
Received March 3, 2020, accepted March 13, 2020, date of publication April 13, 2020, date of current version April 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984916

Privacy-Preserving Image Retrieval and Sharing
in Social Multimedia Applications
ZONGYE ZHANG 1, FUCAI ZHOU 1, SHIYUE QIN 2, QIANG JIA 1, AND ZIFENG XU 1
1Software College, Northeastern University, Shenyang 100819, China
2School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

Corresponding author: Fucai Zhou (fczhou@mail.neu.edu.cn).

This work was supported in part by the National Natural Science Foundation of China under Grant 61772127 and Grant 61872069, in part
by the National Science and Technology Major Project under Grant 2013ZX03002006, in part by the Liaoning Province Science and
Technology Projects under Grant 2013217004, and in part by the Fundamental Research Funds for the Central Universities under Grant
N151704002.

ABSTRACT Every day social multimedia applications generate millions of images. To handle such huge
amount of images, an optimal solution is using the public cloud, since it has powerful storage capability.
Images usually contain a wealth of sensitive information, therefore social service providers need not only to
provide services such as retrieval and sharing but also to protect the privacies of the images. In this paper,
we propose a privacy-preserving scheme for content-based image retrieval and sharing in social multimedia
applications. First, the users extract visual features from the images, and perform locality-sensitive hashing
functions on visual features to generate image profile vectors. We then model the retrieval on the images
as the equality search on the image profile vectors. To enable accurate and efficient retrieval, we design the
secure index structure based on cuckoo hashing, which has constant lookup time. Tomeet the requirements of
dynamic image updating, we enrich our service with image insertion and deletion. In order to reduce the key
management overhead and the access control overhead in social applications, we process keys using secret
sharing techniques to enable the users holding similar images to query and decrypt images independently.
Finally we implement the prototype of the proposed scheme, and perform experiments over encrypted image
databases.

INDEX TERMS Image retrieval, image sharing, multimedia, privacy-preserving.

I. INTRODUCTION
Due to the popularity of mobile devices with cameras, such
as mobile phones, tablets, sensors, and etc., the amount of
images has grown tremendously. Specifically, social multi-
media applications, that provide platforms to post and share
multimedia, generate massive amounts of images. According
to Instagram, more than 100 million images are posted per
day [1]. Due to the high storage costs, social service providers
prefer to outsource such massive amount of images to public
cloud platforms such as Amazon Cloud.

Images usually contain sensitive information that could
reveal personal privacies, and encryption is an effective
method to protect privacy. Based on cryptography, a number
of privacy-preserving schemes [2]–[7] that support remote
image retrieval and sharing have been proposed. Considering
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that social multimedia application is becoming one of the
main platform for image retrieval and sharing, this paper
proposes a privacy-preserving image retrieval and sharing
scheme for social multimedia applications. The contributions
of this paper can be summarized as follows:

• We propose a privacy-preserving content-based image
retrieval and sharing scheme for social multimedia appli-
cations. The scheme allows the image owners to out-
source images to the public cloud server, and outsource
secure index to the social service provider.

• Our scheme is constructed under a stronger and more
realistic threat model that the social service provider
is not a completely trusted entity. The social service
provider is allowed to acquire a part of the users’
information, but it cannot be trusted to store the
keys.

• Our scheme greatly simplifies access control and key
management in multi-user social applications. We allow
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the users holding similar images to submit the retrieval
queries, and decrypt the query results on their own.

• We design a secure index that provides efficient retrieval
service for large image set. The index requires constant
lookup time and supports dynamic image updating.

II. RELATED WORK
Content-based image retrieval (CBIR) [8] using the content of
query image to search for similar images is a main research
branch in the area of image retrieval. In CBIR, one key work
is to extract visual features from the images for image rep-
resentation and similarity measurement. In previous works,
high-dimensional local features such as SIFT [9], SURF [10],
ORB [11], and etc. have been extensively explored as a
routine image representation, and have been proved to be
effective in CBIR.

Searchable encryption (SE) [12] was proposed to protect
data privacy on the remote server side, while preserving
search ability. And not limited to file and texture, the data
types studied in SE have been extended to image. However,
when image sources are diverse and authorized users are
diverse, access control and key management are challenging
problems in SE.

In terms of access control, it usually requires image owners
to predefine access policies for their images. Xia et al. [2] and
Xu et al. [3] required the users to request authentication from
the image owner before performing query. Yuan et al. [4]
distributed roles for the users and created search policies to
decide who can search a particular image with these roles.
In terms of key management, one solution is to allow image
owners to manage their own keys. The schemes proposed by
Zou et al. [5] and Wang et al. [6] required the image owners
to store their own keys, and the users can not independently
decrypt the encrypted images without additional interaction
with the image owners. Another solution is to introduce third-
party entities for key management. The scheme proposed by
Li et al. [7] required non-colluding entities that perform cryp-
tographic computations to handle key management. More-
over, in social multimedia application, which involve large
number of users and huge amount of images, the common
solution is to let the social service providers manage the
keys. Under the assumption that the social service providers
are trusted entities, Yuan et al. [13] and Ahmed et al. [14]
designed privacy-preserving image-centric social discovery
schemes, which give the secret keys to the social service
providers for storage and delegate the decryption operations
to the social service providers. However, such assumption
is not always reasonable in real-world applications. Usually,
social service providers cannot be completely trusted, there-
fore the outsourced private information is facing the risks of
privacy leakage and abused. For example, on April 18, 2019,
Facebook announced that millions of Instagram passwords
were stored in a readable format and could be accessed by
Facebook employees [15].

