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ABSTRACT Cluster analysis, which focuses on the grouping and categorization of similar elements,
is widely used in various fields of research. Inspired by the phenomenon of atomic fission, this paper proposes
a novel density-based clustering algorithm, called fission clustering (FC). It focuses on mining the dense
families of clusters in the dataset and utilizes the information of the distance matrix to fissure the dataset
into subsets. A K-nearest neighbor (KNN) local density indicator is applied to identify and remove the points
of sparse areas so as to obtain a dense subset that consists of the dense families of clusters. The algorithm,
denoted as FC-KNN, is achieved by merging FC and KNN local density indicator. Several frequently-used
datasets were applied to test the performance of the proposed clustering approach and to compare the results
with those of other algorithms. The comprehensive comparisons indicate that the proposed method has

advantages over other common methods.

INDEX TERMS Clustering, density-based, K-nearest neighbor, fission clustering algorithm.

I. INTRODUCTION

The data clustering processes used in numerous current clus-
tering methods are similar to those of atomic fusion. In con-
trast, we propose a method to cluster data by the pattern
of atomic fission. The proposed method can cluster data
category by category without assuming that the number of
categories is known before clustering occurs.

In data clustering, the basic task is to divide data into
distinct groups on the basis of their similarity. Initial methods
of clustering tended to focus on finding the center point of
every category and then assigning the other points to the
nearest center. To make computer cluster data faster, some
researchers, such as Schikuta [1], Ma and Chow [2] et al.,
have applied the grid-based clustering method to divide
objects part by part. The grid-based clustering method does
not need to cluster data point by point; however, this method
is influenced by the size of grid cells and cannot easily
determine the number of categories.

A fundamental and challenging task of clustering analy-
sis is to determine the number of clusters. This number is
however assumed known in the earlier research on clustering.
A clustering approach with few known conditions is expected
when we face increasing numbers of poor information
datasets (scant or incomplete data). The similarity matrix of
objects is the unique known condition in our method.
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approving it for publication was Jenny Mahoney.
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Inspired by the phenomenon and rapid process of atomic
fission, a fast and effective clustering method is proposed,
which we call fission clustering (FC). If the distances between
every pair of clusters are large enough, two maximal values
are applied to determine the number of categories, i.e., “‘the
maximal crack of the distance matrix and the maximal value
of all the distances between objects and their nearest neigh-
bors”. Otherwise, the K-nearest neighbor method can be
applied to obtain a local density indicator for every object
in the clustering dataset. Then, the objects that have a small
indicator value will be removed, while a dense subset with
large distances between every two clusters is obtained.

Border points are distributed in two cases: (i) the border
points of the ith cluster are far away from the border points
of the jth cluster (i # j), and (ii) the border points of different
clusters are close together. The main works in this article
can be described as follows: (a) propose the FC algorithm
for case (i); (b) combine the FC algorithm and the K-nearest
neighbor local density indicator to propose the FC-KNN
algorithm for case (ii); and (c) demonstrate our algorithms
by some numerical experiments of both simulated and real
datasets.

Il. RELATED WORK

Clustering, a classical issue in data mining, is widely
used in a number of different areas, such as cli-
mate research [3], computational biology, biophysics and
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bioinformatics [4], [5], economics and finance [6], [7], and
neuroscience [8], [9].

In general, different clustering methods can be basi-
cally categorized as follows: density-based (DBSCAN [10],
NQ-DBSCAN [11], OPTICS [12], DP [13], DP-HD [14] and
CSSub [15]); grid-based (DGB [16], STING [17], CLIQUE
[18] and WaveCluster [19]); model-based (Gaussian mixture
models [20], COBWEB [21] and Latent tree models [22]);
partitioning (K-means [23], CLARANS [24], and TLBO
[25]); graph-based (GRAPHCLUS [26], ProClust [27] and
MCSSGC [28]); and hierarchical (DIANA [29], BIRCH [30]
and CHAMELEON [31]) approaches.

Of the earlier methods in the literature, a most representa-
tive clustering method may be K-means [23], which focuses
on determining K centers and dividing data points into K clus-
ters. However, K-means and its variants (see [32], [33]) need
to know the number of categories before clustering occurs.
More recently, a fast algorithm by finding density peaks (DP)
was proposed [13] and widely used. DP can scan its decision
graph to determine the number of clusters automatically, and
the experimenter can also select some core points of the
decision graph as centers when the number of clusters is
known. DP combines the advantages of both density-based
and centroid-based clustering methods. Many variants have
been developed by using DP, such as ADPC [34], GDPC [35],
FastDPeak [36], REDPC [37], FREDPC [38], DPC-KNN-
PCA [39] and SNN-DPC [40], to list a few. As a local
density-based method, DP can obtain good results in most
instances. However, as a centroid-based method, DP and its
variants cannot cluster points correctly when a category has
more than one center.

Schikuta [1] designed a grid structure in the data distribu-
tion area to partition data into blocks, and then applied the
block information via the index structure of the grid cell and
clustered the objects according to their surrounding blocks.
Typical examples of this type of algorithm include STING
[17], CLIQUE [18] and WaveCluster [19]. The grid-based
clustering approach does not need to input the number of
clusters, and it considers cells rather than data points, so it can
deal with cases in which a category has more than one center.
However, these grid-based methods are hard to be applied
to high-dimensional datasets as the number of the cells
in the grid grows exponentially with the dimensionality of
the data.

DBSCAN [10] is a representative density-based algo-
rithm which does not need to input the number of
clusters. It determines clusters by defining the density
criterion with two parameters, Eps-distance and MinPts.
NQ-DBSCAN [11], ReCon-DBSCAN [41], AA-DBSCAN
[42] and RNN-DBSCAN [43] are some up-to-date devel-
opments of DBSCAN. In particular, NQ-DBSCAN is a
high-efficiency algorithm for high-dimensional data. How-
ever, DBSCAN and its extensions are difficult for their
parameters to be set, which are ruleless (as shown
in TABLE 5) on account of the different densities for variant
datasets.
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TABLE 1. The full names of the algorithm abbreviations.

DBSCAN Density based spatial clustering of applications with noise
NQ-DBSCAN | Neighbor query-DBSCAB

OPTICS Ordering points to identify the clustering structure

DP Fast search and find of density peaks

DP-HD Fast search and find of density peaks via heat diffusion
CSSub Clustering by shared subspaces

DGB Density and grid based clustering method

STING Statistical information grid-based method

CLIQUE Clustering in quest

CLARANS Clustering large applications based on randomized search

TLBO Teaching learning based optimization

ProClust Clustering of protein sequences

MCSSGC Must-link and cannot-link constraints semi-supervised graph
based clustering

DIANA Divisive analysis

BIRCH Balanced iterative reducing and clustering using hierarchies

ADPC Search in descending order and automatic find of density peaks

GDPC Gravitation-based density peaks clustering algorithm

FastDPeak Fast density peak clustering for large scale data based on kNN

REDPC Residual error-based density peak clustering algorithm

FREDPC Feasible residual error-based density peak clustering algorithm

DPC-KNN- Density peaks clustering based on k nearest neighbors and princi-

PCA pal component analysis

SNN-DPC Shared-nearest-neighbor-based clustering by fast search and find
of density peaks algorithm

ReCon- Recondition DBSCAN

DBSCAN

AA-DBSCAN | Approximate adaptive DBSCAN

RNN-DBSCAN | DBSCAN with reverse nearest neighbor density estimates
AP Affinity propagation
NKGA NK hybrid genetic algorithm

In this article, we are proposing a method which will not
need to set the number of clusters as an input. Neither will
it be impacted by the data dimensionality like grid-based
methods. Our method focuses on mining the dense families,
rather than the center points, of the dataset, so it can also
overcome the inadequacy of centroid-based methods, that is,
it can cluster data points correctly when a category has more
than one center. For this reason, our method is more robust
than the related methods as a comparison, with its parameters
easier to be set than those in DGB and NQ-DBSCAN.

