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ABSTRACT In this paper, we develop a statistical resource allocation scheme to mitigate the aggregated co-
tier, cross-tier, and cross-link interference in ultra-dense heterogenous networks (HetNets). By statistically
and cognitively characterizing the aggregated interference instead of instantaneous interference information
exchange, our scheme allocates resources of power and channels to each femtocell distributively taking
the impact on the macrocells into consideration. Simulation results show that the femtocell throughput is
improved while reducing the macrocell throughput reduction simultaneously.

INDEX TERMS Ultra-dense HetNets, statistical resource allocation, cognitive, interference mitigation.

I. INTRODUCTION
With the rapid development of smart devices and new appli-
cations, an exponential mobile traffic volume growth is fore-
seen in the future wireless communication networks. Through
network densification, the ultra-dense heterogeneous
networks (HetNets) have been widely considered as a promis-
ing approach to accommodate the explosive wireless data
growth and ensure user experience for the 5G wireless evo-
lution [1]–[4]. In such networks, the shortened transmissions
within the crowded small cells are enabled and overlaid in the
macrocells. Hence, benefiting from the spatially enhanced
frequency reuse, the ultra-dense HetNets can enhance the
capacity and the spectral efficiency significantly with low
transmitting power.

The densely deployed small cells may suffer from severe
mutual co-tier interference, cross-tier interference with
macrocells, and even cross-link interference between uplink
and downlink introduced by the flexible time division duplex
(TDD) technology [5]. All these interferences will seriously
degrade network performance apparently. Interference man-
agement to address these kinds of interferences is the key
challenge to the ultra-dense HetNets deployment [4]–[6].
Therefore, resource allocation schemes are considered essen-
tially for interference mitigation in ultra-dense HetNets,
which can be classified into two categories of centralized
approaches and distributed approaches.
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Among the centralized resource allocation schemes, the
interference information from each small cell is reported
to and gathered by a central entity like the macrocell base
station (MBS) for example. Then MBS controls the resource
allocation process to each small cell for interference mit-
igation through the separated or mix of frequency, time,
space, power, and emerging polarization domains [7]–[9].
Interference management can be implemented through the
assignment of orthogonal frequency channels among small
cells. Almost blank sub-frame technologies are considered
to allocate different kinds of sub-frames in each small cell
dynamically [7]. Spatial interference management can be
achieved by taking advantage of massive MIMO systems [8].
Besides, polarization is also utilized in resource allocation
as an important property of wireless signals [9]. Generally,
the centralized resource allocation schemes in the ultra-dense
HetNets require significantly increased signalling overhead
due to the interference related information exchange among
the large number of deployed small cells, and the implemen-
tations are of great complexity.

Thus, the distributed resource allocation schemes are pre-
ferred to mitigate interference in the ultra-dense HetNets with
more flexibility and less overhead [2]–[4]. Hypergraph theory
based distributed resource allocation schemes are proposed
to mitigate the inter-cell interference for ultra-dense HetNets
with both the device-to-device communications and proactive
caching [10]. Yoon et al. proposed an interference weight
calculation scheme to reduce the computational complexity in
[11]. An interference-aware distributed cooperation scheme
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is proposed in [12] to explore the diversity gains and mitigate
interference based on game theory. These existing resource
allocation schemes generally need to share some determin-
istic interference related information such as channel state
information or neighbor list in the cluster. Although the
information is shared within local neighbor nodes, it is still
a big challenge to exchange within the dynamically changed
dense neighbors. Alternatively, statistical interference related
information is more attractive to enable distributed resource
allocation with several probabilistic parameters instead of
deterministic parameters for each specific node, which can
further reduce the exchange overhead significantly [4], [13].

In this paper, we propose a distributed statistical resource
allocation scheme for the ultra-dense HetNets without deter-
ministic interference related information exchange instanta-
neously or periodically. Here we use femtocell to stand for
the various small cells of microcell, picocell, and femtocell.
We extend our previous work of resource allocation for tra-
ditional HetNets in [14] to the ultra-dense HetNets. In this
work, both the interference and network environments are
different and much more severe and complex than in [14].
First, here we consider the intra macrocell cross-link inter-
ference besides the co- and cross-tier interference in [14], and
pay more attention on the resource allocation performance of
the cell edge users in the ultra-dense HetNets. Second and
furthermore, the inter macrocell interference in the scenario
of multiple macrocells is additionally involved to evaluate the
performances of the proposed scheme in this work. Third and
the most important, here the proposed scheme not only con-
sider the data rate gain and data rate reduction of neighbors for
each femtocell link as in [14], but also investigate the tradeoff
between the gains and reductions through a priority factor.
In this way, the proposed scheme here can benefit better
statistics from the larger number of interferers in the ultra-
dense HetNets, and improve the overall throughput when
facing increased number of dense neighboring macrocell and
femtocell links.