Some works proposed using data as keys for encryp-
tion to simplify key management and access control.

Pieters and Tang [16] proposed a (k, n) threshold data-based
access control paradigm, where the access to information
is based on the similarity between the information being
accessed and the information provided to access it. Specifi-
cally, if k of n data-items are the same, the information being
accessed can be recovered from the information provided to
access it. Boldyreva et al. [17] came up with the similar idea
and proposed the concept of keyless fuzzy search (KlFS)
which can be applied to the images. KlFS masks database
in such a way that the user can retrieve masked database and
unmask the data if and only if it possesses some data that
is ‘‘close to’’ the encrypted data. Inspired by the ideas of
[16], [17], we use t-out-of-n secret sharing technique for
access control and decryption to reduce the costs of key
management and access control.

The rest of our paper is organized as follows: Section III
reviews some preliminaries of this paper. Section IV presents
the system overview. Section V proposes the detailed
design of our scheme. Section VI gives security analysis
and efficiency analysis. Section VII evaluates the perfor-
mance of our scheme. Finally, Section VIII concludes the
paper.

III. PRELIMINARIES
In this section, we introduce the basic primitives that are used
in our privacy-preserving image retrieval and sharing scheme.

A. EXTENDED LOCALITY-SENSITIVE Hashing(eLSH)
Locality-Sensitive Hashing(LSH) [18] is a common algo-
rithm used to solve the approximate nearest neighbor
search in high-dimensional spaces. The high dimensional-
ity of high-dimensional data results in high search time
cost or high space overhead. LSH, which maps similar
objects into the same hash buckets with high probabil-
ity and reduces the dimensionality of data, has become a
promising approach to similarity search in high-dimensional
spaces [19]–[21]. In this paper, to amplify the accuracy
of the parameters, an extension of LSH, i.e. eLSH, is
adopted.
Definition 1 [Locality-Sensitive Hashing (LSH)]: Given

threshold values δC and δF, where δC < δF, and probability
values p1 and p2, where p1 < p2, the locality sensitive hash
familyH = {h : D→ U} is called (δC, δF, p1, p2)−sensitive
if the following holds: for a distance function d , and for any
x, y ∈ D, if d(x, y) 6 δC then PrH [h(x) = h(y)] > p1; if
d(x, y) > δF then PrH [h(x) = h(y)] 6 p2.
Definition 2 [Extended Locality-Sensitive Hashing

(eLSH)]: Given (δC, δF, p1, p2)−sensitive hash family H,
and positive integers k and L. For i ∈ [L] and j ∈ [k],
the hash function gi(x) is defined as gi(x) = (hi1(x),
hi2(x), . . . , hik (x)), where hij ∈ H. The set {g1, g2, . . . , gL} is
called the (L, k)− eLSH [22] and satisfies the following. For
a distance function d , and for any x, y ∈ D, if d(x, y) 6 δC,
then Pr[∃i ∈ [L] : gi(x) = gi(y)] > 1 − (1 − p1k )L = P1;
if d(x, y) > δF, then Pr[∃i ∈ [L] : gi(x) = gi(y)] 6
1− (1− p2k )L = P2.
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In eLSH, the concatenation of k functions reduces the
chance of collision between similar items and the set of L
functions improves recall.

B. CUCKOO HASHING
Cuckoo hashing [23] is a dictionary scheme that uses two or
more hash functions instead of only one to resolve hash col-
lisions. It can balance the load and support efficient queries
with constant lookup time in the worst case.
Definition 3 (Standard Cuckoo Hashing): Cuckoo Hash-

ing has two hash tables, T1 and T2, which are associated with
hash functions f1 and f2, respectively. In addition, each hash
table has w buckets. An item x can be inserted into either the
bucket T1[f1(x)] of T1 or the bucket T2[f2(x)] of T2.
Definition 4 (Improved Cuckoo Hashing): Improved

Cuckoo Hashing [24] has l (l > 2) hash tables
{T1,T2, . . . ,Tl}, where each table Ti has a hash function fi
and w buckets. An item x can be inserted into the bucket
Ti[fi(x)] of Ti, where i ∈ [l].

Give a simple example to explain cuckoo hashing. When
inserting item c into the standard cuckoo hashing, if either of
two available positions T1[f1(c)] and T2[f2(c)] is empty, cwill
be inserted. If the two available positions are occupied by a
and b, c kicks away a or b and reinserts a or b.

C. SECRET SHARING
Secret sharing [25] is a cryptographic method that divides
data into n pieces, and distributes pieces among n participants,
so that the secret can be reconstructed by cooperation of
no less than t participants. In terms of privacy, participants
holding less than t pieces learns no more information about
the secret than knowing no piece. A t-out-of-n secret sharing
scheme is defined by algorithms (Share,Reconst), where
Share is the secret sharing algorithm and Reconst is the
reconstruction algorithm.

Share: It takes as input a secret s, and outputs a set of
pieces {p1, p2, . . . , pn}.

Reconst: It takes as input a set of pieces {p1, p2, . . . , pm},
and outputs s if m > t , or ⊥ if m < t .

