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ABSTRACT The automatic grasping of objects previously unseen by a robotic system is a difficult task—of
which there is currently no robust solution. The research presented in this article improves upon previous
works that employ depth data and learning techniques to generate and select from a pool of hypothesised
grasps by focusing on the pruning and selection process. In this work, a vision-based, sampling methodology
that generates candidate grasps through a convolutional neural network is proposed. Each candidate grasp is
assessed using scores derived from the candidate itself and other related input modalities—such as the centre
of gravity of the object. The final selection is determined by a learning algorithm. To overcome human bias,
objective measures of grasp performance are established that comprehensively measure the error introduced
by the grasp trial itself. The proposed metrics are empirically demonstrated to quantify grasp quality, offer
useful criteria for network training and provide better descriptive power than traditional measures of grasp
outcome. Experimentation showed that the proposed methodology can generate a meaningful, final grasp
within 1.3 seconds. Trials quantitatively demonstrate a small-object-in-isolation performance of 99%. For
unknown objects, this equates to a 10% improvement relative to other similar methodologies. Testing also
showed that grasp performance was improved by 5% when implementing the proposed metrics—compared
to the baseline.

INDEX TERMS Object grasp detection, robotic grasping, part-handling, machine vision, machine learning,
robotic learning, AI-based flexible automation system.

I. INTRODUCTION
Autonomous novel object grasping and handling is a
wide-ranging, high-impact field with many implications,
especially within domestic and industrial application.
Some instances where automatic grasping has been stud-
ied include an automated checkout robot [1], garbage
sorting [2], cloth manipulation [3], bed making [4],
dishwasher unloading [5], automated cooking [6], [7],
service robotics [8]–[11], general household-related grasp-
ing [12]–[14], clutter clearing [15], [16] and stowing, picking
and packing for warehouse automation [17]–[20]—which has
gained significant traction since the 2017 Amazon Robotics
Challenge [21].
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The automated manipulation of objects previously unseen
by a robotic system is an extremely difficult task, as a
good grasp is related to object shape, size, material, weight-
distribution, surface properties, friction coefficients and
object deformability, and can be severely affected by sensing
and actuation accuracy. Moreover, the relationship between
these variables and a specific grasping strategy, robotic hard-
ware and a gripper is not always clear.

Research in this field has been active for decades, yielding
a colourful range of promising avenues—especially with the
recent interest from well-known and well-resourced research
institutions, such as Google and the Massachusetts Insti-
tute of Technology (MIT). With the attention of such insti-
tutions, we have seen unprecedented, large-scale dataset
generation frameworks that allow for the training of com-
plex, self-supervised neural networks [22]–[25]. Moreover,
machine learning in general has become overwhelmingly
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represented within this area, with a great deal of work util-
ising RGB and/or depth input modalities [12], [26], [27].
Despite the success seen throughout literature, the automated
manipulation of novel objects remains challenging and an
active topic of research.

Over the past three decades consumers have increas-
ingly been demanding a wider variety of goods in smaller
batches, resulting in rapid changes in production technolo-
gies [28]–[30]. This trend reveals the importance for flexible,
reconfigurable and automated production systems for future
markets [31]–[33]—which is not usually considered by object
manipulation literature. Although flexible robotic hardware is
progressively becoming a popular topic, such as the dual-arm,
scalable concept developed by ABB [34], [35], the adaptabil-
ity of the related grasping methodology is not usually con-
sidered to the same degree. Fully manual assembly lines are
still common in low-wage countries, particularly for manu-
facturers of consumer electronics, small appliances, toys, etc.
Novel object manipulation methodologies that utilise object
identification, accurate grasping location/orientation and a
robust handling process play a crucial role in future automa-
tion and production lines. This paper presents a grasping
methodology based on machine learning that aims to improve
on research related to novel object detection, grasping and
handling with autonomous robotic systems—further closing
the gap between manual and fully automated production.

Automated grasping is typically posed as a search
problem—find the location that will best facilitate handling
of the object from a potential infinite number of grasps. The
goal of our research is to sample some of these candidate
locations and select a meaningful subset of grasp hypotheses,
which may then be pruned based on quality metrics to select a
suitable and reliable grasp for execution. In contrast to many
current systems that utilise depth information [18], [20],
[27], [36], 3D models of objects [37]–[39] or wrist-mounted
sensors [12], [26], [40], our methodology operates on raw,
monocular RGB observations of the scene.

This paper presents an approach that utilises machine
learning and part-related information to find, grade and
select suitable robotic grasping locations in 3D space and
is an extension of our previous work [41]. In this paper,
a selection-stage is established. The datasets used for training
have also been considerably improved. Moreover, the pro-
posed methodology is implemented on a physical robot and
trials are conducted for validation. The method consists of
three main stages, each coupled with a learning component.
First, a classifier is trained to determine whether the object
within a region of interest is known or unknown. For unknown
objects, a small convolutional neural network (CNN) quickly
classifies segments of the object through vision to identify
potential grasping locations. A scoring network is then used
to rank these locations and decide on the final grasping
position. Input features for the scoring network are derived
from the assessed grasp itself and other features related to
the object or grasp location. Methodology performance is
quantified as per literature and the proposed set of metrics.

To evaluate the proposed methodology, experimentation and
testing focus specifically on 2-fingered, parallel jaw gripping
that uses force-closure within the scope of object-agnostic
grasping, approached from an industrial perspective.

The performance evaluation of our system through phys-
ical trials demonstrates quantitatively that our approach
can grasp small objects not seen during training 98.9%
of the time—despite relying only on rudimentary sensing,
such as an RGB webcam. Compared to the relevant lit-
erature, this constitutes an improvement of roughly 10%.
An illumination-controlled imaging chamber and conveyor
system was constructed for dataset generation and method-
ology testing. Objects are placed haphazardly at one end of
the conveyor and grasped at the other end. The final system
generated a grasp within 1.3 seconds, producing on average
83 viable grasps per object. New quantitative metrics that
more accurately reflect the quality of a grasp have also been
proposed. Trials revealed that the proposed metrics are capa-
ble of further improving grasp rates by 2.7% for unknown
objects and 5.3% for known objects—compared to highest
confidence selection.

This paper is organised as follows. Section 2 introduces
current approaches to novel object grasping and describes the
associated difficulties therein. Section 3 states the proposed
metrics used to define and improve grasping performance.
Sections 4 to 7 cover the proposed methodology, experimen-
tation, analysis and future research. Finally, section 8 presents
some of the conclusions from this research.