The main contribution of our paper is as following.

1) We exploit statistical model of the aggregated co-
tier, cross-tier, and cross-link interference rather than
instantaneous interference information exchange to
enable distributed resource allocation among femto-
cells. By utilizing local cognitive interference estima-
tion and the channel reciprocity in TDD pattern, the
proposed scheme generates the statistical information
of the co-tier, cross-tier, and cross-link interference. It
is very effective and practical for resource allocation in
ultra-dense HetNets, since it saves the enormous over-
head caused by instantaneous interference information
exchange.

2) In the proposed scheme, the femtocell links allocate
channel and power resources individually with the sta-
tistical interference information. Each femtocell link
not only maximizes its throughput but also mitigates
the potential interference to the neighboring ultra-dense

FIGURE 1. System model.

HetNets links. By estimating the aggregated interfer-
ence, our scheme can control interference to macro-
cell thereby preserving macrocell throughput, which is
extremely important for cellular system design.

3) Furthermore, we also set two parameters to evaluate
the protection of macrocell throughput. One is a femto-
free zone where the channels are exclusively used by
macrocells, and the other is the priority of macrocell
when it shares the channels with femtocells.

The rest of the paper is organized as following.We describe
the system model considering the co-tier, cross-tier, and
cross-link interference in Section II. The statistical resource
allocation scheme of ultra-dense HetNets with cognitive
interference estimation is investigated in Section III. Simula-
tion results are presented in Section IV. Finally, conclusions
are in Section V.

II. SYSTEM MODEL
Assume that ultra-dense HetNets consist an MBS and mul-
tiple macrocell users (MUs), multiple femtocells, in which
one link per femtocell is assumed between a femtocell access
point (FAP) and a femtocell user (FU). The system model is
shown in Fig. 1. They are assumed to be operated in the flex-
ible TDD configuration [5], where the uplinks and downlinks
can be transmitted simultaneously within the same frequency
to meet the requirements of various services. Hence, the
cross-tier interference takes place from a femtocell transmit-
ter to macrocell receivers or from a macrocell transmitter to
femtocell receivers. The co-tier interference is from a fem-
tocell transmitter to the neighboring femtocell receivers. The
cross-link interference can be explained as the interference
from one uplink FU to another downlink FUs or MUs, from
one downlink FAP to another uplink FAPs or the MBS, from
one uplink MU to downlink FUs, or from the downlink MBS
to uplink FAPs. We assume that there is no cross-link or
co-tier interference among the macrocell links for simplicity
since the MBS centrally controls the MUs.

To avoid the confusion of uplink and downlink, we focus
on the aggressors and victims of interference by transmit-
ters and receivers, instead of uplink and downlink. Hence,
the macrocell and femtocell transmitters and receivers are
illustrated as MTXm and MRXm, 1 ≤ m ≤ M , FTXn and
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FRXn, 1 ≤ n ≤ N , respectively. Here the MBS is virtually
considered as multiple transmitters in downlink or multiple
receivers in uplink. Assume that there are K channels, within
which a femto-free zone of Km channels is exclusively used
by the macrocell links. Apparently, it means these two tiers
share all the channels when Km = 0.
The aggregated interference for the nth femtocell link on

channel k , I (F)n,k , can be expressed as

I (F)n,k =

M∑
m=1

I (FM )
n,m,k +

N∑
n′=1,n′ 6=n

I (FF)
n,n′,k

, (1)

where I (FM )
n,m,k is the cross-tier or cross-link interference from

MTXm on channel k , and I (FF)
n,n′,k

is the co-tier or cross-link
interference from FTXn′ . Each of them will be 0 if the corre-
sponding link is not using channel k .

Then the data rate of the nth femtocell link on channel k is

R(F)n,k = a(F)n,kB log

(
1+

p(F)n,kh
(FF)
n,k

I (F)n,k + σ
2

)
, (2)

where a(F)n,k equals 1 if the nth femtocell link uses channel k
and 0 otherwise, B is the bandwidth of each channel, p(F)n,k is
the transmit power ofFTXn, h

(FF)
n,n,k is the channel gain between

FTXn and FRXn on channel k , and σ 2 is the power of additive
Gaussian noise.