Ill. PROPOSED METHODS

In general, a cluster center is surrounded by neighbors with
lower local densities, and is at a relatively large distance
from other cluster centers [13]. Based on this feature, we can
make an algorithm assumption that there are k — 1 neighbour-
hoods U (x;, r;) composed of higher local density points in the
dataset of k categories. This assumption is satisfied in many
existing simulated and real datasets.

Section A and B below are dealing with the datasets of
the case (i) and (ii), respectively. Section A proposes the
FC algorithm and describes two key steps of that algorithm:
(a) splitting the dataset into subsets and (b) stopping split-
ting sets. Section B includes two parts: (a) using equation
(1) to obtain an indicator for every object in the dataset X,
presenting Algorithm 2 and then applying Algorithm 2 to
obtain a subset C C X, which has the feature of case (i);
and (b) proposing the FC-KNN algorithm.

A. FISSION CLUSTERING ALGORITHM (FC)
In this section, we address case (i) first. To develop the
algorithm, we first give a definition needed below.
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Definition: f : X x X — R is a distance (similarity)
function, where X is a sample set, and R is the real number
set. For all x; € X, if f(xo,xx) & (f(x0,x),f (x0,%;)) (or
S xo, xi) € (f (x0, Xp), f (x0, X)), we call |f (xo, x;) —f (x0, x})]
a crack of (X, f), where xo, x;, xj € X.

Obviously, the maximal crack (MC) of (X, f) exists for a
finite dataset.

The key steps of the FC algorithm are to fissure a dataset
into two subsets and to stop fissuring subsets when all the
clusters are obtained. These two key steps are detailed as
follows.

1) DIVIDE DATASETS

For a distance (similarity) function f(x;, x;) between x; and
xj, we define f(x;, x;) < f(x;, x¢) if the relationship between
x; and x; is closer than that between x; and x;. Then the
distance (similarity) matrix of (X, f) can be easily obtained,
denoted by S(X). The matrix S;(X) is obtained by sorting
every row of the distance matrix S(X). The ith column of
S1(X) is subtracted from the (i + 1)th column of $;(X) to
obtain the ith column of the matrix $>(X), MC = max{s;; :
si € $2(X)} EMC = |f(x;, x)) — f(xi, )| and f(x;, x;) <
min{f (x;, x;), f (xi, x¢)}, then x; € Xy; otherwise, x; € X5, and
the set X is fissured into two subsets.

If there are k categories of objects in X, then the k cate-
gories can be obtained step by step by application of the above
fissuring method.

A toy example to show how to compute the MC is pre-
sented as follows. Let X = {x1(0, 0), x2(0.1, 0), x3(0, 0.2),
x4(5,0), x5(5.2,0.1), x6(5.1,0.3)} and Euclidean distance
function be the similarity function.

0 0.10 020 5.00 511 5207
0 0.10 022 490 501 5.10
0 020 022 500 510 520
S0 =10 02 032 49 500 500
0 022 022 510 520 520
0 022 032 501 510 5.11
[0.10 0.10 480 0.11 0.097]
0.10 0.12 4.68 0.11 0.09
020 002 478 0.10 0.10
$2(X) =

022 0.10 458 010 0
022 0 488 010 0
022 0.10 4.69 009 0.0l

MCX) = $52(X)(5,3) = 4.88 = |f(xs5,x3) — f (x5, x4)|,
if f(x5, x;) < min{f(xs, x3), f(x5, x4)}, then x; € X1; other-
wise, x; € Xp. X is fissured into two subsets X| = {x4, X5, X6}
and X, = {x1, x2, x3}.

The mappings |J {f (xi, x;)

x;ieX
many cracks (as the Definition described above). If a set
contains two clusters, it must be most reasonable to divide
the dataset into two subsets using the maximal crack of all the
cracks.

: x; € X — {x;}} generate
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2) STOP DIVIDING DATASETS

In this section, we turn to investigate the characteris-
tics of the distance matrix, and then apply the useful
information in the matrix to determine the number of
categories.

We use the following formulae as an illustration: let
do(C) = max{f(x;,%;)) : x;, € C C X} and dy =
max{f(x;, X;) : x; € X}, where x; is the nearest neighbor
of x;. The object x; € X can be considered as a village and
f(xi, x;) can be considered as the distance between two vil-
lages x; and x;. Suppose there is a road such that x; and x; are
connected for all x;, x; € C, and the distance of every pair of
adjacent connection villages on the road is less than or equal
to do(C). This road is denoted as dp(C)-road. The theorem
below is an effective indicator to determine the number of
categories.

Theorem: If the distance function f satisfies triangle
inequality and C C X has a do(C)-road, then MC(C) <
do(C), where MC(C) is the MC of (C, f).

Proof: Shown as APPENDIX A.

If the distance of every pair of clusters is much greater than
dp, and every cluster has a dy-road, the inequation MC(C) <
do can be considered as the condition under which stop
fissuring a subset C. If all the subsets that fissured from X
are satisfied by the inequation MC(C) < d, then the process
of fissuring subsets will stop. The number of clusters will be
determined at the same time.

Numerous common distance functions satisfy the triangle
inequality, such as the Manhattan distance, Euclidean dis-
tance, and Minkowski distance. If the densities of clusters are
not extremely different in the same dataset, the inequation is
effective.

The details of the FC algorithm are as shown in follows,
where S (C)(:, i) is the ith column of S (C).

B. THE FISSION CLUSTERING ALGORITHM WITH
K-NEAREST NEIGHBOR LOCAL DENSITY

INDICATOR (FC-KNN)

In this section the main purpose is to obtain a dense subset
C C X in Case (ii) such that the distances between every pair
of clusters in C are large enough but the distances between
every pair of nearest neighbors are sufficiently small, and then
apply the Algorithm 1 to split the subset C.

1) OBTAIN THE LOCAL DENSITY INDICATOR

FOR DENOISING

This subsection aims to obtain a local density indicator p; for
every object x; and then distinguish the dense area objects
from the sparse area objects.

KNN-density is a frequently-used indicator to describe the
local density indicator p; [36], [39]. Our method focuses
on mining the dense families of the dataset. It is more
robust than other methods which focus on mining the center
points. Then, we select a relatively straightforward and useful
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‘ Obtain d, and put C,=X ‘

‘ Obtain MC(C,) for all C,

Split Ck into two
subsets Cm and CJ.

If there is a

subset Ck such tha
MC(Ck)>d

0

NO

Algorithm 1: FC algorithm

Input S(X), t, N0
and set r=0.4

Obtain P, for all xe X

Remove [r*n] objects of X to
obtain dense subset C

MC(C)>td, of

r=0.9 NO

!

-

YES

Algorithm 2: Denoising

FIGURE 1. The flowcharts of Algorithm 1 and 2.

Algorithm 1 FC algorithm.

Algorithm 2 Denoising.

Input: Distance matrix S(X).

Output: Clusters of X.

.dy <~ max{f(x;, x;) : x; € X}.

. C1 < X (initial value).

. While There is a subset C; such that MC(C;) > dy do

. repeat

. Pick the subset C; ift MC(C;) > dp.