II. GRASPING LITERATURE
A. OBJECT GRASPING CHALLENGES
The robotic grasping of unfamiliar objects has grown to be a
well-studied field within manipulation and is approached in
many ways. Although a comprehensive overview of grasping
is not within the scope of this paper, we refer the reader to the
widely cited grasp synthesis survey by Bohg et al. [42].
Some grasping approaches have tried reducing the impor-

tance of gripper placement by increasing the dexterity of
the end-effector itself. Brown et al. considered a granular
jamming end-effector design, in which a mass is pressed onto
an object [43]. By eliminating the air within the mass via
vacuum, the shape conforms to the candidate object. Their
methodology showed excellent performance for a wide range
of objects and significantly reduced hardware and software
complexity—but lacked gripping force for round, flat and
small objects. Welhenge, Wijesinghe and Rajakaruna pro-
posed a universal 3-fingered gripper designed to emulate
human finger motion when grasping objects [44]. Similarly,
Huang, Lehman, Mok, Miikkulainen and Sentis made use of
an evolutionary search model and the MekaHand—a sim-
ulated 5-fingered, humanoid gripper [45]. Odhner, Ma and
Dollar took inspiration from the 2-fingered strategy humans
employ to grasp objects from a table with their under-
actuated gripper design [46]. They showed good perfor-
mance for small, thin objects like keys or coins—which is
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a common issue for many current works. The problem with
fixed, design-based approaches is two-fold. Complex grip-
per designs usually excel at complicated tasks with specific
requirements and are difficult to extend to a wider range of
objects. Also, grasping locations for such end-effectors can
be difficult to represent conceptually. 2-fingered gripping is
usually favoured for research within this area [16], [47]–[49].
Our research is also focused on 2-fingered grasping as there
is a plethora of representations for this modality. Moreover,
2-fingered gripping has demonstrated state-of-the-art perfor-
mance for novel objects [12], [22], [23].

Point cloud and model-based approaches that use a 3D
model of the candidate object to generate and select appro-
priate grasping locations are common. Arruda, Wyatt and
Kopicki provide one such example, in which a wrist-mounted
depth camera is driven to multiple locations around an
object [50]. Up to 7 views are collated to optimise the
surface reconstruction of the object, which may then be
used to assess the quality of contact points around potential
grasps. Unfortunately, the reliability of such methodologies
declines as the quality of the model declines. Furthermore,
obtaining accurate and complete model reconstructions has
proven extremely difficult in practice due to depth sensor
noise and the response of surface-dependent sensors [51].
To combat this, many works have turned to machine learning.
Pas, Gualtieri, Saenko and Platt frame point cloud-based
grasp detection as a binary classification problem, wherein
partial or occluded views of objects are used to train a
4-layer CNN classifier [36]. Their dataset consists of 1.5 mil-
lion hand-labelled examples of positive and negative grasps
of 55 unique objects. Similarly Mahlet et al. use Dex-Net,
a grasp quality CNN which predicts grasp robustness directly
from reconstructed 3D models [39]. A synthetic dataset con-
taining 6.7 million point clouds and other metrics was used
to train their network. Their work was later posed as a cloud-
based, grasp planning system specifically for 2-fingered grip-
pers [52]. Both methodologies were physically trialled and
achieved grasp rates of 93% or above for novel objects.
Fischinger, Weiss and Vincze discretised point cloud data
into many small topographical features [53]. A support vec-
tor machine (SVM) classifier was trained to recognise the
pattern of such features that correspond to potential grasps.
Their methodology showed good grasping rates in clutter for
3 varying robotic arms and 4 unique grippers.

Machine learning techniques have also been used to detect
local grasp locations directly from sensor data without con-
sidering the object in context. This concept was pioneered by
Jiang, Moseson and Saxena in their early work which focused
on grasp representation [54]. By representing a 2-fingered
grasp in terms of a grasping rectangle, hand-labelled, super-
vised learning approaches could be used to generate and
evaluate numerous candidate grasps. Their later work [13]
showed that their representation, coupled with depth data,
could effectively grasp novel objects. Their dataset has
since been adopted by others [55]–[61]. A plethora of
similar generate-and-test methodologies utilising analogous

representations have also since been proposed. Sun, Yu, Liu
and Gu, for example, extract a histogram of gradient fea-
tures from the Cornell Grasp Detection Dataset [55]. These
features are used to train their classifier to find candidate
grasping rectangles. A second network is then used for final
candidate selection.

More sophisticated learning methodologies have also ben-
efitted from the grasping rectangle representation. Pinto and
Gupta used an unsupervised learning technique with over
50,000 grasp attempts and 700 robot hours to find appropriate
grasps in terms of 2-dimensional RGB rectangle represen-
tations [24]. Adversarial learning has also been investigated
within this context [25]. Other representations have also been
proposed. kPAM from MIT, for example [12], use seman-
tic 3D keypoints to strictly represent an object in terms of
task-relevant geometric detail. Their representation proved
effective for manipulating objects within the context of the
desired task.

The research presented in this article is closely related to
that of Lenz et al. [13] and Sun et al. [55]. They exploited
RGB-D data and learning techniques to generate numer-
ous candidate grasps, of which a final grasp was selected.
However, neither methodology put enough emphasis on the
candidate pruning and selection process. We propose an
RGB sampling-based method that generates candidate grasps
through a CNN. Each potential grasp is assessed using
scores derived from the candidate, as well as other related
input modalities, such as the centre of gravity (COG) of
the object. The final selection is determined by a learning
algorithm.

B. LACK OF STANDARDISATION
A current major issue within this field is the lack of shared
benchmarks and performance metrics for comparison. This
was specifically noted by Bohg, Morales, Asfour and Kragic
in their grasp synthesis survey [42] and more recently by
Morrison et al. [26]. Some methodologies, for example, sim-
ply train a new learning algorithm on popular grasp detection
datasets such as the Cornell dataset [56], [57], [59]–[61]
and report their classification accuracy as a potential grasp
success rate—without physical trials. Although this might
provide some basis for comparison for learned model per-
formance, many systems are so drastically different that
this single-faceted comparison is irrelevant in the context
of how well the system will grasp objects in practice.
Moreover, some only use parts of the database for train-
ing and comparison. Training success rates are also usu-
ally higher than physical trial success rates [24], [36]. Sun,
Yu, Liu and Gu, for instance, noted an 11% disparity
between dataset classification accuracy and physical trial
outcome [55]. Commonly, datasets within this field are hand-
annotated [12], [19], [54], [61]–[63]. This is somewhat prob-
lematic because training for dataset performance tunes a
methodology toward grasps the human creators consider opti-
mal for real-world implementation. Quantifying the degree
to which such annotated grasps map to a physical system is
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extremely difficult—as evidenced by the various works that
report similar performances with differing datasets.

Some approaches have tried to avoid human influence
altogether by implementing self-supervised learning. The
Google-affiliated work of Levine, Pastor, Krizhevsky and
Quillen, for example, sees the implementation of an unsuper-
vised convolutional neural network for closed-loop robotic
grasping that utilises a single RGB input modality [23]. Over
the course of threemonths, they generated over 800,000 train-
ing samples, using anywhere between 6 and 14 robotic
manipulators at any one time. Their work was later improved
upon by Kalashnikov et al. through the introduction of
Qt-Opt—a scalable, deep reinforcement learning method-
ology that utilises a self-supervised framework to learn
real-world grasping behaviours [22]. Without human inter-
vention, they showed that—given enough training data—a
neural network can learn distinct behaviours that facilitate
grasping, e.g., re-grasping strategies for badly grasped
objects, object probing, object repositioning for better manip-
ulation and disturbance response [22]. Despite their suc-
cess, hand-engineered labels still outperform unsupervised
algorithms. To overcome human bias, this work proposes
the institution of objective measures of grasp performance.
By measuring the error introduced by a grasp trial itself,
metrics can be established to assess grasp outcome, quantify
grasp quality and provide useful criteria for network training.