From (2), it indicates that the data rate R(F)n,k is influenced
by the aggregated interference I (F)n,k . Similarly, we can also
express the data rate of each macrocell link as R(M )

m,k and the
aggregated interference I (M )

m,k suffered by the mth macrocell
receiver on channel k . Denote I (M )

m,k as the aggregated interfer-
ence suffered by themthmacrocell receiver from the neighbor
links except the nth femtocell link as

I (M )
m,k =

M∑
m′=1,m′ 6=m

I (MM )
m,m′,k +

N∑
n′=1,n′ 6=n

I (MF)m,n′,k , (3)

where I (MM )
m,m′,k is the co-tier interference fromMTXm′ on chan-

nel k , and I (MF)
m,n′,k

is the cross-tier or cross-link interference

from FTXn′ . Let R
(M )
m,k be the original date rate without inter-

ference from FTXn, which is expressed as

R(M )
m,k = a(M )

m,kB log

(
1+

p(M )
m,kh

(MM )
m,k

I (M )
m,k + σ

2

)
, (4)

where a(M )
m,k denotes the channel usage of this macrocell link

on k , p(M )
m,k is the transmit power ofMTXm, h

(MM )
m,k denotes the

channel gain.
Traditionally, the nth femtocell link can communicate with

the MBS to obtain the deterministic aggregated interfer-
ence information of all the other links as well as report
its own interference suffering information. This informa-
tion exchange needs backhaul support and consumes lots
of resources in the control channel especially. Instead, we

will investigate the aggregated interference I (F)n,k and I (M )
m,k

statistically based on the cognitive radio techniques. In the
following, we exploit cognitive spectrum sensing method to
estimate the statistical parameters of the aggregated interfer-
ence to relieve the traditional information exchange. Hence
the distributed and statistical resource allocation will be
enabled in the ultra-dense HetNets.

III. STATISTICAL RESOURCE ALLOCATION
WITH COGNITIVE INTERFERENCE ESTIMATION
In this section, the statistic resource allocation for each fem-
tocell link is implemented distributively on the basis of the
cognitive interference estimation, where the required interfer-
ence information is derived through local cognitive spectrum
sensing at each femtocell link as well as through the TDD
reciprocity assumption.

A. PROBLEM FORMULATION
The key idea of our problem formulation is that the resource
of both transmit power and channel will be adjusted by
each femtocell link to minimize the aggregated co-tier, cross-
tier, and cross-link interference and maintain reasonable data
rates, simultaneously.

For the nth femtocell link, the receiver FRXn can be the nth
uplink FAP or downlink FU, then the aggregated interference
comes from the uplink or downlink transmitters MTXm and
FTXn′ . In this way, each femtocell link not only considers to
maximize its own date rate R(F)n,k , but also at the same time to
minimize the data rate reduction caused by its transmission to
all other links in the ultra-dense HetNets with denotation of
1Rk here. Meanwhile, in order to protect the macrocell links
especially the cell edge users, we setKm and β respectively to
deploy weighted channel sharing and interference mitigation
priority between the two tiers. Thus the statistical resource
allocation problem for each femtocell link can be formulated
as

max
a(F)n ,p(F)n

K−Km∑
k=1

(
R(F)n,k −1Rk

)
, (5)

with

1Rk = β
M∑
m=1

1R(MF)m,k + (1− β)
N∑

n′=1,
n′ 6=n

1R(FF)n′,k , (6)

such that

0 ≤ β ≤ 1,
K−Km∑
k=1

p(F)n,k ≤ p
(F) max
n , p(F)n,k ≥ 0,

a(F)n,k ∈ {0, 1}, 1 ≤ k ≤ K − Km,

where p(F)n = [p(F)n,1, p
(F)
n,2, . . . , p

(F)
n,K−Km ]

T and a(F)n =

[a(F)n,1, a
(F)
n,2, . . . , a

(F)
n,K−Km ]

T denote transmit power and chan-
nel usage of FTXn, respectively. Data rate reduction 1Rk
includes1R(MF)m,k and1R(FF)

n′,k
, denoting the data rate reduction
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of the macrocell link m and the femtocell link n′ caused
by FTXn on the kth channel, respectively. p(F) max

n is the
maximum transmit power of FTXn, and β ∈ [0, 1] regulates
the priority to the macrocell tier relative to the femtocell
tier. When β = 0.5, the data rate reduction is identically
considered for the macrocell links and neighbor femtocell
links. For β = 0, only the data rate reduction of neighbor
femtocells is considered to manage the co-tier or cross-link
interference. If β = 1, the nth femtocell link will focus on
the macrocell links to mitigate the cross-tier interference. It
is obvious that larger β can protect the macrocell link better,
while affect the femtocell links each other worse. We also
show this observation in the simulations of Section IV.

