̃|S|]T , where we have g̃1 ≤ g̃2 ≤ · · · ≤
g̃|S|. The smaller predicted minimum path metric of a sub-tree
implies that it is more likely that this sub-tree contains the
final solution of SD. Therefore, it can be computationally
efficient to search over the sub-trees with smaller predicted
path metrics first. In the depth-first search of the proposed
DPP-SD, we visit the nodes at layer Nt in the order of
{g̃1, g̃2, · · · , g̃|S|}. In other words, the sub-tree correspond-
ing to g̃1 is first visited by a depth-first search, and then
the sub-tree corresponding to g̃2 is searched. In this manner,
the search is continued until any termination condition for SD
is satisfied.

This NN-aided ordering strategy for layer Nt can be
extended to the remaining layers, which can potentially
improve the search efficiency. However, it requires additional
outputs of the NN. We note that the number of outputs of
the NN increases exponentially with the number of layers
employing the NN-aided ordering scheme, which leads to the
significantly enhanced overall complexity of DPP-SD. For
example, to apply the NN-aided ordering to layer Nt − 1,
the NN should be designed to predict the minimum path
metrics of |S|2 sub-trees rooted by the nodes at layer Nt − 1.
Considering this aspect, we only apply the NN-aided ordering
scheme to layer Nt , whereas the ordering scheme of SE-SD
is employed for the remaining layers, as illustrated in Fig. 1.

D. NN-AIDED EARLY TERMINATION
To further reduce the complexity, early termination can be
performed based on the predicted minimum path metrics.
When a solution is found through the search for a sub-tree
rooted by the pth node of the first layer, the radius f̂ is updated
to the distance of the found solution. After the search in the
pth sub-tree is completed, the radius, which is generated by
the current best solution, is compared to the predicted mini-
mum path metric of the next sub-tree. In particular, we check
the termination condition

λ2 f̂ < g̃p+1, (16)

where λ2 is a design parameter. If the condition (16) is
satisfied, the most recently found solution is adopted as the
final solution and the algorithm is terminated, which results
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in complexity reduction of the SD. If there is no prediction
error in g̃q+1, we can choose λ2 = 1 in (16) without any
performance loss of the SD receiver. However, considering
the potential prediction error in g̃p+1, λ2 should be set to be
sufficiently large to guarantee the near-optimal performance
of the SD.

The proposed DPP-SD scheme is summarized
Algorithm 1. In step 1, we obtain the predicted path metrics
ĝ(e; θ ) by using the trained NN. In steps 2 and 3, the sub-
trees rooted by a node at layer Nt are rearranged in ascending
order of the elements in ĝ(e; θ ). Then, the NN-aided initial
radius is determined based on the estimated smallest path
metric g̃1 in step 4. In steps 5–16, the tree search procedure is
performed for each sub-tree. Specifically, in step 6, the depth-
first search [15] is performed for the pth sub-tree to find a
new solution candidate. In steps 7 and 8, if a new solution
candidate with a lower path metric than the current solution
x̂ is found, then x̂ is updated. Accordingly, the search radius
is also updated in step 8. Steps 6–9 are repeated to find the
optimal solution in the pth sub-tree. In steps 12–14, it is
determined whether early termination is performed or not.

Algorithm 1 The Proposed DPP-SD Algorithm

Require: z = QH
1 y, R, e, θ , λ1, λ2, f0.999

Ensure: x̂
1: Get ĝ(e; θ ) = [ĝ1, ĝ2, · · · , ĝ|S|]T by using the trained

NN.
2: Sort ĝ(e; θ ) to generate g̃ = [g̃1, g̃2, · · · , g̃|S|]T .
3: Rearrange the sub-trees according to g̃.
4: Set the initial radius: f̂ = min(λ1g̃1, f0.999).
5: for p = 1 to |S| do
6: Perform the depth-first search in the pth sub-tree.
7: if A new solution is found. then
8: Set the new solution to x̂.
9: Update the radius: f̂ = ‖z− Rx̂‖.
10: Go to Step 6 to continue the search for the pth sub-

tree.
11: else
12: if λ2 f̂ < g̃p+1 then
13: Break. (Early Termination)
14: end if
15: end if
16: end for

IV. SIMULATION RESULTS
In this section, the simulation results are presented to evaluate
the performance and complexity of the proposed DPP-SD
scheme. For simulations, we consider 16 × 16 and 24 × 24
MIMO systems with QPSK modulation. For each MIMO
system, 100,000 randomly generated data samples are used to
train the designed NN. To generate the random data samples,
the channel coefficients are set to independent and identi-
cally distributed (i.i.d.) complex Gaussian random variables
with zero mean and unit variance, whereas the SNR is set
to a uniform random variable in the range of [4, 14] dB.