Due to these broad comparison issues, many works cite
their real-world, tested robotic grasp success rates [15],
[22], [24], [25]. To help facilitate this, some have proposed
standardised object test sets, where the aim is to have a shared
pool of objects so that differing methodologies can be tested
in the same way. Popular object test sets include the 42-object
ARCV picking benchmark [64] and the 72-object YCB
object and model set [65]. Despite many efforts, no standard
object pools have been adopted by the wider community and
generally many works will default to a ‘common household’
or ‘common laboratory’ object test group—which varies
and is self-defined, but usually well-documented. Morrison
et al. [26] suggest that the lack of standardisation within this
field is related to the wide range of methodologies, lack of
shared object test sets and limitations of physical hardware,
e.g., the gripper may limit object shape or size and the robotic
arm may limit object weight.

C. DEFINITION OF A SUCCESSFUL GRASP
As stated previously, many works evaluate performance in
terms of their physically-trialled grasp success rate—which
is the rate at which their system is deemed to success-
fully grasp objects. To add to the lack of clear baselines
for comparison, this metric is also somewhat problematic
because what constitutes a successful grasp is defined dif-
ferently. Some consider a grasp successful if the object in
question can be lifted to a pre-defined height without falling
[22, 24-26, 54, 66]. Pas and Platt [37] consider a trial success-
ful if the object can be grasped, lifted and transported to a col-
lection box. Pinto and Gupta make use of force sensors [24],

whereas others loosely define a successful grasp as lifting
an object. To add to the confusion, some simply refer to
an executed grasp as ‘successful’ or ‘unsuccessful’, without
clearly defining what is meant by these terms. Based on such
definitions, the current state-of-the-art novel object grasp rate
sits between 85-95% [22], [38], [39], [52], [55]–[57].

Although such loose definitions have demonstrated capa-
ble of grasping objects with moderate reliability, it is clear
that the binary pass/fail metric is not well-related to the
quality of a grasp—in the sense that post-grasp placement is
not considered. Although a grasp may be robust enough to
facilitate the lifting of an object, the object may be displaced
due to the grasp itself, resulting in poor object manipulation
or placement—which is key for industry applications. Thus,
this study aims to develop better notions of a ‘good grasp’ by
quantitatively measuring the quality of a grasp based on how
well an object has been picked up, transported and placed.
This work is not only concerned with grasp outcome—but
also grasp quality—and moves away from describing a grasp
trial as successful or unsuccessful, opting rather for contin-
uous scores that provide a larger spectrum to describe grasp
outcome.

III. SIMILARITY METRICS
An object grasping study reveals that two factors contribute
to how well an object is gripped and handled when using a
2-fingered gripper. The first is gripper alignment, demon-
strated in Figure 1. When the two plates of a gripper are
not parallel with or geometrically suited to the local gripping
area, the object is forced into some gripper-relative position.

FIGURE 1. 2-fingered gripping alignment illustration. (a)—depiction of a
grasped object in which the two parallel plates of a gripper are perfectly
aligned with the gripping area. (b)—depiction of poor alignment.

A lack of consideration of the COG of an object can also
affect manipulation quality. If sufficient gripping force has
not been applied to the object, for example, it may droop,
as depicted in Figure 2.

To capture as much of the problem as possible, we propose
to measure the error introduced by the grasp in terms of
translation and rotation. An overlap score OS is described by
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FIGURE 2. 2-fingered gripping COG illustration. (a)—depiction of a grasp
in which the COG of the object has been considered. (b)—a grasp in which
the COG was not considered.

FIGURE 3. (a)—illustration of pre- and post-grasp object locations with
no overlap. (b)—depiction of pre- and post- grasp locations with some
overlap. (c)—depiction of pre- and post- grasp locations with significant
overlap.

the Jaccard similarity index:

OS =
|Apre ∩ Apost |
|Apre ∪ Apost |

(1)

whereApre is the top-down area of the object prior to the grasp
and Apost is the top-down area of the object after the grasp.
Similarly, an orientation error scoreOE compares the rotation
of the object pre- and post-grasp:

OE = 1−
|
(
θpost − θpre

)
|

180
(2)

where θpre represents the major orientation of the object pre-
grasp. θpost represents themajor orientation of the object post-
grasp. Both OS and OE range from 0 − 1. OS returns a
value of 0 if the performed grasp translates the object such
that pre- and post-grasp objects do not overlap, as shown in
Figure 3-a.OS approaches 1 (Figure 3-c) as the applied grasp
tends toward a perfect grasp, where no pre- or post-grasp
difference in translation or rotation is measured.
OE varies, depending on the amount of rotation introduced

by the grasp, resulting in 1 with no change and 0 if the object
is rotated by 180◦. OE does not respond to translation. Such
continuous scores can be used to train regression models or
alternatively for classification through threshold techniques.

IV. PROPOSED METHODOLOGY AND
SYSTEM DESCRIPTION
The methodology put forward in this paper consists of
three main stages, each with their own learning component.
Figure 4 illustrates the conceptual stages of the proposed
system.

Stage-1 is a learner and classifier. It can identify known
and unknown objects and learn new classes. Prior to stage-1,
an image of the workspace is captured. Present objects are
segmented and cropped using digital image processing tech-
niques. Such images are then classified by the stage-1 learner.
If the object within the image is correctly classified, a pre-
viously implemented grasp may be fitted to the object and
passed to the manipulator for direct execution—completing
the task. The methodology proceeds for further processing
if the object is not confidently classified by the stage-1
network.

Stage-2 is an orientation and pose generator. Prior to
stage-2, strong object orientations within the cropped image
are found. The cropped image is then rotated based on these
orientations. A small grasping window is iterated across each
rotated image and assessed by the stage-2 classifier. Each
correctly classified window and its relative location and ori-
entation is recorded.

Stage-3 integrates information and optimises for grasp
selection. It gathers information about the object, such as
a secondary view of the object, the COG of the object,
etc. The stage-3 learning framework scores each previ-
ously recorded window and its accompanying object-related
information. The highest scoring grasping window may
then be converted to robot space for physical implemen-
tation. The executed grasp location, orientation and object
class may then be saved for future use, depending on the
outcome.

A. GRASP REPRESENTATION
Machine vision was employed in this research for object
grasp location and orientation detection. Consider the prob-
lem of detecting grasps for known and unknown objects
given two monocular RGB observations of the scene
(Figure 5).

Grasping positions from the perspective of the camera
mounted at the top of the enclosure fall within top-view image
space:

It [x, y] ∈ R3×H×W (3)

where [x, y] are each ∈ R3×H×W and contain real pixel
values. H and W are the height and width of the captured
image respectively. Sensor properties are known a priori.
To characterise a grasp within It , a 5-dimensional, rectangular
planar representation is assumed—graphically illustrated in
Figure 6.

The rectangular grasping window as an image is referred
to as IRCW . The orientation of this representation is defined
by its rotation angle θt with respect to the Itx axis about
centre position xt , yt . The relationship between IRCW and
the physical gripper placement is direct. The robotic tool
is centred about xt , yt in real space and the two parallel
plates of the gripper close perpendicular to θt . Rectangle
height ht relates to the physical width of the gripper and
wt relates to the available distance between the two plates
of the gripper when fully extended. The top-view pose
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FIGURE 4. Proposed 3-stage grasping methodology top-level process diagram. First, an object is captured and
segmented from its background. Second, a bounding box is fitted and classified. If classified correctly, the object
is rotated. Rotated images can then be used to generate numerous candidate grasps, of which a final grasp is
selected.

FIGURE 5. Illustration of object imaged from two distinct viewpoints.
Camera space and the object lower limit have also been annotated.