D. CLOSENESS DOMAINS
D is defined as either a finite or an infinite domain, and
Cl is defined as the symmetric (partial) closeness function
that takes any x, y ∈ D as input and outputs a member of
{close, far}. For a distance function d , closeness parameters
are defined as δC and δF, where δC < δF. The closeness
domain (D,Cl) [26] is defined as follows. For any x, y ∈ D,

Cl(x, y) =

{
close, if d(x, y) 6 δC

far, if d(x, y) > δF
(1)

IV. SYSTEM OVERVIEW
To get closer to reality, we treat the social service providers as
incompletely trusted entities. And under the such assumption,
we design privacy-preserving image retrieval and shar-
ing scheme for social multimedia applications. To support

FIGURE 1. System architecture.

efficient retrieval on large-scale images, we use cuckoo hash-
ing to design efficient index. To reduce the costs of key man-
agement and access control caused by multi users in social
applications, we use the idea of KlFS to process the images.
The intuition of our scheme is using image content to search
for similar images and share images. In social multimedia
applications, if two users post images with similar content,
such as the same restaurant they went to, the same poster
they like, or the same movie they saw, they are very likely
to have similar interests and they can be potential friends.
For example, Alice posts the images about her mountain
climbing, then she may want to search for mountaineering
enthusiasts through the posted images, and further discuss
climbing skills or meet up with a mountain trip. So our
scheme can be extended to friend recommendation and other
applications.

A. ARCHITECTURE AND ENTITIES
Fig.1. illustrates the architecture of our scheme in a
high-level. The scheme involves three entities: the users,
the social multimedia application server (SS), and the cloud
server (CS).

The users are mobile terminals with certain level of com-
puting power, such as laptop, smartphone, tablet, and etc. The
SS is the internal server of social service provider that offers
social multimedia services to the users, such as Instagram,
Facebook, Flickr, and etc. The CS is a third-party cloud server
such as Amazon cloud.

B. SERVICE FLOW
As shown in Fig.1, the service flow of our scheme involves
4 phases: 1) Image preprocessing (steps 1&2): A user first
encrypts his images. Then the user extracts visual features
from the images and calculates the profile vectors from the
visual features. To simplify the key management, the user
uses a secret sharing scheme to share the keys that used to
encrypt the images, and encrypts all the pieces using the pro-
file vectors. Then the user uploads both the encrypted images
and the encrypted pieces to the CS. Meantime, the user
derives the tags that used for similarity retrieval from the
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TABLE 1. Notations.

profile vectors, and transfers the tags to the SS.
2) Index Update (step 3): Upon receiving the tags from the
user, the SS inserts the tags into the index. 3) Image retrieval
(steps 4&5): For the retrieval query from the user, the SS
performs similarity retrieval via the index. 4) Image sharing
(steps 6&7): After getting retrieval results, the SS asks the
CS to return the corresponding encrypted images and the
encrypted pieces to the user. The user reconstructs the keys
and decrypts the images.

C. DEFINITION AND NOTATION
Before presenting the definition of our scheme, we first define
some notations, as listed in Table 1, which will be used in
our following definition and constructions. Then we formally
define our notion of Privacy-preserving Image Retrieval and
Sharing scheme in Social Multimedia applications.
Definition 5 (Privacy-Preserving Image Retrieval and

Sharing): A privacy-preserving image retrieval and sharing
scheme in social multimedia applications consists of the fol-
lowing algorithms or protocols.

• Setup(1λ, params) → (PFuncs,T ): Run by the SS.
It takes as input a security parameter λ and function
initialization parameters params. It outputs public func-
tions PFuncs and a cuckoo hashing T .

• ImageProcess(1λ,PFuncs, I )→ (I∗, idI ,Piece∗,Tag):
Run by the user. It takes as input a security parameter
λ, public functions PFuncs and the image I . It out-
puts the encrypted image I∗, the image identifier idI ,
the encrypted piece set Piece∗, and the tag set Tag.

• IndexGen(T ,Tag) → I: Run by the SS. It takes as
input the cuckoo hashing T and the tag set Tag. It outputs
the secure index I.

• EDBGen(idI , I∗,Piece∗) → EDB: Run by the CS.
It takes as input the image identifier idI , the encrypted

image I∗, and the encrypted piece set Piece∗. It outputs
the encrypted database EDB.

• QueryGen(PFuncs, I )→ Tag: Run by the user. It takes
as input the public functions PFuncs and the query
image I . It outputs the query token Tag.

• Retrieval(Tag, I)→ ({I∗}, {Piece∗},AUX): Run by the
SS and CS. It takes as input the query token Tag and the
secure index I. It outputs the encrypted similar images
{I∗}, the corresponding encrypted piece sets {Piece∗},
and the auxiliary information set AUX.

• ImageRecover(I∗o ,Piece
∗, I ,AUX,PFuncs) → Io:

Run by the user. It takes as input the encrypted image I∗o ,
the corresponding encrypted piece set Piece∗, the query
image I , the auxiliary information set AUX, and public
functions PFuncs. It outputs the the image Io.

We also formally define our notion of Image Similarity.
Definition 6 (Image Similarity): For two images I1 and I2,

V1 = {v1, v2, . . . , vn} and V2 = {v′1, v
′

2, . . . , v
′
n} are feature

vector sets extracted from I1 and I2, respectively. For two
feature vectors v and v′, if they have the same (L, k)− eLSH
value, Cl(v, v′) = close and v and v′ are considered similar.
If I1 and I2 have no less than m similar feature vectors,
Cl(I1, I2) = close and I1 and I2 are considered similar.