We use two widely used resource allocation schemes, cen-
tralized and greedy resource allocation scheme, applicable to
the system described above for comparisonwith our proposed
scheme. For the centralized resource allocation scheme, the
MBS maximizes the weighted data rate centrally

max
a(F)n ,p(F)n

K∑
k=1

M∑
m=1

(
R(M )
m,k + R

(F)
n,k

)
,

subject to
K∑
k=1

p(F)n,k ≤ p
(F) max
n , p(F)n,k ≥ 0,

K∑
k=1

p(M )
m,k ≤ p

(M ) max
m , p(M )

m,k ≥ 0,∀k, (7)

where R(M )
m,k is the data rate of macrocell link m, p(M ) max

m

and p(F) max
n are the maximum transmit power of MTXm and

FTXn, respectively, and p
(M )
m,k is the transmit power of MTXm

on channel k .
For the greedy resource allocation scheme, the nth femto-

cell link only optimizes its own data rate as

max
a(F)n ,p(F)n

K−Km∑
k=1

R(F)n,k , (8)

subject to

K−Km∑
k=1

p(F)n,k ≤ p
(F) max
n , p(F)n,k ≥ 0, 1 ≤ k ≤ K − Km.

Utilizingmutual interference information exchange among
the ultra-dense links, either the centralized or the greedy
resource allocation scheme can grasp instantaneous interfer-
ence information at all receivers as well as the channel state
information. However, information exchange is somehow a
waste of limited resource due that it introduces tremendous
overhead in the intensive networks. Moreover, in the greedy
one, the aggressive usage of resources may incur severe co-
tier, cross-tier, and cross-link interference to the neighboring
links.

B. COGNITIVE INTERFERENCE ESTIMATION
It is crucial for the proposed statistical resource allocation
to obtain the data rates in (5) with parameters such as the

interference and channel information, especially the data rate
reductions of 1R(MF)m,k and 1R(FF)

n′,k
. In this section, we will

deal with how to estimate the data rate reductions using cogni-
tive spectrum sensing, since the corresponding instantaneous
parameters are unknown.

We will introduce interference statistics to estimate the
data rate reductions of neighboring links by each femto-
cell link itself. Co-channel interference statistics have been
widely studied with various empirical and statistical-physical
methods [13]. We choose the interference model devel-
oped in [13], which is appropriate to the two-tier net-
works with the Poisson interferer distribution over finite-area
and infinite-area annular region. In the following, aver-
age aggregated interference suffered by the MRXM is ana-
lyzed statistically to obtain the data rate reduction, which
enables distributed resource allocation in the nth femtocell
link.

1) DATA RATE REDUCTION OF MACROCELLS
Consider 1R(MF)m,k , which is the difference between the data
rates ofMRXm before and after FTXn transmitting on channel
k . The data rate reduction influenced by the access of FTXn
on channel k is accordingly

1R(MF)m,k =R
(M )
m,k − a

(M )
m,kB log

(
1+

p(M )
m,kh

(MM )
m,k

I (MF)m,n,k+I
(M )
m,k + σ

2

)
, (9)

where I (MF)m,n,k is the cross-tier or cross-link interference to
MRXm caused by FTXn.
Next we will investigate how to estimate the data rate

reduction in (9) cognitively by taking advantage of the
statistics of the aggregated interference. Hence, information
exchange consuming additional operations and resources can
be avoided effectively.

We first clarify some key assumptions to use the inference
model particularly for Case II in a Poisson field of interferers
in [13]. With the assumption of perfect interference mitiga-
tion inside the macrocell, interference suffered by MRXm is
the sum of that from all the femtocell transmitters. That is, all
the interferers around MRXm are either FAPs in downlink or
FUs in uplink. They have the same maximum transmit power
and are distributed according to a homogeneous spatial Pois-
son point process [15]. Furthermore, to simplify the analysis,
it is assumed that all the femtocell transmitters have equal
transmit power. Although it may not be true in real networks,
the interference statistics are related to the average transmit
power among all the interferers rather than the individual.
Moreover, the estimation error due to this ideal assumption
can be revised using intelligent algorithms with cognitive
radio techniques [16].

From the above, the interferers of femtocell transmitters,
with the independent and identically distributed (i.i.d .) emis-
sions, are scattered over a finite-area annular region within
the MBS. The overall interference, I (M )

m,k , accordingly fol-
lows the log-characteristic function of a Middleton Class A
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distribution [17] as

ψ
I (M )
m,k

(ω) = NI

e− ω2�2NI2NI − 1

 , (10)

and the distribution function is

F
I (M )
m,k

(ω) = 1− e−NI
∞∑
x=1

N x
I

x!
e
−

NIω
2

2x�2NI , ω ≥ 0, (11)

whereNI denotes the number of interfering femtocell links on
channel k and �2NI is the average intensity of interference.
In this case, the two parameters in (11) can be obtained

by cognitive spectrum sensing. The nth femtocell link can
sense the number of interferers, NI . It detects on the kth
channel and decides whether a neighbor femtocell is present
or not [18], i.e., a(F)

n′,k
equals 0 or 1. We can then obtain NI =∑

a(F)
n′,k

. As for the average intensity of interference,�2NI =

NI × E
{
h(MF)m,n,kp

(F)
n,k

}
, the nth femtocell link can estimate the

received pilot signal strength of the neighboring femtocell
links, which depends on NI and the average interference
caused by each neighboring femtocell link E

{
h(MF)m,n,kp

(F)
n,k

}
.