FIGURE 6. Illustration of 5-dimensional top-view grasping rectangle
representation. ht and wt represent the height and width of the
representation, respectively. θ t is the orientation and xt,yt, the centre
position of the rectangle.

component of this window in image space It can therefore be
defined as:

poset = {xt , yt , θt , ht ,wt } ∈ It (4)

FIGURE 7. 4-dimensional planar representation of a grasping rectangle
from the side view. hs and ws represent the height and width,
respectively, and xs,ys is the rectangle centre position.

In addition to the top mounted camera, a side camera pro-
duces a side-view image space:

Is [x, y] ∈ R3×H×W (5)

Since two identical sensors are used, the height H and width
W of Is are identical to It . The planar representation within
this space is graphically depicted in Figure 7.

The side-view rectangular window as an image is referred
to as ISVW . The side-view pose component of this window
within Is is represented as follows:

poses = {xs, ys, hs,ws} ∈ Is (6)

where xs, ys is the window centre position and hs,ws are the
height and width, respectively. Height hs and width ws vary
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depending on the distance between the object and the side
camera, i.e., hs andws increase in size as an object approaches
the side camera. Physically, ISVW relates to the side-on maxi-
mal contact area of the gripper when closing onto the object.
xs and ys reflect the centre position of gripping pads and hs
and ws are related to the height and width of the side gripping
area respectively.

Combining both pose representations yields a multi-
perspective location array that is referred to as a candidate
grasping window:

g =
{
poset , poses, Sc

}
(7)

where Sc is the candidate score array containing 10 scores
related to the specific candidate. A comprehensive expla-
nation of this array is provided in Section 4.2. Effectively,
poset can be used to find the x, y and θ components of an
end-effector in robot space and poses can be used to find the
z component.

B. GRASP POSE GENERATION AND SELECTION
To facilitate the selection of a final grasp, a set of top-view
grasp hypotheses is generated:

poset1,...,m =



xt1 , yt1 , θt1 , ht ,wt
...

xtn , ytn , θtn , ht ,wt
...

xtm , ytm , θtm , ht ,wt


(8)

where n ranges from 1 to m. ht ht and wt are fixed according
to the gripper size in pixels. Figure 8 provides a full graphical
representation of this notation.

FIGURE 8. Illustration of top-view and the side-view rectangle
representations. Camera space, object lower limit and object maximum
height have also been annotated.

To find θtn , It and Is are first converted to grayscale using
the Rec. 601 conversion, resulting in a pixel intensity range
of 0−255. Currently RGB data is ignored to improve perfor-
mance, as a strong correlation between the number of input

channels and computation time was observed—supported by
general machine learning theory [67], [68]. A binary image
ItTh of height H and width W—which segments the object
from its background—is created by thresholding the intensity
values of each pixel within It :

ItTh [x, y] =

{
1, if It [x, y] ≥ Tt
0, if It [x, y] < Tt

(9)

where x ranges from 1 to W and y ranges from 1 to H . Tt is
the threshold level applied to It . Several morphological filters
are applied to ItTh for noise reduction and to improve object
clarity. For additional information related to digital image
processing, an excellent resource is provided by Gonzalez
and Woods [69]. ItTh can be used to find the centroid of the
object xo, yo by using the centre of mass calculation:

xo =

∑W
x=1

∑H
y=1 xItTh [x, y]

Npix
(10)

yo =

∑W
x=1

∑H
y=1 yItTh [x, y]

Npix
(11)

where Npix is the number of pixels within ItTh that register a
value of 1:

Npix =
∑W

x=1

∑H

y=1
ItTh [x, y] (12)

Npix is also considered to be the pixel-wise area of an object.
A square, fixed-size bounding box IBB of size HIBB × HIBB
is fitted onto It at centre xo, yo. A graphical representation
of this process is illustrated in Figure 3, step 3. HIBB is con-
strained by the desired input size of the stage-1 classifier and
the desired maximum object size. For this application, a value
of 790 provided an optimal input size-maximum object
trade-off.
IBB is assessed by the stage-1 classifier to determine if

the object is likely known. A pre-determined grasp may be
fitted to the object directly if the classifier soft-max out-
put Ksfclass is above some classification acceptance threshold
T class. IfKsfclass < T class, a Sobel filter is applied to each pixel
within IBB to calculate the horizontal gradient value gradientx
and vertical gradient value gradienty of each pixel:

gradientx [x, y] =

−1 0 1
−2 0 2
−1 0 1

 ∗ A (13)

gradienty [x, y] =

−1 −2 −1
0 0 0
1 2 1

 ∗ A (14)

This filter responds to strong edges within an image. The
resultant gradient angle θgradient is also calculated for each
pixel within IBB:

θgradient [x, y] = arctan
(
gradienty
gradientx

)
(15)

A number of pixels at specific angle vs. pixel angle histogram
is tabulated. Local maximawithin this plot (Figure 9) are used
to determine the major orientations of an object.
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FIGURE 9. Typical number of pixels at unique gradient angle vs. pixel
angle histogram. Peaks correspond to the angle of strong edges within an
image.

The top four maxima are selected:

θSobel =


θ̇1
θ̇2
θ̇3
θ̇4

 (16)

where θ̇1 denotes the highest number of pixels counted at a
specific angle and θ̇4 denotes the 4th highest. IBB is rotated
4 times about centre xo, yo by θ̇1,...,4, creating IBBR1,...,4 .
A rectangular classification window IRCWn—which might
contain an appropriate gripping area—of height ht and width
wt is iteratively translated across each rotated bounding box
image IBBR1,...,4 . At each stepped location IBBR1,...,4 [i, j], IRCWn

with centre [i, j] is assessed by the stage-2 classifier. The
soft-max output of this network is denoted by Ksfn . Note
that a binary variant of IBBR1,...,4 is used to largely avoid
object-absent areas, derived from ItTh . If Ksfn is higher than
some heuristic acceptance threshold T sf then xtn , ytn , θtn are
known and can be added to the poset set. xtn and ytn are found
by transforming the IRCWn centre location within rotated
space IBBR1,...,4[i,j] to the respective non-rotated space position
IBB [x, y], which shares a coordinate frame with It . θtn is taken
as the respective angle θ̇1,...,4 at classification time. For each
candidate, 6 related scores ranging from 0−1 are calculated:
• Sssn (symmetryscore). This score assesses the symmetry
of the grasp within IRCWn . Sssn will score 1 if the grasp
perfectly symmetric.

• Scsn (centrescore). This score responds to the horizontal
location of the grasp within IRCWn . If the grasp is per-
fectly situated around centre centre ytn , Scsn will produce
a score of 1.

• Slsln (linestrengthleft). This score assesses how paral-
lel the left-most gripping area is with respect to the
IRCWnyaxis, which is consequently parallel with the left
plate of the gripper. Slsln responds to the gripping area
edge strength, e.g., a corrugated edge from a bolt may
score low, whereas a straight edge from a pencil might
score high.

• Slsrn (linestrengthright). Similar to Slsln , this score
assesses how parallel the right-most gripping area is
relative to the IRCWnyaxis, as well as line strength.

• Sptpn (proportiontruepixels). This score measures the
proportion of IRCWn filled with the grasping area.

• SCOGn (COGdistancescore). This score relates to the dis-
tance between the centre of the candidate grasp xtn , ytn
and the measured COG xtCOG , ytCOG of the assessed
object. This score is relative to IBB and will produce a 0
if xtCOG , ytCOG lies outside the bounding box. xtCOG , ytCOG
lies outside the bounding box. SCOGn will score 1 if
xtn , ytn and xtn , ytn and xtCOG , ytCOG are identical.