D. THREAT MODEL
In our scheme, we suppose the CS and the SS are two non-
colluding ‘‘honest-but-curious’’ adversaries. We first con-
sider the primary security threat from the CS. The CS is
assumed to follow the specified service flow faithfully, but it
intends to learn the content of the images, the profile vectors
of the visual features, and the keys for the images. We focus
on preserving the confidentiality of the images and the key
pieces outsourced in the CS. The SS is also assumed to follow
the scheme faithfully, but it also intends to infer the keys
and the visual features. We should ensure that the SS cannot
acquire the keys, and the tags do not reveal the content of
the visual features. For the users, we assume that they are
trustworthy and can preserve their secrets, including the keys,
the visual features, and the profile vectors.

V. CONSTRUCTION
We propose the detailed construction of our privacy-
preserving image retrieval and sharing scheme in social mul-
timedia applications.
1) Setup(1λ, params) → (PFuncs,T ): Given a security

parameter λ, the SS initializes Pseudo-Random Functions
(PRF) H and G. Given function initialization parameters
params = {L, k,m, n, l,w, u}, SS initializes an extended
locality-sensitive hashing (L, k) − eLSH , a m-out-of-n
secret sharing scheme (Share,Reconst), and a cuckoo
hashing T = {T1,T2, . . . ,Tl} with l hash tables. Each
table Ti has a hash function fi and w buckets, where each
bucket is u−bit in length. Then the SS sets PFuncs =
{H ,G, (L, k) − eLSH , (Share,Reconst)} as the public
functions and makes PFuncs public.
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FIGURE 2. Index.

2) ImageProcess(1λ,PFuncs, I ) → (I∗, idI ,Piece∗,Tag):
Before uploading images to the social multimedia appli-
cation, the user takes the following steps to process the
image.
• Image encryption: The user first generates identifier
idI for the image I . Then given a security parameter
λ, the user chooses a secret key K for the image I ,
and invokes semantic secure symmetric encryption
algorithm to encrypt I and obtains the encrypted
image I∗.

• Secret key sharing: The user performs Piece ←
Share(K ), where Piece = {p1, p2, . . . , pn} is the
secret piece set.

• Profile generation: From the image I , the user extracts
the feature vector set V = {v1, v2, . . . , vn}, e.g.
ORB, SURF, and etc. Note that, the number of the
extracted feature vectors is equal to the number of
K ’s pieces. For each vi in V , the user performs
(L, k) − eLSH to generate the profile vector set
Mi = {mi1,mi2, . . . ,miL}, where mij = gj(vi) =
{hj1(vi), hj2(vi), . . . , hjk (vi)}, i ∈ [n] and j ∈ [L].

• Tags generation: For eachmij inMi, the user performs
tagij← H (mij) and appends {tagij, idI , i, j} to the tag
set Tag of the image I , where tagij is used for equality
matching in retrieval, idI is the image identifier, i
is the feature identifier, and j is the eLSH identifier
which indicates that the j-th hash function gj() of
eLSH is used for generating mij. After performing the
above operations on all profile vectors of I , the user
gets the tag set Tag of the image I .

• Pieces encryption: For each mij in Mi, the user per-
forms skij ← G(mij) and gets the secret key skij.
Then the user invokes symmetric encryption algo-
rithm p∗ij ← Enc(skij, pi) to encrypt the secret piece
pi of K . The user appends the encryption result p∗ij
to Piece∗, i.e. the encrypted piece set of I . After per-
forming the above operations on all profile vectors,
the user gets the encrypted piece set Piece∗ of the
image I .

Finally, the user uploads the encrypted image I∗ and the
encrypted piece set Piece∗ to the CS, and uploads Tag to
the SS.

3) IndexGen(T ,Tag) → I: Given the cuckoo hashing T ,
the SS takes the following steps to insert Tag into it and

construct the secure index I. The specific algorithm is
described in Algorithm 1 and the index design is illus-
trated in Fig. 2.
For each item = {tag, idimage, idfeature, ideLSH } in Tag:
• Primary insertion: the SS tries to insert item into
one of the l hash tables. The SS first initializes two
sets, Occupied = ∅ and Whole = {1, 2, . . . , l}.
Then it randomly picks an i ∈ Whole. If the bucket
Ti[fi(tag)] is empty, the SS inserts item into Ti[fi(tag)]
and the insertion is finished; otherwise, if the bucket
Ti[fi(tag)] is occupied, the SS appends i to Occupied
and update Whole = Whole − Occupied . The SS
repeats the above operations iteratively until item is
inserted into I or Whole = ∅.

• Random probe: If none of the above l buckets is
empty, then the SS expands the number of target
buckets to d+1 for each hash table. The SS initializes
Occupied = ∅ and Whole = {1, 2, . . . , l}. The
SS first randomly picks an i ∈ Whole. Then for
each δ ∈ [1, d], if the bucket Ti[fi(tag ‖ δ)] is
empty, the SS inserts item into Ti[fi(tag ‖ δ)] and the
insertion is finished; otherwise, if all of d buckets are
occupied, the SS appends i to Occupied and update
Whole = Whole − Occupied . SS repeats the above
operation iteratively until item is inserted into I or
Whole = ∅.