. Sort every row of S(C;) to obtain S;(C;).

-$2(CHE k) < SI(CHC k+ 1) — Si(C)CL k), k= 1,2,
-,n—1.

8. MC <« max{S2(Ci)k,j) : k = 1,2,---

cee,n— 1}

9. Find out x;, x; and x; which generate the MC (|f (x;, x;)
= f (xi, xp)| = MC).

10, If f(xi, %) < min{f (xi, x;), f (xi, xi)} then x; € Ceount’

otherwise, x; € Ceount+1-

11. until max{MC(C;)} < dp.

12. end while

~N NN

’nsj = 1’23

KNN-density indicator, as shown in follows:
pi=1/ Y fGix), (1)

XjEKNN(X,‘)

where KNN (x;) is the K-nearest neighbor set of x;.

Differently from the objects of the sparse area, the objects
in a dense area have a spherical neighborhood with a smaller
radius which contains the same number of neighbors. The
object in the dense areas has a larger local density indicator
pi by using equation (1). The sample is considered to belong
to the dense subset C if it has a larger p;.

A denoising method is designed as Algorithm 2 after
obtaining p; for every object.
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Input: Distance matrix S(X), t and N9 = |KNN (x;)|.
Output: The dense subset C.

Initialize: r=0.4.

1. Apply equation (1) to obtain p; for every object.

2. Remove [0.4 *x n] objects of X that have smaller p;, retain
the other objects in C.

3.dy < max{f(xi, )El) L Xi, )fi € C}.

4. While MC(C) <t x dy do

5. repeat

6.r < r—+0.1.

7. Remove [r * n] objects of the entire dataset X that have
smaller p;, retain the other points in C.

8. Update dp and MC(C) of the new subset C.

9. until MC(C) >t x dyorr = 0.9.

10. end while.

In general, ICI>[50%n] (n = |X]), r = 0.4 is considered as
an initial value, i.e. [60%n] points are considered as the initial
members of the dense subset. A smaller initial value of » may
let Algorithm 2 add the times of iteration. r = 0.9 (line 9.
of Algorithm 2) means that |C| > 10%|X|. The flowcharts of
Algorithm 1 and 2 are as shown in FIGURE 1.

2) FC-KNN ALGORITHM
The main steps of the FC-KNN are as shown in follows.
When the fission of dense subset C is complete after Step 2
of the FC-KNN processes, the remaining objects in the set
X — C need to be assigned to their correct category. A simple
method is applied to assign the objects of X — C:letA C X
be the subset that contains the already classified points and
U C X be the subset of unclassified points. If f(x/, x]f) =
min{f (x;,xj) : x; € A,x; € U}, then xjf is assigned to the
category that contains x;.

VOLUME 8, 2020
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FIGURE 2. Results for tuning courses with parameter t.

Algorithm 2: Denoising

(a) dataset >» (b) dense subset

(c) Algorithm 1: fissuring subset

(d) Algorithm 1: fissuring subset

(e) Algorithm 1: fissuring subset

(f) Assigning the border points

FIGURE 3. A simple example for describing the processes of Algorithm 3.

Algorithm 3 FC-KNN algorithm.

Input: Distance matrix S(X), t and Ny = |KNN (x;)|.
Output: The clustering result.

Initialize: r=0.4.

1. Use Algorithm 2 to obtain a dense subset C.

2. Cluster the subset C by using Algorithm 1.

3. Assign the objects of X — C to their nearest cluster.

The parameter Ny is set according to the number of objects
in X (such as No = [1%|X|]). We suggest Ng < min{|C;| :
i=1,2,---,t}, where C; is the dense family of ith cluster
inX and C = C{UCy U ---U (. Note that t > 1 can be
considered as a tuning parameter. As shown in FIGURE 2 (b),
the densities of different areas can be approximatively ranked
as: density(A) = density(D) > density(B) =~ density(F) >
density(E). Algorithm 2 increases the value of 7 to remove
more border points (sparse area points). For No = [2%n],
when ¢t € (1, 3.2] the dense subset C =AUDUBUE UF,
the families B and F are connected by some points of E, so the
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dense families of categories are A, D and BU E U F. When
t € [3.3, 7.3] the dense subset C = AU D U BU F, the points
of E are considered as the sparse area points and removed,
so the dense families of categories are A, D, B and F. When
t € [7.4,55] the dense subset C = A U D, the points of B U
E U F are considered as the sparse area points and removed,
the dense families of categories are A and D.

FIGURE 3 shows the processes of Algorithm 3.
Algorithm 2 is used to obtain a dense subset C, as shown
in FIGURE 3 (a) and (b). Algorithm 1 is applied to
split the dense subset C into several subsets, as shown in
FIGURE 3 (c), (d) and (e). When Algorithm 1 stops splitting
subsets, the border point is assigned to its nearest cluster,
as shown in FIGURE 3 (f).

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method on both simulation data and real data, and then
compare it with some state-of-the-art methods that do not
need the number of clusters to be input. All the experiments
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NQ-DBSCAN DGB e .
FC-KNN
¢ ¢

(@)

AP .« e NKGA

@ "

FIGURE 4. The clustering results for different methods used on the Imbalance dataset. ((b), (c) and (d) Were clustered by DGB, AP and NKGA, respectively.

FC-KNN and NQ-DBSCAN obtained the same result as in (a)).

TABLE 2. The simple description of datasets.

Dataset Instances Features Clusters | Dataset | Instances Features Clusters | Detail
D31 3100 2 31 Iris 150 4 3 three kinds of irises: Setosa, Versicolour and Virginica. Each kind
has 50 samples
S1 5000 2 15 Seeds 210 7 3 seeds from Kama, Rosa and Canadian, 70 seeds from each place
Al 3000 2 20 Soybean |47 35 4 47 soybean samples with different diseases, sample distribution: 10
D1, 10 D2, 10 D3 and 17 D4
R15 600 2 15 Vertebral | 310 6 2 310 orthopaedic samples, 210 abnormal samples and 100 normal
samples
Dimond 2999 2 9 Wifi 2000 7 4 2000 times of signal records in 4 rooms, 500 records in each room
Dim2 1350 2 9 WebKB | 1051 4840 2 2 kinds of Web pages, 230 pages and 821 pages, respectively
Imbalance | 101 2 2 Adenoma| 6 12488 2 6 genes: 3 ADE samples and 3 N1 samples
Aggregation| 788 2 7 Leukemia| 38 999 3 11 AML samples, 8 T-lineage ALL samples and 19 B-lineage ALL
samples
SynthesisO | 10000 2 4 AML 15 22283 3 9 AML samples, 3 poly samples and 3 mono samples
SynthesisT | 20000 2 3 HL60 12 22283 2 6 HL60-DMSO samples and 6 HL60-Iressa samples
TABLE 3. Number of clusters estimated by various methods.
Dataset The estimated number of clusters Dataset The estimated number of clusters
AP ADPC NKGADGB NQ-DBSCAN FC-KNN AP  ADPC NKGA DGB NQ-DBSCAN FC-KNN
D31 8 31 19 16 31 31 Iris 2 2 11 4 3 3
S1 15 15 14 15 15 15 Seeds 2 3 2 7 4 3
Al 4 20 16 20 20 20 Soybean |2 4 4 2 4 4
RI15 5 15 15 15 15 15 Vertebral | 1 1 2 2 2 2
Dimond 15 9 5 9 9 9 Wifi 5 4 1 3 4 4
Dim?2 7 9 9 9 9 9 WebKB |6 1 1 3 3 3
Imbalance |4 1 6 6 2 2 Adenoma | 1 2 2 3 2 2
Aggregation| 5 7 6 7 7 7 Leukemia |3 3 2 3 3 3
SynthesisO |31 20 12 2 4 4 AML 1 2 2 3 4 3
SynthesisT | 37 8 9 3 3 3 HL60 2 2 3 3 3 2

are implemented based on the same software and hardware:
MATLAB R2014a in the Win7 operating system with Intel
Core 15-3230 M 2.6 GHz and 32 G Memory.