Therefore, the cognitive interference estimation is based on
the sensing methods like energy detection and the received
pilot signals strength, which are feasible in the practical net-
works. Then put these two estimated parameters into (11), we
can get the average aggregated interference atMRXm through
the integral of the distribution function as

Ī (M )
m,k =

∫
∞

0
ωdF

I (M )
m,k

(ω). (12)

Hence, we can obtain the aggregated interference with the
aid of the statistics of the interference, by which can reduce
the information exchange among the enormous links and save
the resource consumptions on feedback. The sensing of the
average aggregated interference estimation and the data trans-
mission can be implemented alternately in each signal inter-
val like the conventional cognitive sensing implemented. For
example, sensing can be implemented during the traditional
channel detection which is between the pilot signals reception
and the channel state information feedback. The difference is
that here the nth femtocell link senses the average aggregated
interference from neighboring interfering transmitters rather
than from its own transmitter. After that in the same signal
interval, the nth femtocell link can transmit and receive its
data with appropriate transmit power and channels allocated
by the proposed statistical resource allocation scheme as we
described in Section III C.

The data rate reduction of the mth macrocell link caused
by the nth femtocell link, 1R(MF)m,k , can be estimated as

1R̂(MF)m,k = a(M )
m,kB

[
log

(
1+

p(M )
m,kh

(MM )
m,k

Ī (M )
m,k + σ

2

)

− log

(
1+

p(M )
m,kh

(MM )
m,k

I (MF)m,n,k + Ī
(M )
m,k + σ

2

)]
, (13)

where channel gain and transmit power of MTXm can be
estimated by the nth femtocell link with the cognitive sensing
method in [19].

For simplification, let R(M )′
m,k denote the first derivative of

data rate R(M )
m,k related to the aggregated interference on chan-

nel k . Then R(M )′
m,k

(
Ī (M )
m,k

)
is the rate of change of data rate

R(M )
m,k at the point where the aggregated interference equals
Ī (M )
m,k . If the interference power is increased by I

(MF)
m,n,k , the data

rate reduction can be approximated on the basis of Taylor
expansion as

1R̂(MF)m,k ≈ −R
(M )′
m,k

(
Ī (M )
m,k

)
I (MF)m,n,k , (14)

where

R(M )′
m,k

(
Ī (M )
m,k

)
=

−a(M )
m,kBp

(M )
m,kh

(MM )
m,k(

p(M )
m,kh

(MM )
m,k + Ī

(M )
m,k +σ

2
) (

Ī (M )
m,k +σ

2
)
ln 2

.

(15)

2) DATA RATE REDUCTION OF NEIGHBOR FEMTOCELLS
Consider the data rate reduction of neighbor femtocells,
1R(FF)

n′,k
. The aggregated interference, I (F)n′,k , at the n

′th fem-
tocell receiver can be expressed as

I (F)
n′,k
=

M∑
m=1

I (FM )
n′,m,k

+

N∑
n=1,n6=n′

I (FF)
n′,n,k

, (16)

where I (FM )
n′,m,k

is the total cross-tier and cross-link interference

from MTXm on channel k , and I (FF)
n′,n,k

is the total co-tier and
cross-link interference from FTXn on channel k .

Obviously, the estimation in uplink case is similar to that
of the macrocells since the uplink interferers of MUs and
FUs can meet the key assumptions of the interference model.
In downlink, the aggregated interference also meets the key
assumptions. However, the transmit power of the MBS is
generally different from that of MU, FU, and FAP. There are
three reasons here the large transmit power of the MBS has
little effect on the cognitive interference estimation. First, the
total transmit power of the MBS is separately allocated to
multiple MUs on each channel in the downlink, while the
total transmit power of FAP is only allocated to one FU in
the downlink and the total transmit power of MU is only
allocated to the MBS and FU only to FAP in the uplink. Thus,
the cross-link interference cause by the MBS to FAPs and the
cross-tier interference to FUs would be separately reduced by
multiple MUs. Second, the distance between the MBS and
the interference victims of receivers is generally longer than
that between the femtocell link itself. Then the cross-link or
cross-tier interference cause by the MBS would be reduced
further. Third, we will evaluate the cognitive interference
estimation in Section IV. The results show that the cognitive
interference estimation has robust performance with different
total transmit power for the MBS and the other transmitters
in the simulation.
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The same approach can be used to estimate data rate reduc-
tion of other femtocell links in uplink and that caused by
the aggregated interference in downlink. Average aggregated
interference, Ī (F)