We define the SNR as EsNt/σ 2
v , where Es is the average

symbol energy. Considering the small network size of the
proposed DPP-SD scheme, we train the network with a single
batch of 100,000 samples. Furthermore, the number of itera-
tions is set to 1,000 and the learning rate is 0.0001.

The design parameters λ1 and λ2 of the proposed DPP-SD
algorithm are optimized by simulations. As λ1 and λ2
increase, the performance improves; however, the complexity
also increases. Therefore, the values of λ1 and λ2 are opti-
mized such that the complexity of the DPP-SD is minimized
while its performance remains nearly the same as that of the
SE-SD. The optimized values of λ1 and λ2 for each MIMO
configuration and SNR are shown in Table 1.

TABLE 1. Optimized values of λ1 and λ2.

As presented in Section III, the DPP-SD scheme is
composed of three sub-schemes: NN-aided initial radius,
NN-aided sub-tree ordering, and early termination. To sep-
arately test these sub-schemes, we evaluate 1) DPP-SD
with only the NN-aided initial radius, 2) DPP-SD with
only NN-aided sub-tree ordering, and 3) DPP-SD with only
NN-aided sub-tree ordering and early termination, which
are referred to as ‘‘DPP-SD w/ NN-radius,’’ ‘‘DPP-SD w/
NN-ordering,’’ and ‘‘DPP-SD w/ NN-ordering & ET’’ in
the figures demonstrating the simulation results, respectively.
We note that early termination can be employed only when
it is incorporated with sub-tree ordering. For the conven-
tional SD scheme, for comparison, the SE-SD algorithm is
considered. In the considered algorithms, if no solution is
found through the search process, the final solution is cho-
sen to be a zero-forcing (ZF) solution, which is given by
x̂ZF = (HHH)−1HHy.
Fig. 3 shows the BER performance comparison of

the proposed DPP-SD and conventional SE-SD in the
assumed MIMO configurations. In Fig. 3, it is observed
that the proposed DPP-SD schemes achieve almost the same
performance as the SE-SD.

In Figs. 4 and 5, we show the computational complexity
ratio of the proposed DPP-SD with respect to the that of con-
ventional SE-SD. To evaluate the computational complexity,
the average number of complex multiplications and additions
is counted. Then the computational complexity of each algo-
rithm is normalized by that of the SE-SD to generate the com-
plexity ratio for each SNR. In contrast to the SE-SD algorithm
in which only the computations for tree search are counted,
for the proposed DPP-SD algorithm the computations for tree
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FIGURE 3. BER performance comparison between DPP-SD and SE-SD
for 16 × 16 and 24 × 24 MIMO systems with QPSK.

FIGURE 4. Complexity comparison between the DPP-SD and SE-SD for
a 16 × 16 MIMO system with QPSK.

FIGURE 5. Complexity comparison between the DPP-SD and SE-SD for
a 24 × 24 MIMO system with QPSK.

search, construction of the inputs to the NN, and generation of
the outputs in the NN are considered for complexity analysis.
In Figs. 4 and 5, it is observed that the proposed DPP-SD
requires significantly lower complexity than SE-SD when

SNR ≤ 11 dB. In particular, the complexity-reduction ratio
of the DPP-SD with all three sub-schemes is 36.7–43.2% and
50–59.2% at SNR ≤ 11 dB for 16× 16 MIMO and 24× 24
MIMO systems, respectively.

To verify the effectiveness of the proposed NN structure,
we have tested the performances of various NN structures for
a 16×16MIMO systemwith QPSK. Specifically, we consid-
ered the adaptive moment (Adam) [16] and scaled conjugate
gradient (SCG) algorithms for training, whereas the rectified
linear unit (ReLU), sigmoid, and Gaussian functions have
been tested as activation functions. Fig. 6 shows the BER
performance comparison of the proposed algorithm based
on various NN structures. In Fig. 6, the DPP-SD algorithms
with SCG-applied NN structures show near-optimal perfor-
mances, whereas the DPP-SD algorithms with Adam-applied
NN structures are outperformed by the conventional SE-SD.

FIGURE 6. BER performance comparison among various NN structures for
a 16 × 16 MIMO system with QPSK.