The Euclidean function was applied to obtain the dis-
tance matrix in all experiments. We selected the following
methods for our comparisons with the proposed method: the
affinity propagation algorithm (AP) [44], automatic find of
density peaks (ADPC) [34], Neighbor Query DBSCAB (NQ-
DBSCAN) [11], NK hybrid genetic algorithm (NKGA) [45]
and a density and grid based (DGB) clustering method [16].

A. DESCRIPTIONS OF EXPERIMENT DATA
1) SIMULATION DATA
First, some frequently-used datasets obtained from dif-

ferent references are applied to test the algorithms, such
as R15 [46], D31 [46], Aggregation [47], Al [48],
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S1 [49], Dim2 [50] and Dimond [51] etc. And then three
datasets, Imbalance (FIGURE 4), SynthesisO
(FIGURE 5) and SynthesisT (FIGURE 5), are constructed for
the supplementary tests. All the simulation data are points of
two-dimensional Euclidean space.

2) REAL DATA

Several real-world datasets are applied to test the perfor-
mance of the proposed method, including three plant datasets:
Iris' [52], [53], Seeds' [54] and Soybean! [55]; a wire-
less signal dataset: Wifi! [56]; a human vertebral column
dataset: Vertebral! [57]; a web page dataset: WebKB2 [58];
and four high-dimensional gene datasets: Adenoma® [59],

! http://archive.ics.uci.edu/ml/datasets.php
2http://www.cs.umd.edu/sen/lbc—proj/LBCAhtml
3 http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi
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TABLE 4. The results’ comparison for different methods.

SynthesisT

SynthesisO

FIGURE 5. SynthesisO and SynthesisT.

Leukemia® [60], AML? [61] and HL60? [61]. Simple descrip-
tions of these real datasets are provided in TABLE 2.

B. RESULTS AND COMPARISONS

1) PRESENTATION OF RESULTS

A simple description of datasets is presented in TABLE 2.
TABLE 3 presents the number of clusters estimated by var-
ious methods. TABLE 4 shows the clustering results when
compared with other various methods.

VOLUME 8, 2020

Dataset Measures| AP ADPC NKGA DGB NQ-DB FC- Dataset Measures| AP ADPC NKGA DGB NQ-DB FC-
SCAN KNN SCAN KNN
D31 Accuracy | 0.2210 0.9677 0.3539 0.4010 0.5416 0.9677 | Iris Accuracy| 0.5333 0.6667 0.4533 0.3000 0.7867  0.9067
F-Score |0.3466 0.9679 0.4537 0.5394 0.6937 0.9679 F-Score |0.4329 0.5714 0.5883 0.4615 0.8697 0.9168
ARI 0.1704 0.9352 0.3290 0.2267 0.1240 0.9352 ARI 0.4120 0.5681 0.2681 0.0990 0.6789 0.7592
NMI 0.4929 0.9573 0.6498 0.4242 0.2994 0.9573 NMI 0.4509 0.7337 0.0138 0.2170 0.7603  0.8057
S1 Accuracy | 0.7642 0.9262 0.6992 0.9250 0.9614  0.9932 | Seeds Accuracy| 0.6048 0.8157 0.3286 0.6524 0.6000 0.8857
F-Score |0.7907 0.9332 0.7315 0.9333 0.9647 0.9934 F-Score |0.5102 0.8307 0.1649 0.7549 0.7396 0.8900
ARI 0.6518 0.8915 0.5685 0.8851 0.9378 0.9858 ARI 0.4413 0.8012 0.0000 0.4386 0.3980 0.7027
NMI 0.8382 0.9450 0.7878 0.9470 0.9695 0.9895 NMI 0.4890 0.7896 0.0093 0.3914 0.3636 0.6982
Al Accuracy | 0.1550 0.9433 0.4597 0.9023 0.9450 0.9717 | Soybean | Accuracy| 0.5532 0.8723 0.6596 0.5745 0.3617 0.8723
F-Score |0.2615 0.9328 0.5691 0.9077 0.9462 0.9721 F-Score |0.3505 0.8872 0.7132 0.3920 0.4592 0.8904
ARI 0.1159 0.9205 0.1954 0.8358 0.8937 0.9435 ARI 0.2927 0.6859 0.4977 0.4434 0.1181 0.7169
NMI 0.4174 0.9311 0.6193 0.9135 0.9352 0.9621 NMI 0.3603 0.7831 0.6348 0.5901 0.3882 0.8352
R15 Accuracy | 0.2217 0.9917 0.8983 0.7267 0.8200 0.9933 | Vertebral | Accuracy| 0.6774 0.6774 0.6645 0.3806 0.1516 0.7710
F-Score |0.3416 0.9918 0.9035 0.8363 0.9011 0.9935 F-Score |0.4038 0.4038 0.3992 0.3106 0.1437 0.7976
ARI 0.2574 0.9817 0.7968 0.4306 0.7667 0.9857 ARI 0.0335 0.0304 0.0166 0.0072 0.2381 0.2916
NMI 0.5460 0.9864 0.8705 0.7435 0.3609 0.9893 NMI 0.0000 0.0000 0.0145 0.0448 0.1635 0.3129
Dimond Accuracy | 0.3211 1.0000 0.5585 0.8303 0.9967 1.0000 | Wifi Accuracy | 0.1405 0.8625 0.2500 0.5025 0.7545 0.9355
F-Score |0.3799 1.0000 0.6632 0.9055 0.9969 1.0000 F-Score [0.1671 0.8859 0.1000 0.5416 0.8561 0.9402
ARI 0.2182 1.0000 0.5775 0.7158 0.9929 1.0000 ARI 0.1948 0.8103 0.0000 0.3497 0.6868 0.8470
NMI 0.4066 1.0000 0.8153 0.8036 0.9922 1.0000 NMI 0.2646 0.8309 0.0078 0.4260 0.6531 0.8635
Dim2 Accuracy | 0.8259 1.0000 0.9289 1.0000 1.0000 1.0000 | WebKB Accuracy| 0.1922 0.7812 0.7812 0.7174 0.7878  0.8773
F-Score |0.8482 1.0000 0.9384 1.0000 1.0000 1.0000 F-Score | 0.3007 0.4386 0.4386 0.7141 0.7057 0.8173
ARI 0.7549 1.0000 0.8714 1.0000 1.0000 1.0000 ARI 0.0011 0.0146 0.0146 0.3094 0.2714 0.4960
NMI 0.8782 1.0000 0.9337 1.0000 1.0000 1.0000 NMI 0.0013 0.0000 0.0000 0.1374 0.1449 0.3647
Imbalance | Accuracy|0.6931 0.5743 0.5941 0.8218 1.0000 1.0000 | Adenoma | Accuracy| 0.5000 1.0000 0.6667 0.8333 0.6667 1.0000
F-Score |0.7806 0.6265 0.6608 0.8889 1.0000 1.0000 F-Score |0.3333 1.0000 0.7273 0.9091 0.8000 1.0000
ARI 0.6778 0.0105 0.1464 0.7692 1.0000 1.0000 ARI 0.0000 1.0000 0.0000 0.7059 0.2424 1.0000
NMI 0.4812 0.0415 0.1135 0.2768 1.0000 1.0000 NMI 0.0000 1.0000 0.2314 0.9286 0.4787 1.0000
Aggregation| Accuracy| 0.7183 0.9987 0.7919 1.0000 1.0000 1.0000 | Leukemia | Accuracy| 0.4474 0.9737 0.6579 1.0000 1.0000 1.0000
F-Score |0.8048 0.9980 0.8749 1.0000 1.0000 1.0000 F-Score |0.4196 0.9726 0.5383 1.0000 1.0000 1.0000
ARI 0.7497 0.9978 0.9231 1.0000 1.0000 1.0000 ARI 0.2332 0.9192 0.3679 1.0000 1.0000 1.0000
NMI 0.8672 0.9959 0.9479 1.0000 1.0000 1.0000 NMI 0.3081 0.9110 0.5070 1.0000 1.0000 1.0000
SynthesisO | Accuracy| 0.2532 0.4871 0.6733 0.7567 0.9533  1.0000 | AML Accuracy | 0.6000 0.8000 0.5333 0.8667 0.7333  1.0000
F-Score |0.2756 0.4913 0.7051 0.7132 0.9311 1.0000 F-Score |0.2500 0.6222 0.3810 0.8510 0.8083 1.0000
ARI 0.1867 0.4113 0.6314 0.7087 0.9636 1.0000 ARI 0.0075 0.4788 0.0241 0.6269 0.3697 1.0000
NMI 0.2213 0.4218 0.6533 0.7162 0.9212 1.0000 NMI 0.0000 0.6899 0.1605 0.7173 0.5361 1.0000
SynthesisT | Accuracy|0.1883 0.6255 0.5819 1.0000 1.0000 1.0000 | HL60 Accuracy| 0.8333 0.7500 0.6667 0.7500 0.8333  1.0000
F-Score |0.2539 0.6517 0.6103 1.0000 1.0000 1.0000 F-Score |0.8333 0.7895 0.7568 0.8571 0.9091 1.0000
ARI 0.0113 0.5631 0.5528 1.0000 1.0000 1.0000 ARI 0.3889 0.1951 0.4642 0.7179 0.7500 1.0000
NMI 0.0136 0.5882 0.5736 1.0000 1.0000 1.0000 NMI 0.3500 0.3437 0.0973 0.3437 0.4787 1.0000
To evaluate and compare the performance of the clustering
methods, we apply the evaluation metrics: Accuracy, F-Score,
1 Adjusted Rand Index (ARI) [62] and Normalized Mutual
* Information (NMI) [63] in our experiments to do a compre-