n′,k
, is obtained through the statistical inter-

ference analysis. Hence, the data rate reduction of the n′th
femtocell link is

1R̂(FF)
n′,k
≈ −R(F)′

n′,k

(
Ī (F)
n′,k

)
I (FF)
n′,n,k

, (17)

where I (FF)
n′,n,k

denotes the interference caused by the nth fem-

tocell, and R(F)′
n′,k

is the first derivative of data rate of the n′th
femtocell link as

R(F)′
n′,k

(
Ī (F)
n′,k

)
=

−a(F)
n′,k

Bp(F)
n′,k

h(FF)
n′,k(

p(F)
n′,k

h(FF)
n′,k
+ Ī (F)

n′,k
+σ 2

) (
Ī (F)
n′,k
+ σ 2

)
ln 2

,

(18)

where p(F)
n′,k

is the transmit power of the n′th femtocell link

with channel gain h(FF)
n′,n′,k

.
Note that the cognitive interference estimation is easily

to extend to other practical scenarios. For example, when
there are multiple FUs in each femtocell, the interference
models with Poisson-Poisson cluster distribution in a finite-
area annular region can be used. For multiple macrocells, the
interference region can be considered as an infinite plane,
which is also be discussed in [13]. Meanwhile, the statistics
of the aggregated interference can be also extended from a
particular form of a Middleton Class A distribution to the
Gaussian mixture distribution.

C. STATISTICAL RESOURCE ALLOCATION
With the cognitive interference estimation we will solve the
statistical resource allocation in (5) by Lagrange dual decom-
position [20].

The Lagrangian function is given by

L =
K−Km∑
k=1

R(F)n,k − β

M∑
m=1

1R̂(MF)m,k − (1− β)
N∑

n′=1,n′ 6=n

1R̂(FF)
n′,k


+ λn

(
p(F) max
n −

K−Km∑
k=1

a(F)n,kp
(F)
n,k

)
, (19)

where λn is the Lagrange multiplier updated by the subgradi-
ent approach [20] as

λl+1n =

[
λln − δ

l

(
p(F) max
n −

K−Km∑
k=1

a(F)ln,k p
(F)l
n,k

)]+
, (20)

where [·]+ = max(·, 0), and δl = δ0/l is the step size in the
lth iteration tuned with initial step size, δ0. We will analyze

TABLE 1. The lagrange dual decomposition algorithm for statistical
resource allocation.

the convergence performance of the proposed solution in the
next section.

According to the Karush-Kuhn-Tucher (KKT) condition
in [20], the transmit power p(F)n,k can be allocated in a water-
filling fashion when ∂L/∂p(F)n,k = 0, i.e., shown in (21), at the
bottom of this page, where h(MF)m,n,k and h

(FF)
n′,n,k

are the channel
gain from FTXn to MRXm and FRX ′n, respectively. Then the
channels are allocated as

a(F)n,k =

{
1, for p(F)n,k > 0,
0, otherwise.

(22)

The iterative algorithm of the Lagrange dual decomposi-
tion approach for the statistical resource allocation is sum-
marized in Table 1, where ε should be set small enough to
guarantee the convergence of the Lagrange multiplier.

Considering both its own data rate and the data rate
reduction to neighboring links, the femtocell link statisti-
cally allocates the resources of power and channels. This
allocation is implemented in a distributed manner avoiding
centralized control and additional information exchange. In
practice, the complexity of the proposed statistical resource
allocation scheme is mainly related to two aspects of the
statistics of the aggregated interference and the large num-
ber of neighboring femtocell links. On one hand, larger
number of femtocell links, more complexity for the aggre-
gated interference estimation and resource allocation. On
the other hand, to take better advantage of the statistics
of the aggregated interference with more sample of inter-
ferers, the proposed statistical resource allocation scheme
is more applicable in the ultra-dense networks scenario
rather than scattered. It is necessary for the proposed
scheme to trade off between the data rate gain and reduc-
tion for each femtocell link, e.g. to set the priority factor
β and the femto-free zone ratio Km/K dynamically and
reasonably.

p(F)n,k =

[
B/ ln 2

λn − β
M∑
m=1

R(M )′
m,k (Ī

(M )
m,k )h

(MF)
m,n,k − (1− β)

N∑
n′=1,n′ 6=n

R(F)′
n′,k

(Ī (F)
n′,k

)h(FF)
n′,n,k

−
I (F)n,k + σ

2

h(FF)n,k

]+
, (21)
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TABLE 2. Simulation parameters of channels.

IV. SIMULATION RESULTS
In this section, we will evaluate the proposed statistical
resource allocation scheme under two different scenarios:
single macrocell and multiple macrocells. Meanwhile, it is
compared with the centralized and greedy resource allocation
schemes. We assume that each MBS centrally allocates the
resources to its ownMUs. After that, these femtocell resource
allocation schemes are implemented among the links using
the round-robin scheduling.