• Cuckoo kick-away: If all of the above l + l × d
buckets are occupied, the SS randomly selects an
i ∈ [l] and kicks away the item Kickedout stored in
Ti[fi(tag)]. Then the SS inserts item into the bucket
Ti[fi(tag)] and re-inserts Kickedout back via the above
steps iteratively.

After performing the above operations on all tags in Tag,
the index I is updated.

4) EDBGen(idI , I∗,Piece∗)→ EDB: Given the image iden-
tifier idI , the CS maps it to an address AddI in the cloud
storage. Then the CS stores I∗ and Piece∗ at AddI .

5) QueryGen(PFuncs, I ) → Tag: The user first extracts
the feature vector set V = {v1, v2, . . . , vn} from the
query image I . Then for each vi in V , the user per-
forms (L, k) − eLSH to generate the profile vector set
Mi = {mi1,mi2, . . . ,miL}. Finally for each mij in Mi,
the user performs tagij ← H (mij) and generates the tag
set Tag. The user sends Tag to the SS for retrieval.
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6) Retrieval(Tag, I)→ ({I∗}, {Piece∗},AUX): After receiv-
ing Tag of the query image I , the SS takes the following
steps to retrieve similar images and asks the CS to return
the user the encrypted images. The specific protocol is
described in Algorithm 2.
• Trapdoor generation: For each item = {tagij, idI , i, j}
in Tag of the query image I , where i ∈ [n] and
j ∈ [L], the SS transforms it into a trapdoor
t = {(t01 , . . . , t

d
1 ), . . . (t

0
l , . . . , t

d
l )}, where tδη =

fη(tagij ‖ ϕ), ϕ = ∅ if δ = 0, ϕ = δ if
δ ∈ [d]. After performing the above operations on
all tags in Tag, the SS gets t, which consists of n× L
trapdoors t .

• Bucket location: For tδη in t , where η ∈ [l]
and δ ∈ [d], the SS locates the bucket Tη[tδη].
If item = {tagij, idI , i, j}, that is used to generate
t , and {tag, idimage, idfeature, ideLSH }, that is the con-
tent of Tη[tδη], have the same eLSH identifier, i.e.
ideLSH = j, then SS appends {idimage, idfeature, i, j}
to the intermediate result set IR. The SS repeats the
above operations on all t of t and updates IR.

• Threshold filtering: For each image idimage that exists
in the IR, the SS counts the number of similar feature
vectors between idI and idimage. If the number of
similar features is greater than or equal to the thresh-
old value m, the SS adds the image identifier idimage
to the query result set QR, and appends all items
{idimage, idfeature, i, j} associated with idimage to the
auxiliary information set AUX. Finally, the SS sends
QR to the CS for requesting images, and returns AUX
to the user for speeding up the decryption operation.

• Query for images: After receiving query result set
QR from the SS, the CS retrieves encrypted database
EDB. For each image identifier idimage in QR, the CS
maps it to the address Add image and obtains I∗image
and Piece∗image stored at Add image. After performing
the above operations on all identifiers in QR, the CS
gets all encrypted similar images {I∗} and the corre-
sponding encrypted piece set{Piece∗}. Finally the CS
returns them to the user.

7) ImageRecover(I∗o ,Piece
∗, I ,AUX,PFuncs) → Io: For

the encrypted image I∗o and the corresponding encrypted
piece set Piece∗, the user takes the following steps to
recover the image.
• Pieces recovery: For each item {idIo , idfeature, i, j} in
AUX corresponds to the encrypted image I∗o , the user
first performs skij ← G(mij), where mij of the
query image I has been calculated in the Query-
Gen step. Then the user invokes symmetric decryp-
tion algorithm pidfeature ← Dec(skij, p∗idfeature,j) and
obtains the secret piece pidfeature . After performing the
above operations on all of the items correlative to
I∗o in AUX, the user recovers at least m pieces, i.e.
{p1, p2, . . . , pm∗}, where m∗ > m.

• Secret key reconstruction: The user performs the
algorithm K ← Reconst(p1, p2, . . . , pm∗ ).

Algorithm 1 Index Generation
Input: Tag = {{tag11, . . . , tag1L}, . . . , {tagn1, . . . , tagnL}}:

the tag set of the inserted image, T : the cuckoo hashing
Output: Updated secure index I
1: function INSERTIDX(Tag,T )
2: for i← 1 to n do
3: for j← 1 to L do
4: Insert:
5: Occupied ← ∅;
6: Whole← {1, 2, . . . , l};
7: while Whole 6= ∅ do
8: Randomly pick k ∈ Whole;
9: if Tk [fk (tagij)] = NULL then
10: Tk [fk (tagij)]← tagij
11: goto:Next;
12: end if
13: Append k to Occupied ;
14: Whole←Whole−Occupied ;
15: end while
16: Occupied ← ∅;
17: Whole← {1, 2, . . . , l};
18: while Whole 6= ∅ do
19: Randomly pick k ∈ Whole;
20: for δ← 1 to d do
21: if Tk [fk (tagij||δ)] = NULL then
22: Tk [fk (tagij||δ)]← tagij;
23: goto:Next;
24: end if
25: end for
26: Append k to Occupied ;
27: Whole←Whole−Occupied ;
28: end while
29: Randomly pick k ∈ [l];
30: Kickedout ← Tk [fk (tagij)];
31: Tk [fk (tagij)]← tagij;
32: goto:Insert; // insert Kickedout
33: Next:
34: end for
35: end for
36: end function

• Image decryption: The user invokes symmetric
decryption algorithm to decrypt I∗o with K , and
obtains the image Io.