Fig. 7 shows the relative complexity ratio of each scheme
with respect to the conventional SE-SD. In Fig. 7, it is
observed that the SCG-applied NN structures require lower
complexity compared to the Adam-applied NN structures at

FIGURE 7. Complexity comparison among various NN structures for
a 16 × 16 MIMO system with QPSK.
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medium and high SNRs. Furthermore, it is shown that among
the SCG-applied NN structures, the Gaussian and sigmoid
functions require the lowest complexity in the medium- and
high-SNR regions. Considering that the SCG-applied NN
with Gaussian functions slightly outperforms the one with
sigmoid functions in Fig. 6, we have selected theNN structure
based on SCG and Gaussian activation functions for the
proposed algorithm.

The proposed DPP-SD algorithm is also compared to the
DL-SD [4] and NNW-SD [5] algorithms through simula-
tions. Fig. 8 shows the BER performance comparison among
the DL-SD, NNW-SD, proposed DPP-SD, and conventional
SE-SD algorithms for a 16 × 16 MIMO system with QPSK
modulation. In Fig. 8, it is observed that all compared algo-
rithms achieve almost the same BER performance in the
medium- and high-SNR regions.

FIGURE 8. BER performance comparison among the conventional SE-SD,
DL-SD, NNW-SD, and proposed DPP-SD algorithms for a 16 × 16 MIMO
system with QPSK.

Fig. 9 demonstrates the computational complexity ratios
of the DL-SD, NNW-SD, proposed DPP-SD, and conven-
tional SE-SD algorithms for a 16 × 16 MIMO system with

FIGURE 9. Complexity comparison among the conventional SE-SD, DL-SD,
NNW-SD, and proposed DPP-SD algorithms for a 16 × 16 MIMO system
with QPSK.

QPSK modulation. In Fig. 9, it is seen that the proposed
DPP-SD algorithm requires the lowest computational com-
plexity among the compared schemes for most SNR range.
By contrast, the DL-SD and NNW-SD algorithms require
higher computational complexity than the SE-SD at high
SNRs.

Fig. 10 shows the comparison between the relative average
processing time for decoding based on the SE-SD, DL-SD,
NNW-SD, and DPP-SD algorithms in a 16 × 16 MIMO
system with QPSK modulation. We note that the processing
time depends on the hardware and software implementation,
whereas the number of operations, which is shown in Fig. 9,
does not. Therefore, the comparison results in Fig. 10 are
slightly different from those in Fig. 9. However, it is still
observed that the proposed DPP-SD scheme requires lower
decoding time than DL-SD and NNW-SD for most SNR
ranges. Furthermore, compared with SE-SD, DPP-SD has
approximately 40% lower processing time for low and
medium SNRs.

FIGURE 10. Comparison of average processing time for decoding among
the conventional SE-SD, DL-SD, NNW-SD, and proposed DPP-SD
algorithms for a 16 × 16 MIMO system with QPSK.

Table 2 shows the number of nodes in each layer of the
NN in the compared NN-aided SD algorithms. In Table 2,
we observe that a significantly smaller NN is employed
for the proposed DPP-SD algorithm compared to the other
schemes, which implies that the complexity of the NN for
the proposed DPP-SD algorithm is considerably lower than
those for the DL-SD and NNW-SD algorithms. As the SNR
increases, the complexity of tree search in the SD becomes

TABLE 2. Number of nodes in each layer of the NN for a 16 × 16 MIMO
system with QPSK.

70876 VOLUME 8, 2020



D. Weon, K. Lee: Learning-Aided Deep Path Prediction for SD in Large MIMO Systems

lower, whereas the complexity of an NN remains fixed.
Therefore, at high SNRs, the complexity of the NN becomes
more significant in the overall complexity. As observed
in Fig. 9, owing to the simplified NN, the proposed DPP-SD
algorithm presents a higher computational efficiency com-
pared to the DL-SD and NNW-SD algorithms in terms of the
overall complexity, especially at high SNRs.

V. CONCLUSION
In this paper, we have presented the DPP-SD scheme,
a novel learning-aided SD algorithm for large MIMO sys-
tems. To solve the high-complexity problem of the conven-
tional SD algorithm in large MIMO systems, we design an
NN to perform the minimum metric prediction among the
paths in the sub-trees. To optimize the complexity of the NN,
we reduce the size of the input vector based on the property
of largeMIMO channels. The DPP-SD algorithm exploits the
output of the NN, i.e., the predicted minimum path metrics,
to optimize the initial radius, sub-tree ordering, and early
termination. The simulation results show that the proposed
DPP-SD algorithm performs close to the conventional SE-SD
scheme while requiring up to approximately 60% lower
complexity.
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