In the simulation, the macrocell coverage range is set as
500 m while 10 m for femtocell. The maximum transmit
power is 36 dBm for the MBSs and 20 dBm for FAPs, MUs,
and FUs. The bandwidth of each channel is 10 kHz. We
assume Rayleigh fading channels with path loss (PL), wall
penetration loss, and standard deviation of shadow fading
(SDSF) based on the ITU path loss model [21] as shown
in Table 2, where d is the distance between transmitter and
receiver and PLw is the wall penetration loss.

A. SINGLE MACROCELL
In this scenario, only one macrocell is considered without
co-channel interference caused by neighboring macrocells.
Multiple FAPs overlay in the coverage area of the MBS.

The throughput and data rate reduction with different
femto-free zone ratio for single macrocell, where the priority
factor β = 0.5, have been illustrated in our previous work
[14]. For the proposed statistical resource allocation scheme
and the comparing centralized and greedy ones, the through-
put of the femtocell links decreaseswhile themacrocell grows
as the femto-free zone ratio increases. The bigger femto-free
zone can better protect the macrocell throughput, however
the overall throughput will be reduced. In the following, we
will further evaluate the cell edge links throughput, data rate
distributions, different priority factors, and convergence of
the proposed scheme for the single macrocell scenario.

5% throughput of the macrocell links, as the cell-edge
performance when deploying different sizes of femto-free
zone for the different schemes, is evaluated in Fig. 2, where
M = 10, K = 50, and β = 0.5. The 5% throughput
indicates the sum data rates of 5% links with the minimum
data rates. The proposed scheme effectively guarantees the
cell-edge performance of the macrocell as shown in Fig. 2. It
gains 54.7% and 88.7%more than the centralized and greedy

FIGURE 2. The 5% throughput of macrocell links with respect to different
femto-free zone ratios.

FIGURE 3. The 5% throughput of femtocell links with respect to different
femto-free zone ratios.

schemes when N = 10 and Km/K = 0, respectively. More-
over, it maintains the 5% macrocell throughput around from
0.25 to 0.35 Mbps for both N = 10 and N = 20. Therefore,
the influence of the cross-tier or cross-link interference to
the macrocell links is minimized by the proposed scheme. In
other words, the smallest femto-free zone is needed by the
proposed scheme to ensure acceptable macrocell coverage.
Since more interference will be introduced when the number
of the femtocell links increases, the 5%macrocell throughput
decreases for N = 20 comparing to N = 10 in each
scheme.

For the 5% throughput of the femtocell links in Fig. 3,
the proposed scheme that conservatively uses the resources
sacrifices more cell-edge performance of the femtocell links
to mitigate the cross-tier or cross-link interference. Further-
more, a large size of femto-free zone significantly reduces the
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FIGURE 4. The CDF of the data rate for each macrocell and femtocell link
when the femto-free zone ratio is Km/K = 0.5.

5% femtocell throughput while improves the 5% macrocell
throughput. It is a tradeoff between to protect the macrocell
throughput and to enhance the femtocell throughput.

Regarding the data rate of each link, the cumulative
distribution function (CDF) curves for the macrocell and
femtocell links are shown in Fig. 4, where N = 20,M = 10,
K = 50, Km/K = 0.5, and β = 0.5. The minimum data
rate of the macrocell links is improved significantly by our
scheme. For example, when CDF equals 0.05, the proposed
scheme can ensure the minimum data rate of the rest 95%
macrocell links to be 0.29 Mbps while the centralized and
greedy schemes get 0.25 Mbps and 0.22 Mbps, respectively.
Note that there is a tradeoff in terms of loss in femtocell
performance compared to macrocell throughput preservation.
The proposed scheme offers the macrocell links the best
protection with the cost of limited reduced femtocell data rate
compared with other two schemes.

More specifically, the cognitive interference estimation
described in Section III B is evaluated.We investigate the root
mean square error (RMSE) of data rate reduction between
the original value in (9) and the estimated in (13) for each
macrocell link, and similarly for each femtocell link. The
CDF curves of RMSE of data rate reduction for both the
macrocell and femtocell links are shown in Fig. 5, where
N = 20, M = 10, K = 50, Km/K = 0.5, and β = 0.5.
It is illustrated that for the 80% marocell links the RMSE of
data rate reduction is below 6.95 Kbps and for 95% is below
20.32 Kbps, comparing with the data rates of the 80% and
95% macrocell links are above 0.32 Mbps and 0.29 Mbps
as we show in Fig. 4, respectively. Meanwhile, for the 80%
and 95% femtocell links the RMSE of data rate reduction are
respectively lower than 52.89 Kbps and 70.03 Kbps when
the data rates are larger than 0.67 Mbps andd 0.62 Mbps.
Moreover, the normalized RMSEs are respectively 0.02 and
0.08 for the 80% macrocell and femtocell links, and 0.07 and

FIGURE 5. The CDF of RMSE of data rate reduction for the macrocell and
femtocell links with the cognitive interference estimation, where
Km/K = 0.5.