Image Update: As the user adds or deletes the image,
not only the encrypted database stored in the CS should be
updated, but also the secure index stored in the SS is updated.
For image addition, Tag of the added image should be inserted
into I. The SS inserts Tag into the cuckoo hashing following
the steps in IndexGen. For image deletion, Tag of the deleted
image should be removed from I. First the SS performs
trapdoor generation to generate t and locates n × L × l ×
(d + 1) buckets according to the steps in Retrieval. Then the
SS checks whether the items stored in these buckets belong
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Algorithm 2 Image Retrieval
Input: Tag = {{tag11, . . . , tag1L}, . . . , {tagn1, . . . , tagnL}}:

the query token, I: the secure index
Output: {I∗}: the encrypted similar images, {Piece∗}: the

corresponding encrypted piece set; AUX: auxiliary infor-
mation set.

1: function RETRIEVAL(Tag, I)
2: Retrieval on SS:
3: IR←∅
4: for tagij in Tag do
5: for k ← 1 to l do
6: for δ← 0 to d do
7: if δ = 0 then
8: ϕ=∅;
9: else

10: ϕ=δ;
11: end if
12: tδk=fk (tagij ‖ δ);
13: (tag,idimage,idfeature,ideLSH )←Tk [tδk ];
14: if ideLSH=j then
15: R← {idimage, idfeature, i, j};
16: Append R to IR;
17: end if
18: end for
19: end for
20: end for
21: countdict← dict();
22: aux← invertedindex();
23: for R in IR do
24: if R.idimage ∈ countdict then
25: countdict [R.idimage]+=1;
26: Append R to aux[R.idimage];
27: else
28: countdict [R.idimage]=1;
29: Append R to aux[R.idimage];
30: end if
31: end for
32: QR←∅;
33: AUX←∅;
34: for idimage in countdict do
35: if countdict [idimage]>m then
36: Append idimage to QR;
37: Append aux[idimage] to AUX;
38: end if
39: end for
40: Retrieval on CS:
41: {I∗}←∅;
42: {Piece∗}←∅;
43: for idimage in QR do
44: Addimage←map(idimage);
45: Read (I∗image,Piece

∗
image) at Addimage;

46: Append I∗image,Piece
∗
image to {I

∗
}& {Piece∗};

47: end for
48: end function

to Tag. For the items belong to Tag, the SS deletes the items
and empties the corresponding buckets.

VI. ANALYSIS OF THE PROPOSED SCHEME
A. SECURITY ANALYSIS
In our scheme, there are two non-colluding and ‘‘honest-but-
curious’’ servers. We first quantify the information leakage
in the view of the SS and the CS respectively, and then
demonstrate that neither the SS nor the CS can infer any extra
information from their views.

First, we quantify the information leakage in the view
of the SS. The SS stores the secure index I, and handles
the image retrieval. The leakage patterns obtained by the
SS include the closeness pattern which is inferred from the
index I, the search pattern which is inferred from the retrieval
queries, and the access pattern which is inferred from the
retrieval operations. The formal definitions are as follows.
Definition 7 [Closeness Pattern (CP)]: For all images
{I1, I2, . . . , IN } inserted into the index I, CP is defined as a
symmetric matrix CPN×N , where the element CPN×N [i][j]
is a list that records the identifiers of the similar features
between two images and the identifier of eLSH that results
in the same tag of these two similar features. For 1 6 i,
j 6 N , if Ii and Ij have no similar feature, CPN×N [i][j] = ∅,
otherwise, for tagkη ∈ Ii and taglη ∈ Ij, if tagkη = taglη,
(k, l, η) is an element of CPN×N [i][j].
Definition 8 [Search Pattern (SP)]: For a set of q queries
{Tag1,Tag2, . . . ,Tagq}, SP is defined as a symmetric matrix
SPq×q, where the element SPq×q[i][j] is a list that records the
identifiers of the similar features between two queries and the
identifier of the eLSH that results in the same tag of these two
similar features. For 1 6 i, j 6 q, if Tagi and Tagj have no
similar feature, SPq×q[i][j] = ∅, otherwise, for tagkη ∈ Tagi
and taglη ∈ Tagj, if tagkη = taglη, (k, l, η) is an element of
SPq×q[i][j].
Definition 9 [Access Pattern (AP)]: For a set of q queries
{Tag1,Tag2, . . . ,Tagq},AP is defined as (B,AP(q+ω)×(q+ω)).
B = ({B1}, {B2}, . . . , {Bq}), where {Bι} is the accessed buck-
ets of Tagι. AP(q+ω)×(q+ω) is a symmetric matrix, where ω is
the number of image identifiers appeared inB and the element
AP(q+ω)×(q+ω)[i][j] is a list that records the identifiers of
similar features between two images and the identifier of
the eLSH that results in the same tag of these two similar
features. For 1 6 i, j 6 q + ω, SubTagi and SubTagj are
the subsets of Tagi and Tagj, which are inferred from the
queries andB. If SubTagi and SubTagj have no similar feature,
AP(q+ω)×(q+ω)[i][j] = ∅, otherwise, for tagkη ∈ SubTagi and
taglη ∈ SubTagj, if tagkη = taglη, (k, l, η) is an element of
AP(q+ω)×(q+ω)[i][j].
Definition 10 [View of SS (VSS )]: VSS is the information

leakage obtained by SS for a set of q queries, and defined as
VSS = (I,CP,SP,AP).
Theorem 1 (Indistinguishability for SS): Let A be a prob-

abilistic polynomial-time (P.P.T.) adversary, SimSS be a P.P.T.
simulator, and ṼSS is the simulated view. For a set of q
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queries, we have |Pr[A(VSS ) = 1] − Pr[A(ṼSS ) = 1]| < ε,
where ε is negligible, i.e., VSS and ṼSS are computationally
indistinguishable.