hensive evaluation. The higher the value, the better the clus-
tering performance for all these measures. Compared with
the best results of other algorithms, our method has relative
advantages of 0.1333, 0.149, 0.3731 and 0.2827 (TABLE 4)
with respect to Accuracy, F-Score, ARI and NMI for the AML
dataset, respectively.

We conduct the Friedman test with the post-hoc Nemenyi
test (w=0.10) [15] to examine whether the difference between
any two clustering algorithms is significant in terms of their
average ranks. The difference between two algorithms is sig-
nificant if the gap between their ranks is larger than CD. There
is a line between two algorithms if the rank gap between them
is smaller than CD. This test shows that FC-KNN is signifi-
cantly better than other methods. ADPC and NQ-DBSCAN
are significantly better than NKGA and AP.

In summary, our method achieves better results with
respect to the estimation of cluster number, Accuracy,
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TABLE 5. The parameter settings of FC-KNN, NQ-DBSCAN, DGB and ADPC for experimental datasets.

Dataset FC-KNN NQ- DGB ADPC Dataset FC-KNN NQ- DGB ADPC
DBSCAN DBSCAN
D31 No =ceil(2%n) | Eps=0.6 GN=207, de=0.01 || Iris No=ceil(3%n) | Eps=0.42 GN=222, d:=0.02
t=4 MinPts=23 CF=0.43, NT=0.2 t=5 MinPts=5 CF=0.4, NT=0
S1 No=ceil(2%n) | Eps=5000 GN=302, dc=0.02 || Seeds No=ceil(3%n) | Eps=0.8 GN=302, d:=0.02
t=4 MinPts=19 CF=0.2, NT=1 t=5 MinPts=8 CF=0.3, NT=0
Al No=ceil(2%n) | Eps=1350 GN=352, d:=0.02 || Soybean | No=ceil(2%n) |Eps=1.8 GN=32, d.=0.03
t=4 MinPts=36 CF=0.5, NT=1 t=2 MinPts=3 CF=0.05, NT=0
R15 No=ceil(3%n) | Eps=0.3 GN=202, dc=0.03 || Vertebral | No=ceil(3%n) |Eps=16 GN=202, d:=0.02
t=4 MinPts=6 CF=0.5, NT=1 t=2 MinPts=7 CF=0.3, NT=0
Dimond No=ceil(3%n) | Eps=0.3 GN=207, d.=0.02 || Wifi No=ceil(3%n) | Eps=6 GN=302, d:=0.02
t=4 MinPts=35 CF=0.5, NT=0.2 t=2 MinPts=20 | CF=0.3, NT=0
Dim2 No=ceil(2%n) | Eps=5000 GN=252, d:=0.02 || WebKB No=ceil(2%n) | Eps=0.11 GN=502, d:=0.02
t=4 MinPts=10 CF=0.3, NT=0 t=2 MinPts=8 CF=0.1, NT=1
Imbalance | Np=ceil(3%n) | Eps=1 GN=202, d.=0.02 || Adenoma | Ng=ceil(3%n) |Eps=10000 |GN=57, d.=0.5
t=4 MinPts=5 CF=0.01, NT=0 t=2 MinPts=2 CF=0.01, NT=0
Aggregation| No=ceil(3%n) | Eps=1.5 GN=252, dc=0.02 || Leukemia | No=ceil(2%n) | Eps=0.2 GN=52, d.=0.05
t=4 MinPts=10 CF=0.3, NT=0 t=2 MinPts=3 CF=0.3, NT=0
SynthesisO | No=ceil(1%n) | Eps=0.2 GN=207, d.=0.01 || AML No=ceil(2%n) | Eps=8000 GN=52, d.=0.3
t=4 MinPts=50 CF=0.2, NT=1 t=4 MinPts=2 CF=0.2, NT=0
SynthesisT | No=ceil(1%n) | Eps=0.38 GN=352, d=0.005 || HL60 No=ceil(2%n) | Eps=5000 GN=62, d.=0.3
t=4 MinPts=50 | CF=0.08, NT=0 t=2 MinPts=2 CF=0.1, NT=1
slightly different cases of Eps=0.41, Eps=0.42 and Eps=0.43,
. when MinPts=5. In fact, three of the most influential param-
AP eters for DGB are cutoff factor (CF), grid number (GN) and
NKGA noise threshold (NT). The DGB cannot get the same results
for three cases of CF=0.19, CF=0.20 and CF=0.21, when
pes GN=252 and NT=0. Clearly, the NQ-DBSCAN and the DGB
NQ-DBSCAN ) .
ADPC are not robust in their parameters.
FC-KNN | In the description of the above algorithms, the distance
‘ J ‘ ‘ matrix is a significant input. This matrix depends on the
1 2 3 4 5 6

FIGURE 6. Critical difference (CD) diagram of the post-hoc Nemenyi test.

F-Score, ARI and NMI, compared comprehensively with
other methods.