Now that the top-view grasp hypothesis set poset has been
populated, the corresponding side-view set can be addressed:

poses1,...,m =



xs1 , ys1 ,ws1 , hs1
...

xsn , ysn ,wsn , hsn
...

xsm , ysm ,wsm , hsm


(17)

where rectangle width wsn and height hsn vary based on side
camera-object distance. xs and ys represent the side-on rect-
angular window pose, which relates to the gripper placement
within Is. Side camera-object distance can be measured by
the top camera in the Ityaxis. The relationship between the
top-view rectangle y-position ytn and side rectangle widthwsn
is described by:

wsn = ay2tn + bytn + c (18)

where a, b and c are constants found to relate wsn and ytn
through testing. Since the ratio of the grasping rectangle does
not change and is the same as the top-view rectangle, hsn can
be calculated as follows:

hsn = wsn

(
ht
wt

)
(19)

Prior to object placement in Is, a blank grayscale side-
view image is captured with no objects present IsBlank .
A 2-dimensional Gaussian blur is performed on both Is and
IsBlank , defined by:

GB [x, y] =
1

2πσ 2 e
−
x2+y2

2σ2 (20)

where σ is the standard deviation of the Gaussian distribu-
tion. The blurred side-view image containing an object is
denoted by IsGB and the blank variant by IsBlankGB . A side-view
absolute difference image Isdiff is calculated by comparing
pixel-wise intensity levels:

Isdiff [x, y] =
∣∣IsGB [x, y]− IsBlankGB [x, y]∣∣ (21)

A binary image IsTh of the difference image Isdiff of height H
and widthW is created by thresholding each pixel:

IsTh [x, y] =

{
1, if Isdiff [x, y] ≥ Ts
0, if Isdiff [x, y] < Ts

(22)

Some noise is removed from IsTh using morphological filters.
Since the Itx axis and the Isx axis share the same plane,
the top-view rectangle x-position xtn is used to calculate the
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side-view rectangle x-position xsn by applying a series of
known transforms:

xsn = trTC
(
xtn
)

(23)

A side-view rectangular window ISVWn of height hsn and
width wsn is iterated through multiple y-positions along the
vertical axis of IsTh at x-position xsn , through the range(
phlevel − (hsn/2)

)
≤ ysstep ≤ phmax . phlevel is the height

of the platform (i.e., the lowest point of an object, shown in
Figure 8) described by the polynomial function:

phlevel = ay3tn + by
2
tn + cytn + d (24)

where a, b, c and d are constants found to relate phlevel and ytn
through experimentation. phmax is the maximum y-position
of a grasp physically limited by the cover around the enclo-
sure, which limits object height (Figure 8). At each iteration,
3 scores ranging from 0− 1 are calculated:
• Ssvoln (side− view over lapscore). This metric scores the
proportion of ISVWn occupied by the candidate grasping
area. Higher degrees of gripper overlap will produce
larger scores. If the entire gripper overlaps with the side
gripping area, this score will produce a 1. Similarly,
if there is no gripper overlap from this perspective, a 0
will be scored.

• Shsn (height score). This score assesses the vertical sym-
metry of the grasping area within ISVWn .

• Swsn (width score). This score assesses the horizontal
symmetry of the grasping area within ISVWn .

The ysn value is taken from the iterated side-view rectangular
window ISVWn as the respective ysstep with the highest com-
bination of Ssvoln , Shsn and Swsn . At posetn and posesn , the
corresponding candidate score values Scn are collected in an
array:

Sc1,...,m =
{

Ksfn , Sssn , Scsn′ Slsln , Slsrn ,
Sptpn , ScoGn , Ssvoln , Shsn , Swsn

}
(25)

Collating poset , poses and Sc gives the candidate grasp
matrix:

g1,...,m =
{
poset1,...,m, poses1,...,m, Sc1,...,m

}
(26)

Two output scoresOSpredn andOEpredn are predicted for each
candidate grasp n by the stage-3 frameworkwith the 10 scores
from Scn as input features. This gives the selection-stage grasp
set:

ġ1,...,m =
{
poset1,...,m, poses1,...,m ,
OSpred1,...,m ,OEpred1,...,m

}
(27)

A final grasp is selected for execution based on the candidate
n with the highest combined OSpredn and OEpredn scores:

G = max
(
ġ1,...,m

{
OSpred1,...,m ,OEpred1,...,m

})
(28)

Finally, the selected grasp G is transformed from camera
coordinate frames to the robot coordinate frame:

Ḡ
{
x̄, ȳ, z̄, θ̄

}
= tCR (G) (29)

where tCR is a known camera-robot space transformation
which extracts robot Cartesian coordinates x̄, ȳ and robot
end-effector angle θ̄ from posetn and robot z-value z̄ from
posesn . θ̄ is perpendicular to the image space grasp angle θt .
Since a 2-fingered grasp is symmetric around ±90◦, θ̄ falls
within the range 0− 90◦.

C. GENERATING TRAINING DATA
Deep learning brings robustness at the expense of amassing
large quantities of data. Noise within this data can affect the
robustness of the learned algorithm.

To mitigate some of this noise we avoid human interaction
where possible. Training samples are taken from real sensor
data. 100 objects were chosen as the object test pool. Sam-
ples are generated exclusively from the 15 objects labelled
as ‘known’ (Figure 10). The ‘unknown’ subset contains
45 unique objects that vary in size, shape and complexity
(Figure 11). The remaining 40 objects have been labelled as
‘etc’. This subset is shown in Figure 12 and contains items
that may be similar to items within the unknown subset.
The unknown and etc subsets contain novel objects, used
exclusively for testing purposes. Examples of the object
test pool include a USB drive, side cutters, hex key, bolt,
screwdriver, wrench, pneumatic flow regulator, pneumatic
T-junction, small cross wrench and an eyelet screw. To help
diversity the object test pool, objects have been chosen
that belong to 3 categories: general household items, tool
items and component items. The complete set is shown in
Figures 10, 11 and 12. Care has been taken to curate an object
test set with minimal redundancy, i.e., selecting objects that
sufficiently differ in shape, size, mass-distribution and grasp
difficulty.

The stage-1 dataset contains images of entire objects
within the known subset. Example images are shown
in Figure 13. Samples are generated automatically via
the same process as obtaining IBB. This dataset contains
80,000 samples, split into 70% training/validation data and
30% test data. The dataset contains 5,000 images for each
of the 15 known object classes. An additional 5,000 images
with no objects present were added for the 16th, blank
class. This class was added for two reasons. First, there
may not be an object present within the classification win-
dow. Second, object-absent data was found to significantly
reduce inter-class confusion—as evidenced by the generally
increased precision and recall rates for classifiers trained in
this way.

Samples within the stage-2 dataset are directly related to
the top-down gripper placement window IRCW from perspec-
tive It (Figure 6). Samples were manually labelled within
rotated space IBBR1,...,4 of size IRCW . To facilitate binary
classification, this dataset contains one positive class and
one negative class—which relates to the traditional pass/fail
metric from literature. Examples are provided in Figure 14.
Each class was defined subjectively according to what the
user considered a positive or negative class, with the intention
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FIGURE 10. 15-object subset denoted as known. An object is considered known if it was included in any of the
training datasets. (a)—known household items. (b)—known tool items. (c)—known component items.