Proof: We first give the process of the simulating
view ṼSS :
• Simulation of index Ĩ. SimSS generates l hash tables,
and each table contains w buckets. i.e., Ĩ has the same
size as I. Recall that the items stored in the buckets of I
contain tag, the identifier of the image, the identifier of
the feature, and the identifier of the eLSH. Therefore, for
each occupied bucket of I, according to the closeness
pattern CP of I, SimSS first generates a random string
t̃ag that has the same length with tag, and then generates
three random strings as the identifiers that has the same
lengths with the real ones.

• Simulation of trapdoors and accessed buckets for a set of
q queries. For each item in the query q1, SimSS simulates
a trapdoor t̃1 = {(t̃01 , . . . , t̃

d
1 ), (t̃

0
2 , . . . , t̃

d
2 ), . . . (t̃

0
l , . . . ,

t̃dl )}, where t̃
δ
η is a random string that has the same length

as the real one. According to the access pattern AP, for
t̃1, SimSS simulates the accessed buckets {B̃1}, where the
number of simulated buckets is equal to the number of
real ones. For queries qi+1 (1≤i≤ q-1), SimSS adaptively
simulates trapdoors t̃i+1 according to the search pattern
SP obtained from the previous i queries. For the sub-
component of t̃i+1 that has not appeared in the previous
queries, SimSS adopts the above approach to generate
a random string as the subcomponent and then SimSS
adopts the same approach to simulate accessed buckets
via AP. For subcomponent of t̃i+1 that appeared before,
SimSS uses the same string used before and the same
bucket for simulation.

Due to the pseudo-randomness of the secure PRFs, t̃ag and
tag, Ĩ and I, t̃ and t , B̃ andB are indistinguishable. Therefore,
the simulated view ṼSS is indistinguishable from VSS . �

Then, we quantify the information leakage in the view of
the CS. The CS stores the encrypted images and the encrypted
pieces, and responds to the request of the SS.
Definition 11 [View of CS (VCS )]: VCS is the information

leakage obtained by the CS and is defined as VCS = EDB,
where EDB includes the encrypted images (I∗1 , I

∗

2 , . . . , I
∗
N )

and the encrypted pieces (Piece∗1,Piece
∗

2, . . . ,Piece
∗
N ).

Theorem 2 (Indistinguishability for CS): LetA be a P.P.T.
adversary, SimCS be a P.P.T. simulator, and ṼCS is the simu-
lated view. For a negligible ε, we have |Pr[A(VCS ) = 1] −
Pr[A(ṼCS ) = 1]| < ε, i.e., VCS and ṼCS are computationally
indistinguishable.

Proof: SimCS can simulate ẼDB according to VCS . For
the storage at each address, SimCS first generates a ran-
dom string Ĩ∗ that has the same length as I∗. Then SimCS
generates random strings P̃iece∗ that has the same length
as the encrypted pieces Piece∗. Due to semantic security
of the symmetric encryption, Ĩ∗ and I∗, P̃iece∗ and Piece∗

are indistinguishable. Therefore, the simulated view ṼCS is
indistinguishable from VCS . �

TABLE 2. Performance comparison.

B. EFFICIENCY ANALYSIS
In this section, we discuss the performance of our scheme and
make comparisons to the scheme proposed by Zou et al. [5]
that is most similar to ours.

The factors we focus on to evaluate performance include
the index size, retrieval time, image processing computation,
query generation computation, retrieval computation, image
recovery computation, and communication times between the
image owner and the user. Table 2 summarizes the com-
plexity or the operations required for these phases, where
PRF denotes evaluation of a pseudo-random function, LSH
denotes evaluation of a locality-sensitive hashing,CP denotes
a numerical comparison,MUL denotes a multiplication oper-
ation, ENC denotes a symmetric encryption operation, DEC
denotes a symmetric decryption operation, SS denotes a shar-
ing operation in secret sharing, SR denotes a reconstruction
operation in secret sharing, N denotes the total number of
images, and δ denotes the number of matched images in the
first round of comparison in [5].

Owing to the properties of cuckoo hashing, our retrieval
time O(1) is constant and our index size O(NnL) is linearly
increased with the number of tags in N images. Suppose
the index load factor τ is defined as τ = p/lw, where p is
the number of occupied buckets, and lw is the size of the
cuckoo hashing. So the size of our index design is (NnL)·u/τ ,
where u is the bit length of each bucket. In the process of
image processing, the user performs n ·L · k LSH to generate
profile vectors for the image. Then the user invokes Share
algorithm to share the secret key and performs n · L PRFs
to generate Tag, Finally, the user performs n · L PRFs and
n · L symmetric encryption to generate Piece∗. To gener-
ate the query, the user performs n · L · k LSH to generate
profile vectors for the query image and then performs n · L
PRFs to generate Tag. In the process of retrieval, the user
performs nLl · (d + 1) PRFs to locate buckets and performs
nLl · (d + 1) comparisons to compare contents in the buckets
with tags. In the process of image recovery, the user performs
m PRFs to generate keys for decrypting encrypted pieces,
performs m symmetric decryption to recover pieces of the
secret key, invokesReconst to reconstruct the secret key, and
finally performs symmetric decryption algorithm to decrypt
the encrypted image.