2) PARAMETER ANALYSIS

As shown in TABLE 5, the parameter settings of
NQ-DBSCAN and DGB are random and ruleless for the
datasets. It is thus difficult to guess the right parameters for
NQ-DBSCAN and DGB if the results are unknown before
clustering occurs. Because the parameters of the FC-KNN
have their own regulation, Ny can be set by the indicator of
the objects’ number, such as Ny = ceil(2%n), where ceil(-)
is a rounding function. The selection of parameter ¢ has a
direction: the larger the value of ¢, the fewer the points are
retained in the dense families. The parameters of the FC-KNN
are therefore easy to set.

The proposed method is robust. It can obtain the same clus-
tering results even when we choose values for parameters ¢
and Ny in wide intervals [t —, 7] and [Ny N(;r ], respectively.
For the Iris dataset, the FC-KNN can obtain the same results
with Ng € [ceil(3%n), ceil(5%n)] and t € [1.1,6]. How-
ever, NQ-DBSCAN cannot obtain the same results for three
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correct selection of the attributes, the correct value of the
selected attributes and a good distance (recognition) function.
We say the recognition function fj is better (stronger) than
£ if [fiGxi, x) — filxi, x)l = fa(xi, x)) — f(xi, x;)| for all
xi,x, € Cjand x; € Cj, where C; and C; are two clusters
of X.

For the simulation data that are Euclidean space points,
the Euclidean function is a strong recognition function for
them; then, the parameter ¢ can be set to a large value.
However, if the Euclidean function is a weak recognition
function for some real datasets, such as the dataset Vertebral,
the AP algorithm classifies the data Vertebral as one cluster.
Differently, our FC-KNN algorithm can determine the correct
clusters after tuning the parameter ¢ with a smaller value when
the recognition function is weak.

3) RUNTIME
Equation (1) takes &'(nxNy) operations. Algorithm 1 splits the
set X (or dense subset C) into subsets C1, Co, - - - , Cy. Since

|Ci] <« |X]|, data processing will become faster and faster,
accompanied by the dividing courses of subsets. k clusters are
obtained after k — 1 times of dividing subsets, then, its time
complexity is &'(1). Moreover, if |C| = m, then |X — C| =
n — m, and the time complexity of assigning border points is
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TABLE 6. The runtime (second) of various methods.

Dataset AP ADPC NKGA DGB NQ-DB FC-

SCAN KNN
509.853 285.787

SynthesisT | 1192.818 803.211 6158.251 36.127

D31 76.940 26.712 613943 4922 8.144  5.589
AML 1.553 1.826 23.082 3.762 0.826  0.577
HL60 1.048 1.138 19.513  1.908  0.752  0.424

hence & (n — m). The time complexity of the whole FC-KNN
algorithm is &'(n?) in the worst case.

The runtime of various methods for four datasets are pre-
sented in TABLE 6. Here the SynthesisT dataset has the
most objects, the D31 dataset has the most clusters, and
the HL60 and AML datasets have the most dimensionality.
The runtime of our method is not influenced by the data
dimensionality.

4) COMPARISONS AND DISCUSSIONS

In FIGURE 4, we plotted the densities of the two clusters in
the Imbalance dataset, which have a significant difference.
It is difficult to determine the number of categories with the
AP, ADPC, NKGA and DGB algorithms. The ADPC can
not find the second center point of the Imbalance dataset,
that is this algorithm considers the dataset as one cluster.
In FIGURE 5, clearly no single point can be considered as the
geometrical centroid of the annulus in the SynthesisO dataset,
and no single point can be considered as the geometrical
centroid of the T shape cluster in the SynthesisT dataset.
The ADPC, as a state-of-the-art centroid-based clustering
method, cannot correctly estimate the number of clusters for
them. Our proposed method aims at mining the dense family
of every category, not the center points. It can correctly deter-
mine the number of clusters for the Imbalance, SynthesisO
and SynthesisT datasets.

The NQ-DBSCAN and the DGB produce good results for
two-dimensional data after they tune the parameters many
times with reference to two-dimensional figures. However,
they do not work well for high-dimensional data, because
these data cannot show well in two-dimensional figures. The
DGB and the NQ-DBSCAN are much superior to their pro-
totypes with respect to accuracy and runtime. However, they
are also hampered by the ruleless parameters when they deal
with multidimensional data.

AP [44] is an unsupervised algorithm without any parame-
ters. The parameters of NKGA [45] are recommended by the
publication [45]. The algorithms of parameter-free or fixed
parameter value may not be adaptive to various kinds of
datasets. The parameter of ADPC [34] is shown in TABLE 5,
d. = 0.02 means that the parameter of ADPC takes the value
at the position of first 2% of all distances [34].

Unlike the methods that need the number of clusters to be
input, such as K-means, our method need no prior conditions.
In contrast to the centroid-based methods, such as ADPC, our
method focuses on seeking dense families for every category,
not just the center point, so it can deal with more kinds of
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datasets. To compare it with the grid-based method DGB,
our method is not influenced by the size or number of grid
cells and the dimensionality of data. Moreover, unlike the
NQ-DBSCAN, our method it is easier to set parameters.
Our FC-KNN obtains satisfying results more easily than the
DGB and the NQ-DBSCAN do, when faced with a new
high-dimensional dataset that has no references to known
clustering results.

V. CONCLUSION

In this article, the FC algorithm is proposed, and then it is
combined with the K-nearest neighbor local density indi-
cator to propose the FC-KNN algorithm. The fundamental
task that is challenging for clustering is how to determine
the number of clusters for a dataset. Our proposed method
aims at dealing with this task. Interestingly, our method does
not need to assume that the number of categories is known
before clustering occurs. Both the simulation and real datasets
are applied to test the performance and effectiveness of the
proposed method. Our proposed algorithm is also compared
with several frequently-used clustering algorithms, including
the centroid-based algorithm ADPC, the intelligent algorithm
NKGA, the grid-based algorithm DGB, the density-based
algorithm NQ-DBSCAN and the parameter-free algorithm
AP. The experiments indicate that our method achieves bet-
ter results, in terms of the evaluation metrics (TABLE 4)
and the estimated number of clusters (TABLE 3), than the
other methods under comparison. Based on this work, it will
be interesting to extend our FC-KNN into a fully adaptive
method in the future.

APPENDIX A: THE PROOF OF THEOREM

Reduction to absurdity is applied to prove the theorem.
If there is a crack [|f(xo,x;) — f(x0,x)| > do(C), then
there is an xy such that f (xop, x;) € (f(xo, xj), f (x0, x;)) holds.
On the other hand, |f (xo, x;) — f (xo0, x;)| is a crack, f (xo, X5) &
(f (x0, x;), f (x0, x;)) for all x; € X. Detailed descriptions are
as follows.

Proof: If there is a crack |f (xo, x;) — f (x0, ;)| > do(C),
then f(xi,x;) = f(xo,x) — f(x0,%) > do(C) (suppose
f(x0,x;) > f(x0, x;)). Thus, if x; and x; are not adjacent points
on the dy(C)-road, there must be a point x; on the road from
X to Xxj (x; ~ X ~ Xj).