FIGURE 11. 45-object subset denoted as unknown. An object is considered unknown if it was not included in
any of the training datasets. This subset is explicitly used for testing purposes. (a)—unknown household items.
(b)—unknown tool items. (c)—unknown component items.

FIGURE 12. 40-object subset denoted as etc. Objects within this subset are unknown but contain object
variants and objects similar in shape and size to the unknown subset. This subset is explicitly used for testing
purposes. (a)—etc household items. (b)—etc tool items. (c)—etc component items.

of reflecting a location that may facilitate a successful grasp
(Figure 14-b) or an unsuccessful grasp (Figure 14-a) in
practice. This dataset contains 141,000 samples, of which

70% were used for training/validation and 30% for test-
ing. 47,000 samples were dedicated to the positive class
and 94,000 samples to the negative. The cost of a false
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FIGURE 13. Stage-1 training data examples. Samples are generated by haphazardly placing objects within the known subset on the
apparatus conveyor belt. Detected objects are moved to the vision system, which automatically locates and segments the object
from its background.

FIGURE 14. Stage-2 training data examples. (a)—negative class. (b)—positive class. Samples are generated by manual
annotation according to what the user considers a successful grasp (b), or an unsuccessful grasp (a).

positive is high for the grasp detection component of the
system. Therefore, we biased our dataset toward the negative
class, which has been shown to reduce the number of false
positives [67].

Two individual learning algorithms were trained for the
stage-3 component of this methodology: one to predict the
overlap score OSpred and another to predict the orientation
error score OEpred . Both networks used the same dataset.
This dataset was generated automatically by physically test-
ing and recording the outcome of attempted grasps in terms
of input features Sc and output features OS and OE for
the known object subset. Note that stage-2 must be some-
what functional to generate this set. This dataset contained
2,000 samples, split into 80% training/validation data and
20% testing data for classification. The grasp attempted by
the robot Ḡ was taken randomly from the candidate grasp
matrix g. Generating samples for this dataset is extremely
slow.

D. LEARNING TO GRASP
The stage-1 CNN framework consisted of 4 convolutions,
followed by one fully connected layer. Network architecture
was found through experimentation, with the goal of optimis-
ing both computational performance and dataset accuracy.
In total, over 200 networks were trained prior to settling
on a base architecture for this application. Each convolution
was followed by a max-pool layer. Network input size was
790 × 790, as per the dimensions of IBB. These dimensions
were found to appropriately limit object size as per the
constraints of the robotic manipulator while providing the
network with sufficient information, without compromising
performance. We used the Stochastic gradient descent with
momentum (SGDM) optimiser. The network was trained for
15 epochs, with a mini-batch size of 30 and initial learning
rate of 5× 10−4. 21 similar networks were also trained.
The implemented network correctly classified 99.3% of its
respective test set. It took 241 minutes to train using the
hardware and software detailed in Table 1. The loss curve for
this network is illustrated in Figure 17.

The stage-2 classifier followed a very similar CNN design
as stage-1, but input size was 164 × 52. This size was set

TABLE 1. Implementation details.

according to gripper size, corresponding to IRCW . SGDM
was used and the network was trained for 60 epochs with a
mini-batch size of 200 and initial learning rate of 1× 10−4.
44 slight variants of this network were also trained. Several
networks achieved roughly the same classification perfor-
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FIGURE 15. Various test rig related images. (a)—front view of test rig. (b)—view from inside
the enclosure, showing two perpendicular webcams. (c)—Dobot Magician manipulator
used for testing. (d)—image of one of the 10kg load cells used to find the COG of an object.

mance, but the smallest network was implemented. It was
found to correctly classify 98.9% of the stage-2 test set. This
network took 145 minutes to train. The loss curve is shown in
Figure 18. The stage-2 classifier is rotation variant. As shown
by Sunet al. [55], better performance can be achieved by
rotating the image prior to classification—as opposed to
training a rotation invariant algorithm. Alternatively, Pinto
and Gupta [24] classify graspable patches, then additionally
classify for angle.

Initially we attempted to cast the stage-3 component as a
classifier through thresholds. 5 classes were defined for each
network by grouping the measured output features OS and
OE by range 0−0.2, 0.2−0.4, 0.4−0.6, 0.6−0.8, 0.8−1.0.
Unfortunately, this approach performed poorly. 30 various
classifiers were trained in this way, with the top performing
network achieving a mere 63% classification accuracy.

Framing stage-3 as a regression problem yielded better
results. The stage-3 OSpred network utilised a regression
SVM. 5-fold cross validation was used. The best net-
work predicted OS with input Sc with a root mean square
error (RMSE) of 0.07. Simple linear regression was used
for the stage-3 OEpred network, resulting in an RMSE
of 0.14. Other regression algorithms were also trained,
including regression trees, Gaussian process regression mod-
els and other ensemble learners.

V. EVALUATION
A. HARDWARE SET-UP
Methodology evaluation and testing was conducted using
the apparatus shown in Figure 15. The test rig consists of a
conveyor belt, robotic system and imaging enclosure. Two
Microsoft Livecam Studio webcams were installed to cap-
ture images of the object within the enclosure and diffuse
LED lighting was used to maintain a consistent imaging
environment. The conveyor belt rested on 4 load cells, rated
to 10kg each. Hardware and software details are provided
in Table 1.

Measured system properties:
• Conveyor belt repeatability: ±3.4 pixels(∼ 0.5 mm)
• Combined load cell error: ±0.1 g
• Robot-vision transformation error: ±1.7 pixels
(∼ 0.24 mm)

• Calibration disc weight: 133g± 0.01 g
• COG position error: ±4.1 pixels (∼ 0.6 mm)@200 g

FIGURE 16. Load cell configuration and layout of test rig.

The COG of an object xtCOG , ytCOG within top-view image
space It is related to the output of each load cell. The interac-
tion between these planes is illustrated in Figure 19.

To facilitate the transform between load cell space and
image space, coeffx and coeffy are calculated:

coeffx =
weightRF + weightRR

weight total
(30)

coeffy =
weightRF + weightLF

weight total
(31)

weight total = weightLR + weightRR
+weightLF + weightRF (32)

where weightLR, weightRR, weightLF and weightRF are
load cell measurements corresponding to the locations in
Figures 16 and 19. coeffx and coeffy effectively describe the
ratio of weight distribution in two perpendicular axes. These
coefficients can be used to devise linear relationships that
relate xtCOG , ytCOG and coeffx, coeffy:

xtCOG = Acoeffx + B (33)

ytCOG = Ccoeffy+ D (34)

where A,B,C andD are constants found through experimen-
tation. For a more in-depth description of this method, please
refer to Patel and Topiwala [75].

B. EXPERIMENTAL PROTOCOL
To test the proposed methods and methodologies, single
objects were placed haphazardly at the end of the conveyor
belt furthest from the robotic manipulator. Detected objects
were automatically moved to the centre of the vision system
along Itx axis. The length of an object was approximated
using a beam sensor and known distance travelled by the
conveyor belt. The object length approximation accuracy was
measured as ±1mm and could be used to move an object
to a desired It location along the xaxis only. Once imaged,
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FIGURE 17. Loss curve for the stage-1 network used to classify object images. This network was trained for 15 epochs and
reached a validation accuracy of 99.3%.

FIGURE 18. Loss curve for the stage-2 network used to classify grasping rectangles. This network was trained for
60 epochs and reached a validation accuracy of 98.9%.