FIGURE 6. The 5% throughput of the macrocell and femtocell links with
respect to different priority factors.

0.11 for the 95% macrocell and femtocell links. Therefore,
the cognitive interference estimation has robust performance
for most of the macrocell and femtocell links, and it can
protect the macrocell links better with lower RMSE.

In Fig. 6, we evaluate the 5% throughput of the macro-
cell and femtocell links with different priority factors to the
macrocell tier, β, where N = 20, M = 10, K = 50, and
Km/K = 0.5. Asβ changes, the femtocell link behaves differ-
ently on the macrocell links and the neighbor femtocell links.
Forβ = 1, the highest 5% throughput of themacrocell links is
achieved since the femtocell link focuses on mitigating cross-
tier or cross-link interference to the macrocell links while
the 5% femtocell throughput is the lowest. It indicates that
a large priority factor can enhance the data rates of cell-edge
macrocell links.
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FIGURE 7. Evolution of the proposed scheme with respect to different
Km/K .

FIGURE 8. The throughput of all links and femtocell links for multiple
macrocells scenario.

Finally, the convergence of the proposed scheme is shown
in Fig. 7, where N = 20, M = 10, K = 50, and β = 0.5.
For each specific Km/K , the proposed scheme can converge
rapidly within tens of iterations. Meanwhile, the objective
function is decreased as the growing iterations before con-
vergence. That is because the femtocell links are initialized
without data transmission and the proposed scheme is tend to
allocate the channels with large transmit power aggressively
at the beginning. As the iteration grows, the increased data
rate reduction will lead to conservative resource allocation
and the objective function is decreased relatively. More-
over, for Km/K from 0 to 0.7, the channels that can be
accessed by the femtocell links get fewer and fewer. There-
fore, the proposed scheme needs fewer iterations to reach
convergence.

FIGURE 9. The throughput of macrocell links for multiple macrocells
scenario.

FIGURE 10. The data rate reduction ratios of macrocell links with respect
to different femto-free zone ratios for multiple macrocells scenario.

B. MULTIPLE MACROCELLS
In this scenario, the simulation involves multiple MBSs and
FAPs. There are 19macrocells with uniformly dropped FAPs,
and only the performance of the central macrocell is evalu-
ated. Assume frequency reuse factor of 1 among all theMBSs
and FAPs. The neighbor MBSs around the central MBS are
assumed applyingmaximum transmit power on each channel.

The overall throughput of all links, macrocell links, and
femtocell links versus femto-free zone ratio, Km/K , using
different resource allocation schemes is shown in Fig. 8 and
Fig. 9, where N = 20, M = 10, K = 50, and β = 0.5.
Comparing to the corresponding metrics in [14], the perfor-
mance of all links is reduced significantly while the femtocell
throughput is similar to that in the single macrocell scenario.
Meanwhile, the macrocell throughput is much lower than that
in the single macrocell scenario as shown. However, the data
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rate reduction of macrocell links caused by the deployment of
femtocells is the lowest with the proposed scheme in Fig. 10.
we define the data rate reduction ratio η as

η =

M∑
m=1

K∑
k=1

R(M )initialized
m,k −

M∑
m=1

K∑
k=1

R(M )
m,k

M∑
m=1

K∑
k=1

R(M )initialized
m,k

, (23)

where R(M )initialized
m,k is the initialized data rate of the mth

macrocell link on channel k , and R(M )
m,k denotes the data

rate updated after the femtocell resource allocation. These
results imply that the macrocell links are more sensitive
to interference from the neighbor MBSs than the femtocell
links since the channel conditions between the macrocell
links are generally worse than those of the femtocell links.
Therefore, the macrocell throughput can be enhanced by the
proposed scheme and further by using advanced macrocell
interference mitigation techniques such as multiple-input and
multiple-output and fractional frequency reuse.

V. CONCLUSION
In this paper, we have investigated the distributed statistical
resource allocation for interference mitigation in the ultra-
dense HetNets. The proposed scheme independently operates
resource allocation at each femtocell link distributively and
statistically. Each femtocell link first estimates the aggregated
co-tier, cross-tier, and cross-link interference and the data rate
reduction caused to its neighboring links, and then determines
the channel usage and relative transmit power. The femtocells
are enabled to maximize their own throughput while consid-
ering the impact on macrocell throughput and outage. The
proposed scheme considerably reduces the system overhead
with the cognitive interference estimation.
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