If f (xo0, xx) & (f (x0, X)), f (x0, X;)), then one of |f (xo, x;) —
S0, x)| > |f (xo, xi) — f(x0, x)| > do(C) and [f (xo, xj) —
S o, xi)l > |f (xo, xi) — f(x0, x;)| > do(C) holds. Assuming
that |f (xo, x;)—f (x0, xx)| > do(C), then there is x; on the road
Xj to xj (x; ~ X, ~ X; ~ Xxj). Because the road of x; to x; is
a part of the dy(C)-road, x; and x; can be connected by some
points, and the distance between two connection points is less
than or equal to do(C). If f (xo, x;) & (f (x0, x;), f (x0, X;)), then
there must be a point x; on the road from x; to x; such that
f(xo, x5) € (f(xo0, Xj), f (x0, x;)) holds in the finite set C.

However, |f(xo,x;) — f(x0,x;)| is a crack, f(xp,x) ¢
(f (x0, x;), f (x0, x;)) for all x € C. Itis a contradiction. Hence,
all the cracks must be less than or equal to do(C).

71005



IEEE Access

S. Lu et al.: Clustering by Using the Way of Atomic Fission

REFERENCES

[1]

[2]
[3]
[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

E. Schikuta, “Grid-clustering: An efficient hierarchical clustering method
for very large data sets,” in Proc. 13th Int. Conf. Pattern Recognit.,
Aug. 1996, pp. 101-105.

E. W. M. Ma and T. W. S. Chow, “A new shifting grid clustering algo-
rithm,” Pattern Recognit., vol. 37, no. 3, pp. 503-514, Mar. 2004.

T. Parsons, ‘“‘Persistent earthquake clusters and gaps from slip on irregular
faults,” Nature Geosci., vol. 1, no. 1, pp. 59-63, Jan. 2008.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” Proc. Nat.
Acad. Sci. USA, vol. 95, no. 25, pp. 14863-14868, Dec. 1998.

W. Huang, X. Cao, F. H. Biase, P. Yu, and S. Zhong, “Time-variant
clustering model for understanding cell fate decisions,” Proc. Nat. Acad.
Sci. USA, vol. 111, no. 44, pp. E4797-E4806, Nov. 2014.

J. D. Hamilton, “A new approach to the economic analysis of nonsta-
tionary time series and the business cycle,” Econometrica, vol. 57, no. 2,
pp. 357-384, Mar. 1989.

G. Leibon, S. Pauls, D. Rockmore, and R. Savell, “Topological structures
in the equities market network,” Proc. Nat. Acad. Sci. USA, vol. 105,
no. 52, pp. 20589-20594, Dec. 2008.

S. Galbraith, J. A. Daniel, and B. Vissel, “A study of clustered data and
approaches to its analysis,” J. Neurosci., vol. 30, no. 32, pp. 10601-10608,
Aug. 2010.

D. Allen and G. Goldstein, Cluster Analysis in Neuropsychological
Research Recent Applications. New York, NY, USA: Springer, 2013.

M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” Data Min.
Knowl. Disc., vol. 96, no. 34, pp. 226-231, Aug. 1996.

Y. Chen, S. Tang, N. Bouguila, C. Wang, J. Du, and H. Li, “A fast
clustering algorithm based on pruning unnecessary distance computa-
tions in DBSCAN for high-dimensional data,” Pattern Recognit., vol. 83,
pp. 375-387, Nov. 2018.

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Order-
ing points to identify the clustering structure,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), Philadelphia, PA, USA, May/Jun. 1999,
pp. 49-60.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014.

R. Mehmood, G. Zhang, R. Bie, H. Dawood, and H. Ahmad, “Clustering
by fast search and find of density peaks via heat diffusion,” Neurocomput-
ing, vol. 208, pp. 210-217, Oct. 2016.

Y. Zhu, K. M. Ting, and M. J. Carman, “Grouping points by shared
subspaces for effective subspace clustering,” Pattern Recognit., vol. 83,
pp. 230-244, Nov. 2018.

B. Wu and B. M. Wilamowski, “A fast density and grid based clustering
method for data with arbitrary shapes and noise,” IEEE Trans. Ind. Infor-
mat., vol. 13, no. 4, pp. 1620-1628, Aug. 2017.

W. Wang, J. Yang, and R. R. Muntz, “STING: A statistical information
grid approach to spatial data mining,” in Proc. 23rd Int. Conf. Very Large
Data Bases, Athens, Greece, Feb. 1997, pp. 186-195.

R. Agrawal, J. E. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining applications,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), Seattle, WA,
USA, Jun. 1998, pp. 94-105.

G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A wavelet-
based clustering approach for spatial data in very large databases,” VLDB
J. Int. J. Very Large Data Bases, vol. 8, nos. 3—4, pp. 289-304, Feb. 2000.
C. Fraley and A. E. Raftery, “Model-based clustering, discriminant anal-
ysis, and density estimation,” J. Amer. Stat. Assoc., vol. 97, no. 458,
pp. 611-631, Jun. 2002.

D. H. Fisher, “Improving inference through conceptual clustering,” in
Proc. 6th Nat. Conf. Artif. Intell. (AAAI), Seattle, WA, USA, Jul. 1987,
pp. 461-465.

T. Chen, N. L. Zhang, T. Liu, K. M. Poon, and Y. Wang, “Model-based
multidimensional clustering of categorical data,” Artif. Intell., vol. 176,
no. 1, pp. 2246-2269, Jan. 2012.

J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
vol. 1, L. M. Le Cam and J. Neyman, Eds. Berkeley, CA, USA: Univ.
California Press, Jan. 1967, pp. 281-297.

R. T. Ng and J. Han, “CLARANS: A method for clustering objects for
spatial data mining,” IEEE Trans. Knowl. Data Eng., vol. 14, no. 5,
pp. 1003-1016, Sep. 2002.

71006

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

K. Lahari, M. R. Murty, and S. C. Satapathy, “Partition based cluster-
ing using genetic algorithm and teaching learning based optimization:
Performance analysis,” Adv. Intell. Syst. Comput., vol. 338, pp. 191-200,
Mar. 2015.

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1988.

P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth, D. Schomburg,
and R. Schrader, “ProClust: Improved clustering of protein sequences
with an extended graph-based approach,” Bioinformatics, vol. 18, no. 2,
pp. S182-S191, Oct. 2002.

V.-V. Vu and H.-Q. Do, “Graph-based clustering with background knowl-
edge,” in Proc. 8th Int. Symp. Inf. Commun. Technol. (SoICT), New York,
NY, USA, Dec. 2017, pp. 167-172.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis. Hoboken, NJ, USA: Wiley, Mar. 1990.

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data (SIGMOD), Montreal, QC, Canada, Jun. 1996,
vol. 25, no. 2, pp. 103-114.

G. Karypis, E. H. Han, and V. Kumar, “CHAMELEON: A hierarchical
clustering algorithm using dynamic modeling,” IEEE Comput., vol. 32,
no. 8, pp. 68-75, Aug. 1999.

R. Scitovski and K. Sabo, “Analysis of the k-means algorithm in the case
of data points occurring on the border of two or more clusters,” Knowl.-
Based Syst., vol. 57, pp. 1-7, Feb. 2014.

G. Tzortzis and A. Likas, “The MinMax k-means clustering algorithm,”
Pattern Recognit., vol. 47, no. 7, pp. 2505-2516, Jul. 2014.

T. Liu, H. Li, and X. Zhao, “Clustering by search in descending order and
automatic find of density peaks,” IEEE Access, vol. 7, pp. 133772-133780,
2019.

J. Jiang, D. Hao, Y. Chen, M. Parmar, and K. Li, “GDPC: Gravitation-
based density peaks clustering algorithm,” Phys. A, Stat. Mech. Appl.,
vol. 502, pp. 345-355, Jul. 2018.