FIGURE 19. Graphical depiction of load cell arrangement. xtCOG
, ytCOG

can be calculated in It image space by measuring load cell outputs.

the object is moved by a set amount into the robot frame.
A grasp is then attempted. For comparison we take our
working, literature-based definition of a successful attempt
to be a physically performed grasp in which an object is
lifted vertically to a height of 15 cm and then held stationary
for at least 10 seconds without falling. The object must be
solely supported by the gripper, so that no other part of the
object touches any other hardware. After being suspended
for 10 seconds, the object is placed on the conveyor belt at
the grasp attempt location and moved by the set amount back
toward the centre of our vision system, where the resultantOS
and OE scores are measured. This experimental evaluation
aims to quantitatively assess the effectiveness of the method-
ology by measuring the error introduced by the grasping
process itself in terms of OS and OE . The outcome was also
recorded in terms of the pass/fail metric. The above process
constitutes one trial.

The system was physically trialled 3,000 times on the
entire object test pool consisting of the 15 known objects used
to generate training datasets and the remaining 85 objects not
seen during training. Each object was trialled 10 times based

on 3 different selection criteria. 1,000 trials were conducted
using the stage-2 network, in which a grasp was selected
at random from grasp matrix g. 1,000 trials were also con-
ducted by selecting the grasp with the highest Ksf value
produced by the stage-2 network. The remaining 1,000 trials
were conducted using the complete system, in which stage-3
automatically chose and attempted a grasp from g using
input features Sc. Results are shown in Figure 20. 3,000 trials
corresponds to approximately 100 robot-hours.

VI. RESULTS AND DISCUSSION
As stated in Section 2.2, it is difficult to determine the rel-
ative performance of this research due to the lack of clear
benchmarks. However, the comparison of our method to other
open-loop methodologies that grasp a single object in isola-
tion shows improvement. An object is considered isolated if
it does not touch another object in the field of view. To aid
the comparison, common ‘household’ and ‘laboratory’ items
that are similar in shape and size to objects used by other
methodologies reported in literature and within the capability
of our robot were selected.

A. QUANTITATIVE ASSESSMENT
The grasp success rate of the proposed methodology over
3,000 trials is illustrated in the form of a histogram in
Figure 20-a. Grasping via random selection from g success-
fully lifted objects within the object test pool to a height
of 15 cm for 10 seconds, 94.0% of the time. This could be
increased to 96.4% by selecting the grasp within g with the
largest Ksf value. This was further improved to 99.0% by
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FIGURE 20. Measured results from 3,000 grasp attempts by selection criteria in terms of the pass/fail metric (a), the OS metric (b) and
the OE metric (c).

selecting the grasp from g with the largest combined OSpred
and OEpred scores, predicted by the two stage-3 networks.
Note that the reported grasp rates are defined in terms of the
literature-based definition of a successful grasp, as defined in
Section 5.2.

The grasp rate via random selection for the known object
subset was 93.3%, increasing slightly for the unknown and etc
subsets, tested to grasp objects at a rate of 93.6% and 94.8%,
respectively. Highest Ksf selection increased grasp rates for
the known subset to 94%. This grasp strategy performed
notably better for objects within the unknown and etc subsets,
with grasp rates of 96.2% and 97.5%, respectively. Note the
gradual increase in grasp rate for the known, unknown and etc
subsets for random and highest Ksf selection (Figure 20-a).
This increase is consistent across selection criteria and may
be related to the difficulty of each respective object subset.

Selection via stage-3 produced the least amount of vari-
ability across each object subset, grasping objects within the
known, unknown and etc subsets successfully 99.3%, 98.9%
and 99% of the time, respectively.

A comparison of the performance of the proposed
methodology vs. the performance of others is shown
in Table 2. The grasping success rate for known and unknown
objects is improved by approximately 2 and 10%, respec-
tively, compared to the best performance of other similar
approaches.

FIGURE 21. Measured output scores averaged over 3,000 grasp attempts.

Relative to the highest Ksf aggregate baseline, grasp-
ing performance increased by roughly 3% when selecting
grasps via highest combined predicted OS and OE scores.
Although this improvement can be quantified by defining an
attempted grasp as either successful or unsuccessful, grasp
quality seems to be more accurately reflected by our metrics.
This was particularly evident for the key object (uH006).
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TABLE 2. Cited grasping success rates in terms of the pass/fail metric of various 2-fingered gripper-based works, where objects were physically trialled in
isolation. Number of trials per object and testing conditions varied. Most of the referenced works make use of some form of deep learning—please refer
to the ‘Approach’ column.

FIGURE 22. (a)—average OS response from samples that produce a pass or fail outcome, measured from
3,000 grasp attempts. (b)—average OE response from samples that produce a pass or fail outcome,
measured from 3,000 grasp attempts.

During trials, this object was frequently grasped by the chain
interlinked to the main body of the object (Figure 25-d),
generally resulting in a successful grasp, but very poor OS
and OE scores. Moreover, the uneven mass distribution of
the wrench object (kT004) tended to produce lower OS and

OE scores. Top-scoring Ksf grasps tended toward the handle
end of this object, generally far from the COG—resulting in
significant droop and low-quality grasps. Although this was
qualitatively noticeable, the pass/fail metric did not quan-
tify this error, as all trials for this object were considered

74230 VOLUME 8, 2020



J. J. V. Vuuren et al.: 3-Stage Machine Learning-Based Novel Object Grasping Methodology

FIGURE 23. Performance of various score values from Sc by selection criteria, measured from 3,000 grasp attempts.

successful for all 3 modes of selection. This error was sig-
nificantly mitigated by the stage-3 selection process which
tended toward grasps close to the COG. Generally, grasping
away from the COG of an object tended to amplify the
introduced rotational and translational error. The average
response ofOS and OE across 3,000 grasp attempts is shown
in Figure 20-b and Figure 20-c, respectively. NoteOS andOE
fluctuate with grasp success rate.

Figure 22 illustrates the response of OS and OE based on
grasp outcome. Resultant OE scores from Figure 22-b show
that very little orientation error was introduced when a grasp
attempt was successful.

Compared to random selection, highest Ksf selection
tended to increase the outcome of both OS and OE for suc-
cessful grasps. This was further improved by stage-3 selec-
tion. Notably, OE scores for failed grasps differed based
on the selection criteria (Figure 22-b). Even though a
grasp attempt may have failed, the introduced orientational
error was lower when selecting via stage-3. Generally,
stage-3 selection produced the highest quality grasps in terms
of both OS and OE for grasps considered successful. OS
scored very low for failed grasps, although this score was
somewhat consistent across selection criteria.

The average OS and OE scores for a failed grasp were
0.094 and 0.690, respectively (Figure 21). The average OS
and OE scores for a successful grasp were 0.587 and 0.971,
respectively. This suggests a relationship between the liter-
ature definition of a successful/unsuccessful grasp and the
proposed metrics.

In addition to recording the resultant OS and OE scores
from 3,000 physical grasps, the related grasping window
scores Sc were also recorded—illustrated in Figure 23. These
scores serve as inputs to the stage-3 selection networks.
Note that the COG distance score was significantly higher
for grasps selected via stage-3. This is consistent with the
qualitative assessment in Section 6.2, as grasps tended toward
the COG of an object for this mode of selection. Moreover,
selection via the stage-3 framework tended toward grasps that
were more symmetric, scored higher in terms of proportion
of graspable area from the top camera perspective and tended
to select grasps with increased gripper overlap from the side
camera perspective.
TABLE 3. Run-time per component.