From Table 2, we could see that our scheme is more
efficient in retrieval, but more complex in image processing
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FIGURE 3. Insertion cost.

and image recovery compared with [5]. That’s because in our
scheme the key used for decrypting image is reconstructed
by the user himself and in order to help the user recover
the key, the image owner preprocess the key using the secret
sharing techniques. And this also reduces the communication
overhead between the users and the image owners. In [5],
the server sends encrypted retrieval results to the image
owner, and then image owner returns to the user the decrypted
image. However, in our scheme, the users have no need to
communicate with the image owner.

VII. PERFORMANCE EVALUATION
We use Python to implement the prototype of our scheme.
We deploy the prototype on a PC with Intel Core i7 3.4 GHz
CPU and 8 GB RAM. We use the computer vision library
Opencv3 to process images and the OpenSSL library to
achieve symmetric encryption and PRFs. The feature extrac-
tion algorithm is implemented using Oriented FAST and
Rotated BRIEF (ORB) [11]. The extended locality-sensitive
hashing is implemented using random bits sampling based
eLSH. We conduct our experiments on the UK Bench
database [27] to test retrieval accuracy and system perfor-
mance. Each group in the UK Bench database contains
4 images. The images in the same group capture the same
object under different angles and illuminations. Therefore
we consider images in a group as similar images. From the
database, we randomly choose 3,000 images to build the
secure index. We evaluate our system from the following
aspects: image processing cost, query overhead, and retrieval
accuracy. And all of the experimental results are the average
of 100 operations.

A. IMAGE PROCESSING COST
The parameters of the experiments are n = 120, t = 10, eLSH
arguements (k,L) = (30, 80), and we test the computation
cost of uploading one image. The experimental results show
that in the process of image processing, it takes 0.003s to
share the secret key, 0.056s to generate profile vectors, 0.081s
to generate tags and encrypted pieces.

B. QUERY COST
Whether a query is for retrieval, insertion, or deletion,
the bandwidth is constant with respect to n × L tags in Tag.
The parameter of the experiments are l × w = 30 million,

FIGURE 4. Deletion cost.

FIGURE 5. Retrieval cost.

probe value d = 3, n = 120, (k,L) = (30, 80). We test
tag insertion cost for uploading 1 image, tag deletion cost for
removing 1 image, and retrieval cost for querying 1 image
respectively.
• Insertion cost. Tags insertion may cause collisions in
cuckoo hashing and further incur kick-away operations.
As the index load factor τ grows, cuckoo kick-away
operations occur more frequently which results in the
growth of time cost, as shown in Fig.3.

• Deletion cost. After receiving the deletion query from
the user, the SS generates n × L trapdoors, accesses to
n×L×(d+1) buckets, and finally empties n×L buckets
related to the query. As shown in Fig.4, the deletion cost
is nearly constant under different τ .

• Retrieval cost. Same as the tags deletion, after receiving
the retrieval query, the SS generates n × L trapdoors.
Then SS accesses n×L× (d + 1) buckets in the cuckoo
hashing, and filters contents in these buckets. As shown
in Fig.5, the time cost under different τ is constant.

C. RETRIEVAL ACCURACY
Retrieval accuracy is affected by threshold valuem and eLSH
arguments (k,L). From Fig. 6, 7, 8, and 9, we could observe
the influence of threshold value on the retrieval accuracy and
the retrieval recall in our scheme. The growth of the threshold
value causes the standard for measuring image similarity to
become stricter, and leads to better retrieval accuracy and
lower retrieval recall. Fig. 6 and 7 demonstrate the impact of L
on retrieval accuracy and retrieval recall of our scheme, while
Fig. 8 and 9 demonstrate the impact of k . The growth of L
increases the retrieval recall and reduce the retrieval accuracy,
while the increase of k leads to the increase of retrieval
accuracy and the decrease of retrieval recall. The impact
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FIGURE 6. Accuracy for different L.

FIGURE 7. Recall for different L.

FIGURE 8. Accuracy for different k .

FIGURE 9. Recall for different k .

results of L and k are consistent with the characteristics of
eLSH described in section III-A.

VIII. CONCLUSION
In this paper, we proposed and implemented a privacy-
preserving content-based image retrieval and sharing scheme,
which can be used for friend recommendation in social mul-
timedia applications. We measured image similarity through
image visual features. We used eLSH to reduce the dimen-
sionality of visual features and realize similarity search on
visual features. We designed the index based on cuckoo
hashing to speed up the similarity search. Based on secret
sharing, we allowed the user to query and recover images
on his own, which eliminates key management overhead
and access control overhead compared with other schemes.
Finally, we implemented a prototype to evaluate the effi-
ciency of our proposed scheme. The results showed that our
scheme achieves practical performance under the UK Bench
database.
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