Y. Chen, X. Hu, W. Fan, L. Shen, Z. Zhang, X. Liu, J. Du, H. Li, Y. Chen,
and H. Li, “Fast density peak clustering for large scale data based on
kNN,” Knowl.-Based Syst., vol. 187, Jan. 2020, Art. no. 104824, doi:
10.1016/j.knosys.2019.06.032.

M. Parmar, D. Wang, X. Zhang, A.-H. Tan, C. Miao, J. Jiang, and Y. Zhou,
“REDPC: A residual error-based density peak clustering algorithm,” Neu-
rocomputing, vol. 348, pp. 82-96, Jul. 2019.

M. D. Parmar, W. Pang, D. Hao, J. Jiang, W. Liupu, L. Wang, and
Y. Zhou, “FREDPC: A feasible residual error-based density peak cluster-
ing algorithm with the fragment merging strategy,” IEEE Access, vol. 7,
pp. 89789-89804, 2019.

M. Du, S. Ding, and H. Jia, *“Study on density peaks clustering based on k-
nearest neighbors and principal component analysis,” Knowl.-Based Syst.,
vol. 99, pp. 135-145, May 2016.

R. Liu, H. Wang, and X. Yu, “Shared-nearest-neighbor-based clustering
by fast search and find of density peaks,” Inf. Sci., vol. 450, pp. 200-226,
Jun. 2018.

Y. Zhu, K. M. Ting, and M. J. Carman, ‘““Density-ratio based clustering for
discovering clusters with varying densities,” Pattern Recognit., vol. 60,
pp. 983-997, Dec. 2016.

J.-H. Kim, J.-H. Choi, K.-H. Yoo, and A. Nasridinov, “AA-DBSCAN:
An approximate adaptive DBSCAN for finding clusters with varying
densities,” J. Supercomput., vol. 75, no. 1, pp. 142-169, Jan. 2019.

A. Bryant and K. Cios, “RNN-DBSCAN: A density-based clustering
algorithm using reverse nearest neighbor density estimates,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 6, pp. 11091121, Jun. 2018.

B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972-976, Feb. 2007.

R. Tinos, L. Zhao, F. Chicano, and D. Whitley, “NK hybrid genetic
algorithm for clustering,” IEEE Trans. Evol. Comput., vol. 22, no. 5,
pp. 748-761, Oct. 2018.

C. J. Veenman, M. J. T. Reinders, and E. Backer, ‘A maximum variance
cluster algorithm,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 9,
pp. 1273-1280, Sep. 2002.

A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM
Trans. Knowl. Discovery Data, vol. 1, no. 1, pp. 1-30, Mar. 2007.

K. Ismo and P. Franti, “Dynamic local search for clustering with unknown
number of clusters,” in Proc. Int. Conf. Pattern Recogn., Aug. 2002, vol. 2,
no. 16, pp. 240-243.

P. Frinti and O. Virmajoki, “Iterative shrinking method for clustering
problems,” Pattern Recognit., vol. 39, no. 5, pp. 761-775, May 2006.

VOLUME 8, 2020


http://dx.doi.org/10.1016/j.knosys.2019.06.032

S. Lu et al.: Clustering by Using the Way of Atomic Fission

IEEE Access

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

P. Franti, O. Virmajoki, and V. Hautamaki, *“‘Fast agglomerative clustering
using a k-Nearest neighbor graph,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 28, no. 11, pp. 1875-1881, Nov. 2006.

S. Salvador and P. Chan, “Determining the number of clusters/segments in
hierarchical clustering/segmentation algorithms,” in Proc. 16th IEEE Int.
Conf. Tools with Artif. Intell., Nov. 2004, pp. 576-584.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugenics, vol. 7, no. 2, pp. 179-188, Sep. 1936.

F. Huang, X. Li, S. Zhang, and J. Zhang, ‘‘Harmonious genetic clustering,”
IEEE Trans. Cybern., vol. 48, no. 1, pp. 199-214, Jan. 2018.

M. Charytanowicz and J. Niewczas, “Complete gradient clustering algo-
rithm for features analysis of X-ray images,” in Information Technolo-
gies in Biomedicine, E. Pietka and J. Kawa, Eds. Berlin, Germany:
Springer-Verlag, Jan. 2010, pp. 15-24.

R. S. Michalski and R. L. Chilausky, “Learning by being told and learning
from examples: An experimental comparison of the two methodes of
knowledge acquisition in the context of developing an expert system for
soybean desease diagnoiss,” Int. J. Policy Anal. Inf. Syst., vol. 4, no. 2,
pp. 125-161, Jan. 1980.

J. G. Rohra, “User localization in an indoor environment using fuzzy
hybrid of particle swarm optimization & gravitational search algorithm
with neural networks,” in Proc. 6th Int. Conf. Soft Comput. Problem
Solving, Feb. 2017, pp. 286-295.

E. Berthonnaud, J. Dimnet, P. Roussouly, and H. Labelle, “‘Analysis of the
sagittal balance of the spine and pelvis using shape and orientation param-
eters,” J. Spinal Disorders Techn., vol. 18, no. 1, pp. 40—47, Feb. 2005.

P. Martin, “The WebKB set of tools: A common scheme for shared WWW
Annotations, shared knowledge bases and information retrieval,” in Proc.
Int. Conf. Conceptual Struct., Aug. 1997, pp. 585-588.

A. Sweet-Cordero, “‘An oncogenic KRAS?2 expression signature identified
by cross-species gene-expression analysis,” Nat. Genet., vol. 37, no. 1,
pp. 48-55, Dec. 2004.

C. Wiwie, J. Baumbach, and R. Réttger, “Comparing the performance
of biomedical clustering methods,” Nature Methods, vol. 12, no. 11,
pp. 1033-1038, Nov. 2015.

K. Stegmaier and S. M. Corsello, “Gefitinib (Iressa) induces myeloid
differentiation of acute myeloid leukemia,” Blood, vol. 106, no. 8§,
pp. 2841-2848, Oct. 2005.

L. Du, Y. Pan, and X. Luo, “Robust spectral clustering via matrix aggre-
gation,” IEEE Access, vol. 6, pp. 53661-53670, 2018.

S. Abbasi and S. Nejatian, “Clustering ensemble selection considering
quality and diversity,” Artif. Intell. Rev., vol. 52, pp. 1311-1340, Jan. 2019.

VOLUME 8, 2020

\

/

SHIZHAN LU received the M.S. degree in mathe-
matics from Guangxi University for Nationalities,
China, in 2014. He is currently pursuing the Ph.D.
degree with the Nanjing University of Science and
Technology, China. His current research interests
include data mining, clustering analysis, and intel-
ligence algorithm.

LONGSHENG CHENG received the M.S. degree
from the East China Institute of Technology,
China, in 1988, and the Ph.D. degree in sys-
tem engineering from the Nanjing University of
Science and Technology, China, in 1998. From
1998 to 1999, he was with the City University of
Hong Kong as a Research Assistant. Since 2005,
he has been a Professor of management sciences
and applied statistics with the School of Eco-
nomics and Management, Nanjing University of

Science and Technology. His current research interests include prognostic
and health monitoring, machine learning, quality engineering, and data
mining.

RASHID MEHMOOD received the M.S. degree
from COMSATS University, Pakistan, and the
Ph.D. degree from Beijing Normal University,
China. He is currently affiliated with the Depart-
ment of Software Engineering, University of Kotli
Azad Jammu and Kashmir, Pakistan. His research
interests include clustering, single-cell RNA-seq,
analysis of next-generation sequencing data, and
circadian rhythm for cancer research.

71007