The computation time for each major component at trial
time is shown in Table 3. The methodology produced,
on average, 82.7 candidate grasps per object of Ksfn ≥ T sf
at Tsf = 0.95, with IBBR1,...,4 [i, j] step magnitudes of i = 5
and j = 5 and ysstep=5. These step magnitudes resulted in the
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system operating at approximately 0.8 Hz. The search res-
olution IBBR1,...,4 [i, j] and ysstep were the biggest contributors
to computation time. Lowering this resolution significantly
increased performance but reduced the number of candidate
grasps generated. Alternatively, limiting the number of Sobel
rotations θSobel considered also increased performance at the
cost of reducing g count. The object segmentation and Sobel
operation components were accelerated using GPU-array
computation. Computation time varied depending on object.
Hardware acquisition times, e.g., camera frame capture and
load cell measurement, were the largest contributor to total
system operation time.

FIGURE 24. Candidate grasp pool generated through classification by the
stage-2 network (left) and the corresponding grasp selected by the
stage-3 framework (right).

B. QUALITATIVE ASSESSMENT
It was apparent from the first few trials that stage-3 tended
toward grasps close to the COG of objects. Some examples
are shown in Figure 24. These sorts of grasps do not generally
result in droop—which affects peri-grasp objectmanipulation
quality and post-grasp placement quality. Placement quality
is measured by OS and OE .

Selected grasps tended to have larger gripping surfaces and
clear, parallel gripping areas. ‘Good’ grasps tended to score
OS and OE values higher than 0.98 and 0.70, respectively,
whereas ‘bad’ grasps tended to produce lower scores. A grasp
was considered ‘bad’ if there was noticeable droop and/or
object displacement caused by the gripper. A ‘bad’ grasp
did not necessarily result in a dropped object and was there-
fore not reflected by the literature definition of a success-
ful/unsuccessful grasp.

Generally, false positives produced by stage-2 were not
selected by stage-3. The right-most grasping rectangle in
Figure 24-c for the flow valve object (kC005), for example,
is likely to produce droop or fail the grasp altogether.

C. COMMON REASONS FOR FAILING TO
GRASP AN OBJECT
Some common reasons for failure were observed. The flow-
valve object (kC005), for example, was prone to grasps
extremely close to other perpendicular surfaces not visible
in IRCW . Due to the uncertainty associated with the system,
sometimes the gripper would collide with such surfaces,
resulting in failure or decreased grasp quality.

FIGURE 25. Candidate grasps selected by various selection criteria that
will likely result in an unsuccessful grasp or score poorly in terms of
OS and OE.

Since IRCW does not capture the physical dimensions of
the gripper outside of this window, some grasps were prone
to collision in certain situations. Generally, this resulted in
lower OS scores, but did not cause the grasp attempt to fail.
This was particularly relevant for the small U lock object
(uC012)—Figure 25-d.
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Deformable objects rarely caused grasp attempts to fail, but
usually reducedOS andOE . Examples of deformable objects
include the black figurine object (kH002), the brown scorpion
toy (eH007), the red Euoplocephalus toy (eH008) and the
blue Plesiosaur toy (uH014). Moreover, the brown scorpion
toy sometimes suffered from both deformation and gripper
edge collision. An example of this situation is illustrated in
Figure 25-b.

Many grasps selected via random selection or highest
Ksf selection failed or performed poorly in terms of OS
and OE due to a low COG distance score SCOG. The dis-
tance between an attempted grasp and the COG of an object
becomes increasingly important for heavier objects such as
the black bolt (eC015), the hex key objects (eT001, kT003),
the screwdriver objects (uT005, eT009, eT010), the wrench
object (kT004), the small side cutters (kT005), the motorcy-
cle chain (uC001), the small pliers (uT008) and the toffee
hammer (uT004). Droop is the main factor that contributed
to poor grasps in this instance. An example of this is shown
in Figure 25-c. Generally, this was not an issue for stage-3
selection.

The largest contributor to failed grasp attempts was the
selection of incorrectly classified grasps. False positives often
caused major collisions (Figure 25-e) or translated the object
significantly without fully closing the gripper onto the object
(Figure 25-a). Usually, false positives performed poorly in
terms of the related grasping window scores Sc and were thus
avoided by the stage-3 framework altogether.

An accurate grasp relies on an accurate translation between
the vision and robot coordinate frames—which are separated
by the conveyor belt. Conveyor translation may introduce a
small, yet significant amount of error for very light and rigid
objects. This error contributed to a very small percentage of
failed grasps.

VII. LIMITATIONS AND FUTURE WORK
Currently, the proposed methodology is only applicable
to systems with small 2-fingered grippers. However, since
only the soft-max output of the stage-2 network Ksf is
used, custom networks that correspond to the new gripper
size and design can be substituted. Scale-invariant learning
approaches should ideally be used for this stage.

The conducted trials were only performed on objects
in isolation due to the limitations imposed on the system
by the employed COG measurement technique. Removing
COG as an input feature can still produce good grasping
performance—shown in Figure 20 by the pre-stage-3 per-
formance of the proposed methodology. The COG feature
is regarded as one of many potential inputs that provide the
proposed methodology with information to improve grasp
prediction. It is intended that many varying sensors or known
object properties can serve as inputs if they are available,
such as temperature, material properties, friction coefficients,
gripper feedback, weight, etc. Future work aims to extend
the methodology to cluttered environments by approximating
the COG of an object through vision. Note that this method

assumes uniform mass distribution. In this work, object cen-
troid coordinates xo, yo represent a vision-estimated COG.
Therefore, true COG measurements may be avoided by sim-
ply substituting xtCOG , ytCOG for xo, yo, respectively.

The output from stage-1 is not currently used. The aim
is to build a database of successful grasps, where unique
objects are linked to their grasp outcome. By identifying an
object which has previously been well-grasped, stage-2 and
stage-3 can be avoided by fitting the known grasp to the
known object directly.

Improving the quality and quantity of our stage-3 dataset is
another direction for future work. The current dataset is small
and noisy.

Single-pass networks have gained significant popular-
ity recently due to their increased computational perfor-
mance [26], [56], [57], [76], [77]. It is possible to merge the
proposed networks into a large, single-pass network which
predicts a final grasp G directly from an input image It .
Of course, a more powerful GPU is required to facilitate this.

Relevant source code and the datasets used in this work
will be made available at: https://drive.google.com/open?id
=1VsEjCl6hrX3FeL9VRF-J9CzVL7JHXO15.

VIII. CONCLUSION
In this paper we presented a novel 3-stage, learning-based
object grasping approach that predicts a well-suited, 2-
fingered grasping location for previously unseen objects.
The outcome showed an increase in performance of roughly
10% for unknown objects, compared to other similar works.
The proposed similarity metrics demonstrated applicability
for learning-based algorithm training. 3,000 physical trials
revealed a 3% improvement in grasp rate when employ-
ing the proposed metrics compared to the more traditional
pass/fail grasping definitions. To the best of our knowledge,
our methodology is the first to use a COG factor as an input
feature for learning.

Our work aims toward a robust methodology to not only
grasp objects well, but to grasp objects so that they may be
handled well. We believe this is key for industry applications
and needed to further close the gap between manual and
fully automated assembly. In future work, we would like to
improve the fit of the stage-3 networks, tune our methodology
to a wider range of objects and extend our methodology to
cluttered environments.
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